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Abstract
In this paper we derive the Pohozaev-type inequalities for p-Laplacian equations and
weighted quasi-linear equations and then prove some non-existence results for the
positive solutions of these equations in a class of domains that are more general than
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1 Introduction
This paper is mainly concerned with the elliptic equation

⎧
⎨

⎩

–�pu = f (x, u), in �,

u = , on ∂�,
(.)

where �p = div(|∇u|p–∇u), f (x, u) : RN × R → R is continuous, and � ⊂ R
n (n ≥ ) is a

bounded domain with smooth boundary. We will establish the Pohozaev-type inequality
for the solutions of (.) and then discuss the non-existence of positive solutions of the
problem in the non-star-shaped domains. We also discuss a similar topic for the following
weighted quasi-linear elliptic equation:

⎧
⎨

⎩

– div(|x|–ap|∇u|p–∇u) = f (x, u) in �,

u =  on ∂�.
(.)

Recall that in the famous paper [], Pohozaev considered the following elliptic boundary
value problem:

⎧
⎨

⎩

–�u = f (u) in �,

u =  on ∂�,
(.)

where f ∈ C(R, R), � ⊂ R
n (n ≥ ) is a domain with smooth boundary. Let F(x) =

∫ x
 f (s) ds, and let ν(x) be the unit outward normal to ∂� at x. He proved the following

famous identity.
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Theorem A (Pohozaev identity, []) Suppose that u ∈ C(�) ∩ C(�̄) is a solution of (.).
Then

( – n)
∫

�

uf (u) dx + n
∫

�

F(u) dx

=
∫

∂�

〈
x,ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣



ds. (.)

Based on this identity, Pohozaev obtained a remarkable non-existence result for the fol-
lowing elliptic boundary value problem under the conditions that � is star-shaped and
α ≥ n+

n– , λ ≤ .

⎧
⎨

⎩

–�u = |u|α–u + λu, u > , in �,

u = , on ∂�.
(.)

Since then, many new results on this topic have appeared. Some of them generalized
Pohozaev’s results to the more general equations, such as quasi-linear elliptic, polyhar-
monic equations, fractional differential equations. Others considered the case of domains
more general than star-shaped ones. See [–] and the references therein. In [], Bahri
and Coron proved that if � is a smooth domain with non-trivial topology, equation (.)
may have solutions. Dancer [] and Ding [] constructed the examples of contractible
domains on which (.) has a solution. Therefore, it is interesting to discuss the problem
on non-star-shaped contractible domains.

In , Guedda and Veron [] established the Pohozaev identity of the solutions of
(.) and got the non-existence results. In [], Isaia generalized the Pohozaev identity to
a non-existence result of higher-order regular strong solutions of (.). In [], Takáč and
Il’yasov improved the well-known regularity results of the weak solutions of p-Laplacian
equation from [, ] and, using the new regularity results for the Dirichlet and Neumann
problem, established and proved the Pohozaev-type identity. In [], Bartsch, Peng and
Zhang generalized the non-existence result to the more general problem (.). It is also
interesting to discuss some special cases of (.), such as f (x, u) = λuq– + us–, f (x, u) =
p(x)uα + q(x)uβ , etc. See, for example, [–].

In this paper we also discuss the non-existence of the positive solution of (.) and (.).
However, our method is different from all of the above work. Instead of the Pohozaev
identities, we establish a kind of inequalities, named Pohozaev-type inequalities, which
have the same effects as Pohozaev identities, and then prove some non-existence results
for the positive solution of (.) and (.) on non-star-shaped domains.

2 The p-Laplacian equations
In this section, we consider the p-Laplacian equations (.). Firstly we give a lemma.

Lemma . Assume that V (x) = (V(x), . . . , Vn(x)) is a C vector field on R
n and u ∈

W ,p
 (�) ∩ C(�̄) is a solution of (.). Then

∫

�

u div
(|∇u|p–V (x)

)
dx = –

∫

�

|∇u|p–〈V (x),∇u
〉
dx,
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and
∫

�

F(x, u) div V (x) dx +
∫

�

F(x, u) dx = –
∫

�

f (u)
〈
V (x),∇u

〉
dx,

where F(x, t) =
∫ t

 f (x, s) ds, F(x, t) =
∑n

i= Vi
∂F(x,t)

∂xi
.

Proof By the divergence theorem and the fact u(x) =  and F(x, u) =  for x ∈ ∂�, we have
the following results:

 =
∫

∂�

〈
u(x)|∇u|p–V (x),ν(x)

〉
ds =

∫

�

div
(
u(x)|∇u|p–V (x)

)
dx

=
∫

�

u div
(|∇u|p–V (x)

)
dx +

∫

�

〈|∇u|p–V (x),∇u
〉
dx

=
∫

�

u div
(|∇u|p–V (x)

)
dx +

∫

�

|∇u|p–〈V (x),∇u
〉
dx,

and because Vif (x, u) ∂u
∂xi

= Vi( ∂F
∂xi

–
∫ u


∂f (x,s)

∂xi
ds), we have

–
n∑

i=

∫

�

Vif
∂u
∂xi

dx

= –
n∑

i=

[∫

�

(
∂

∂xi
(ViF) –

∂Vi

∂xi
F
)

dx –
∫

�

Vi
∂F
∂xi

dx
]

= –
∫

∂�

F(x, u)
〈
V (x),ν(x)

〉
ds +

∫

�

F(x, u) div
(
V (x)

)
dx +

∫

�

F(x, u)x

=
∫

�

F(x, u) div
(
V (x)

)
dx +

∫

�

F(x, u)x.

The proof is complete. �

Based on Lemma ., we can derive a Pohozaev-type inequality for the solutions of (.).

Theorem . (Pohozaev-type inequality) Let V (x) be a linear vector field on R
n with the

form

V (x) =

⎛

⎜
⎜
⎝

a · · · an
...

...
...

an · · · ann

⎞

⎟
⎟
⎠x.

Suppose that V (x) satisfies div V (x) = n and 〈V (x), x〉 >  for ∀x ∈R
n \ {}. If u ∈ W ,p

 (�)∩
C(�̄) is a solution of (.), then

(pμ – n)
∫

�

uf (x, u) dx + pn
∫

�

F(x, u) dx + p
∫

�

F(x, u) dx

≥ (p – )
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds, (.)

where μ = sup|x|�=
〈V (x),x〉

|x| .
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Proof It is easy to see that

 <
〈
V (x), x

〉
< μ|x|, ∀x ∈ R

n \ {}.

We multiply the equation –�pu = f (x, u) by 〈V (x),∇u〉, and then we integrate in �. By the
divergence theorem and Lemma ., the right-hand side is

–
∫

�

f (x, u)
〈
V (x),∇u

〉
dx

= –
∫

�

n∑

i=

f (x, u)Vi(x)
∂u
∂xi

=
∫

�

F(x, u) div V (x) dx +
∫

�

F(x, u) dx.

The left-hand side is
∫

�

div
(|∇u|p–∇u

)〈
V (x),∇u

〉
dx

=
n∑

j=

∫

�

∂

∂xj

(

|∇u|p– ∂u
∂xj

)( n∑

i=

Vi(x)
∂u
∂xi

)

dx

=
n∑

j=

∫

�

∂

∂xj

(

|∇u|p– ∂u
∂xj

n∑

i=

Vi(x)
∂u
∂xi

)

– |∇u|p– ∂u
∂xj

∂

∂xj

( n∑

i=

Vi(x)
∂u
∂xi

)

dx.

Following this, we have

=
∫

∂�

〈
V (x),ν(x)

〉|∇u|p ds –
n∑

j=

∫

�

|∇u|p– ∂u
∂xj

( n∑

i=

aij
∂u
∂xi

+
n∑

i=

Vi(x)
∂u

∂xi∂xj

)

=
∫

∂�

〈
V (x),ν(x)

〉|∇u|p ds +
∫

�

u div
(|∇u|p–V (∇u)

)

–
n∑

j=

∫

�

|∇u|p– ∂u
∂xj

( n∑

i=

Vi
∂u

∂xi∂xj

)

=
∫

∂�

〈
V (x),ν(x)

〉|∇u|p ds –
∫

�

|∇u|p–〈V (∇u),∇u
〉
dx –


p

n∑

i=

∫

�

Vi(x)
∂

∂xi

(|∇u|p)dx

=
∫

∂�

〈
V (x),ν(x)

〉|∇u|p ds –
∫

�

|∇u|p–〈V (∇u),∇u
〉
dx

–

p

∫

∂�

〈
V (x),ν(x)

〉|∇u|p ds +

p

n∑

i=

aii

∫

�

|∇u|p dx.

Comparing the left- and right-hand sides, we get the following identity:

(

 –

p

)∫

∂�

|∇u|p〈V (x),ν(x)
〉
ds

= –

p

n∑

i=

aii

∫

�

|∇u|p dx +
∫

�

|∇u|p–〈V (∇u),∇u
〉
dx +

∫

�

F div V (x) dx
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= –

p

n∑

i=

aii

∫

�

uf (x, u) dx +
∫

�

|∇u|p–〈V (∇u),∇u
〉
dx +

n∑

i=

aii

∫

�

F(x, u) dx

+
∫

�

F(x, u) dx.

Because  < 〈V (x), x〉 ≤ μ|x|, we know that

 <
〈
V (∇u),∇u

〉 ≤ μ|∇u|.

Thus,

∫

�

|∇u|p–〈V (∇u),∇u
〉
dx ≤ μ

∫

�

|∇u|p dx = μ

∫

�

uf (u) dx.

By div V (x) =
∑n

i= aii = n, we obtain the following inequality:

(pμ – n)
∫

�

uf (x, u) dx + pn
∫

�

F(x, u) dx + p
∫

�

F(x, u) dx

≥ (p – )
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds.

The proof is complete. �

Based on the above Pohozaev-type inequality, we discuss the non-existence of a positive
solution of the following boundary value problem:

⎧
⎨

⎩

–�pu = λ|u|r–u + λ|u|s–u, in �,

u = , on ∂�,
(.)

where  < r ≤ s < +∞.

Theorem . Suppose that there exists a vector field V (x) which satisfies the conditions of
Theorem . and is transverse to ∂�. Then (.) has no positive solution in the following
cases respectively:

(D) p∗
 > r, λ > , λ > , p∗

 > s;
(D) p∗

 > r, λ > , λ < , p∗
 < s;

(D) p∗
 < r, λ < , λ < , p∗

 < s,

where p∗
 = np

n–pμ
.

Proof It is easy to see that

f (x, u) = λ|u|r–u + λ|u|s–u, F(x, u) =
∫ u


f (x, s) ds =

λ

r
|u|r +

λ

s
|u|s,

and then we have

uf (x, u) = λ|u|r + λ|u|s, ∂F(x, u)
∂xi

= , F = .
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Suppose that u is a positive solution of (.), according to Theorem ., inequality (.)
holds, then we have

(pμ – n)
∫

�

(
λ|u|r + λ|u|s)dx + pn

∫

�

λ

r
|u|r +

λ

s
|u|s dx ≥ .

This yields

λ‖u‖r
r

(
r – p∗


r

)

≥ λ‖u‖s
s

(
p∗

 – s
s

)

. (.)

By (D)-(D), the left-hand side of (.) is negative, and the right-hand side is positive,
which is a contradiction. Then the proof is complete. �

Especially, we consider the problem in the case of p = :

⎧
⎨

⎩

–�u = λ|u|r–u + λ|u|s–u, in �,

u = , on ∂�.
(.)

Corollary . Suppose that there exists a vector field V (x) which satisfies the conditions
of Theorem . and is transverse to ∂�. Then (.) has no positive solution in the following
cases respectively:

(D′
) ∗

 > r, λ > , λ > , ∗
 > s;

(D′
) ∗

 > r, λ > , λ < , ∗
 < s;

(D′
) ∗

 < r, λ < , λ < , ∗
 < s,

where ∗
 = n

n–μ
.

3 The weighted quasi-linear elliptic boundary value problem
This section is devoted to the weighted quasi-linear elliptic problem (.).

Theorem . (Pohozaev-type inequality) Let V (x) be a linear vector field on R
n with the

form

V (x) =

⎛

⎜
⎜
⎝

a · · · an
...

...
...

an · · · ann

⎞

⎟
⎟
⎠x.

Suppose that V (x) satisfies div V (x) = n and 〈V (x), x〉 >  for ∀x ∈R
n \ {}. If u ∈ W ,p

 (�)∩
C(�̄) is a solution of (.), then

(
(a + )pμ – n

)
∫

�

uf (x, u) dx + pn
∫

�

F(x, u) dx + p
∫

�

F(x, u) dx

≥ (p – )
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds, (.)

where μ = sup|x|�=
〈V (x),x〉

|x| .
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Proof We multiply equation (.) by 〈V (x),∇u〉, and then we integrate in �. Similar to the
proof of Theorem ., by the divergence theorem and Lemma ., we have

–
∫

�

f (x, u)
〈
V (x),∇u

〉
dx = –

∫

�

n∑

i=

f (x, u)Vi(x)
∂u
∂xi

=
∫

�

F(x, u) div V (x) dx +
∫

�

F(x, u) dx,

then

=
n∑

j=

∫

�

∂

∂xj

(

|x|–ap|∇u|p– ∂u
∂xj

)( n∑

i=

Vi(x)
∂u
∂xi

)

dx

=
n∑

j=

∫

�

∂

∂xj

(

|x|–ap|∇u|p– ∂u
∂xj

n∑

i=

Vi(x)
∂u
∂xi

)

– |x|–ap|∇u|p– ∂u
∂xj

∂

∂xj

( n∑

i=

Vi(x)
∂u
∂xi

)

dx

=
∫

∂�

|x|–ap|∇u|p〈V (x),ν(x)
〉
ds

–
n∑

j=

∫

�

|x|–ap|∇u|p– ∂u
∂xj

( n∑

i=

aij
∂u
∂xi

+
n∑

i=

Vi(x)
∂u

∂xi∂xj

)

dx

=
∫

∂�

〈
V (x),ν(x)

〉|x|–ap||∇u|p ds +
∫

�

u div
(|x|–ap|∇u|p–V (∇u)

)
dx

–
n∑

j=

∫

�

|x|–ap||∇u|p– ∂u
∂xj

( n∑

i=

Vi(x)
∂u

∂xi∂xj

)

dx

=
∫

∂�

〈
V (x),ν(x)

〉|x|–ap|∇u|p ds –
∫

�

|x|–ap|∇u|p–〈V (∇u),∇u
〉
dx

–

p

n∑

i=

∫

�

|x|–apVi(x)
∂

∂xi

(|∇u|p)dx

=
∫

∂�

〈
V (x),ν(x)

〉|x|–ap|∇u|p ds –
∫

�

|x|–ap|∇u|p–〈V (∇u),∇u
〉
dx

–

p

∫

∂�

〈
V (x),ν(x)

〉|x|–ap|∇u|p ds +

p

n∑

i=

aii

∫

�

|x|–ap|∇u|p dx

+

p

n∑

i=

∫

�

|∇u|pVi
∂

∂xi
|x|–ap dx

=
∫

∂�

〈
V (x),ν(x)

〉|x|–ap|∇u|p ds –
∫

�

|x|–ap|∇u|p–〈V (∇u),∇u
〉
dx

–

p

∫

∂�

〈
V (x),ν(x)

〉|x|–ap|∇u|p ds +
n
p

∫

�

|x|–ap|∇u|p dx

– a
∫

�

|x|–ap–|∇u|p〈V (x), x
〉
dx.
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Since  < 〈V (x), x〉 ≤ μ|x|, and  < 〈V (∇u),∇u〉 ≤ μ|∇u|, we have
∫

�

|∇u|p–〈V (∇u),∇u
〉
dx ≤ μ

∫

�

|∇u|p dx = μ

∫

�

uf (u) dx.

We obtain the following inequality:

(
(a + )pμ – n

)
∫

�

uf (x, u) dx + pn
∫

�

F(x, u) dx + p
∫

�

F(x, u) dx

≥ (p – )
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds.

The proof is complete. �

Theorem . Suppose that there exists a vector field V (x) which satisfies the conditions of
Theorem . and is transverse to ∂�. Then (.) has no positive solution if

(
(a + )pμ – n

)
∫

�

uf (x, u) dx + pn
∫

�

F(x, u) dx + p
∫

�

F(x, u) dx < .

Now we consider two special but important cases as follows.
. A weighted quasi-linear problem

⎧
⎨

⎩

– div(|x|–ap|∇u|p–∇u) = λ|u|r–u + λ|u|s–u, in �,

u = , on ∂�.
(.)

By Theorem ., problem (.) has no solution in the following cases.

Theorem . Suppose that the vector field V (x) of Theorem . is transverse to ∂�. Then
(.) has no positive solution in the following cases respectively:

(E) p∗
 > r, λ > , λ > , p∗

 > s;
(E) p∗

 > r, λ > , λ < , p∗
 < s;

(E) p∗
 < r, λ < , λ < , p∗

 < s,

where p∗
 = np

n–(a+)pμ
.

. A non-autonomous weighted quasi-linear problem:
⎧
⎨

⎩

– div(|x|–ap|∇u|p–∇u) = λ|x|–α|u|r–u + λ|x|–β |u|s–u, in �,

u = , on ∂�.
(.)

By Theorem ., we have the next theorem of problem (.).

Theorem . Suppose that there exists a vector field V (x) which satisfies the conditions of
Theorem . and is transverse to ∂�. If

(

α –
α – n

r

)

λ < , and
(

β – n
s

– α

)

λ > , (.)

where α = (a + )μ – n
p , then (.) has no positive solution.
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Proof It is easy to see that

f (x, u) = λ|x|–α|u|r–u + λ|x|–β |u|s–u,

F(x, u) =
∫ u


f (x, s) ds =

λ

r
|x|–α|u|r +

λ

s
|x|–β |u|s,

and then we have

uf (x, u) = λ|x|–α|u|r + λ|x|–β |u|s,

and

F(x, u) =
n∑

i=

xi
∂

∂xi
F(x, u) = –

αλ

r
|x|–α|u|r –

βλ

s
|x|–β |u|s.

Suppose that u is a positive solution of (.), then inequality (.) holds, that is,

(
(a + )pμ – n

)
∫

�

(
λ|x|–α|u|r + λ|x|–β |u|s)dx + pn

∫

�

F(x, u) dx + p
∫

�

F(x, u) dx

≥ (p – )
∫

∂�

〈
V (x),ν(x)

〉
∣
∣
∣
∣
∂u
∂ν

∣
∣
∣
∣

p

ds ≥ .

This implies

(pμ – n)
∫

�

(
λ|x|–α|u|r + λ|x|–β |u|s)dx + pn

∫

�

λ

r
|x|–α|u|r +

λ

s
|x|–β |u|s dx

≥ p
∫

�

αλ

r
|x|–α|u|r +

βλ

s
|x|–β |u|s dx.

Hence, we get

λ

(

α –
α – n

r

)∫

�

|x|–α|u|r dx ≥ λ

(
β – n

s
– α

)∫

�

|x|–β |u|s, (.)

which leads to a contradiction, because of (.). �

Remark Let λ = λ = –, α = br, β = cs, r = np
n–p(a+–b) , s = np

n–p(a+–c) , problem (.) is the
equation that is discussed in [].
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