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Abstract
In this paper we study the existence of sign-changing solutions for nonlinear
problems involving the fractional Laplacian

{
(–�)su – λu = f (x,u), x ∈ �,
u = 0, x ∈R

n \ �,
(.)

where � ⊂ R
n (n≥ 2) is a bounded smooth domain, s ∈ (0, 1), (–�)s denotes the

fractional Laplacian, λ is a real parameter, the nonlinear term f satisfies superlinear
and subcritical growth conditions at zero and at infinity. When λ ≤ 0, we prove the
existence of a positive solution, a negative solution and a sign-changing solution by
combing minimax method with invariant sets of descending flow. When λ ≥ λs

1
(where λs

1 denotes the first eigenvalue of the operator (–�)s in�with homogeneous
Dirichlet boundary data), we prove the existence of a sign-changing solution by using
a variation of linking type theorems.

MSC: 35R11; 58E30
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1 Introduction
This paper is concerned with the existence of sign-changing solutions for nonlinear prob-
lems involving the fractional Laplacian

{
(–�)su – λu = f (x, u), x ∈ �,
u = , x ∈ R

n \ �,
(.)

where � ⊂R
n (n ≥ ) is a bounded domain with smooth boundary ∂�, f is a Carathéodory

function,  < s < , (–�)s is the fractional Laplacian operator. The fractional Laplace (–�)s

of a rapidly decaying test function u is defined as

(–�)su(x) = Cn,sP.V.
∫
Rn

u(x) – u(y)
|x – y|n+s dy,
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where P.V. denotes the principal value of the singular integral, and

C–
n,s =

∫
Rn

 – cos x

|x|n+s dx.

It is possible to prove that (–�)s is a pseudo-differential operator, and more precisely that

(–�)su(x) = F –(|ξ |sF (u)(ξ )
)
, ∀s ∈ (, ),

where F is the Fourier transform.
The fractional Laplacian operator (–�)s arises in many different applications, such as

continuum mechanics, phase transition phenomena, population dynamics and game the-
ory, as they are the typical outcome of stochastically stabilization of Lévy processes; see
[] and the references therein.

The problem (.) is a nonlinear equation involving the fractional Laplacian which has
been studied extensively for many years. Chang and González [] studied this problem
in conformal geometry. Caffarelli et al. [, ] investigated free boundary problems of the
fractional Laplacian. Silvestre [] obtained some regularity results of the obstacle problem
of the fractional Laplacian.

In the past few years, some existence results on sign-changing solutions of nonlinear
elliptic equations have been obtained by combing minimax method with invariant sets of
descending flow (see [, ]). In this paper, we generalize the method to study the sign-
changing solution for the nonlinear equation involving the fractional Laplacian (–�)s.

The problem (.) has different variational structures when λ take different values. This
paper is divided into two parts. In Section , we discuss the case λ ≤ , a positive and a neg-
ative and a sign-changing solution have been found by constructing different invariant sets
on which the functional is bounded below; In Section , we discuss the case λ > λs

 (where
λs

 denotes the first eigenvalue of the operator (–�)s in � with homogeneous Dirichlet
boundary data), by using a variation of the linking theorem.

To state our results, we suppose that the Carathéodory function f : �̄×R
n →R verifying

the following conditions:

(f) f (x, ) = ;
(f) |f (x, t)| ≤ C( + |t|p–) for some C >  and p ∈ (, ∗

s ), where ∗
s = n

n–s ;
(f) there exists a constant μ >  such that

 < μF(x, t) ≤ tf (x, t), ∀x ∈ �̄, t ∈R \ {},

where F(x, t) =
∫ t

 f (x, τ ) dτ ;
(f) limt→

f (x,t)
t = , uniformly in x ∈ �̄;

(f) for every x ∈ �̄ the function t 	→ f (x,t)
|t| is nondecreasing on R.

Now, we are ready to state the main results of this paper.

Theorem . Suppose that (f)-(f) and λ ≤  hold. Then
(i) problem (.) has at least a positive solution u+ and a negative solution u–;

(ii) problem (.) has a sign-changing solution ū. If in addition (f) holds then ū is a least
energy sign-changing solution with precisely two nodal domains.
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Theorem . Suppose that (f)-(f) and λ ≥ λs
 hold. Then problem (.) has a sign-

changing solution.

2 Preliminaries
Recall that the fractional Sobolev space Hs(�) is defined as

Hs(�) =
{

g ∈ L(�) :
|g(x) – g(y)|
|x – y| n+s


∈ L(� × �)

}
,

endowed with the natural norm

‖g‖Hs(�) :=
(∫

�

|g| dx +
∫

�

∫
�

|g(x) – g(y)|
|x – y|n+s dx dy

)/

, (.)

where the term

[g]Hs(�) :=
(∫

�

∫
�

|g(x) – g(y)|
|x – y|n+s dx dy

)/

,

is the so-called Gagliardo (semi)norm of g . Hs
(�) denotes the closure of C∞

 (�) in the
norm

‖g‖Hs
(�) =

(∫
�

∫
�

|g(x) – g(y)|
|x – y|n+s dx dy

)/

,

which is equivalent with the norm defined in (.). For the basic properties of fractional
Sobolev spaces, we refer the interested reader to [].

One can also define (–�)s by using the method of bilinear Dirichlet forms, that is, (–�)s

is the closed selfadjoint operator on L(Rn) associated with the bilinear symmetric closed
form

�(u, v) =
Cn,s



∫
Rn×RN

(u(x) – u(y))(v(x) – v(y))
|x – y|n+s dx dy, u, v ∈ Hs(

R
n),

in the sense that

D
(
(–�)s) =

{
u ∈ Hs(

R
n), (–�)su ∈ L(

R
n)}

and

�(u,ϕ) =
(
(–�)su,ϕ

)
=

∫
Rn

ϕ(–�)su dx, ∀u ∈ D
(
(–�)s),ϕ ∈ Hs(

R
n).

Remark that there are maybe some distinctions between the fractional Laplacians by
different definitions. In this paper, we define it as follows.

Definition . (see [–]) Let ei, λi be the eigenfunctions and the eigenvalues of the
Laplace operator –� in � with Dirichlet homogeneous boundary data, ai represents the
projection of u on the direction ei. Then

(–�)su =
∑
i∈N

aiλ
s
i ei.
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For the reader’s convenience, we review the main result for the following eigenvalue
problem of the Laplace operator (–�) with Dirichlet homogeneous boundary data.

Proposition . (see [, ]) Let � be an open smooth bounded set of Rn.

{
(–�)u = λu in �,
u =  on ∂�.

(.)

Then,
(a) the set of the eigenvalues of problem (.) consists of a sequence {λk}k∈N with

 < λ < λ ≤ · · · ≤ λk ≤ λk+ ≤ · · ·

and

λk → +∞ as k → +∞;

(b) the sequence {ek}k∈N of eigenfunctions corresponding to λk is an orthonormal basis of
L(�) and an orthogonal basis of Hs

(�), and each eigenvalue λk has finite
multiplicity;

(c) the first eigenvalue λ is associated with the only positive eigenfunctions e. The higher
eigenvalues {λk} (k ≥ ) are associated with sign-changing eigenfunctions {ek} (k ≥ ).

For the reader’s convenience, we review the main embedding result for fractional
Sobolev spaces.

Proposition . Let s ∈ (, ) and � ⊆ R
n be an open set of class C, with bounded bound-

ary. Then the following assertions hold true:
(a) (see []) Hs(�) is continuously embedded in Hs(Rn), namely for any u ∈ Hs(�) there

exists ũ ∈ Hs(Rn) such that ũ|� = u and

‖ũ‖Hs(Rn) ≤ C‖u‖Hs(�),

where C = C(n, s,�).
(b) (see []) The embedding Hs

(�) ↪→ Lr(�) is continuous for any r ∈ [, ∗
s ], and

compact for any r ∈ [, ∗
s ).

For the proof of Theorem . and Theorem ., we observe that problem (.) has a vari-
ational structure, indeed it is the Euler-Lagrange equation of the functional I : Hs

(�) →R

defined as follows:

I(u) =



∫
�

∣∣(–�)
s
 u

∣∣ dx –



∫
�

λ|u| dx –
∫

�

F(x, u) dx.

Note that the functional I is Fréchet differentiable in u ∈ Hs
(�) and for any φ ∈ Hs

(�)

〈
I ′(u),φ

〉
=

∫
�

φ(–�)su dx –
∫

�

(
λu + f (x, u)

)
φ dx.
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Thus, critical points of I are weak solutions to problem (.). In order to find these critical
points, we will make use of the minimax method. For this purpose, we have to check that
the functional I satisfies the (PS) condition.

Definition . (see []) Let c ∈R and {uj} be a sequence in Hs
(�) such that

I(uj) → c,

sup
ϕ∈Hs

(�),‖ϕ‖Hs
(�)=

{∣∣〈I ′(uj),ϕ
〉∣∣} → , (.)

as j → +∞, then {uj} is a (PS)c sequence. Moreover, if there exists u ∈ Hs
(�) such that, up

to a subsequence, ‖uj – u‖Hs
(�) →  as j → +∞, we said that I satisfies the (PS) condition.

Lemma . Let f be a function satisfying conditions (f)-(f). Let {uj} be a (PS)c sequence
in Hs

(�) such that {uj} is bounded in Hs
(�). Then I satisfies the (PS) condition.

Proof Since {uj} is bounded in Hs
(�) and Hs

(�) is a reflexive space (being a Hilbert space),
up to a subsequence, still denoted by {uj}, there exists u ∈ Hs

(�) such that uj ⇀ u weakly
in Hs

(�), that is,

(uj,ϕ)Hs
(�) → (u,ϕ)Hs

(�), ∀ϕ ∈ Hs
(�), (.)

as j → +∞. Moreover, by Proposition .(b), up to a subsequence

uj → u in Lr(�), r ∈ [
, ∗

s
)
;

uj → u a.e. in �,
(.)

as j → +∞ and there exists h ∈ Lr(�) such that

∣∣uj(x)
∣∣ ≤ h(x) a.e. in �,∀j ∈ N. (.)

By (f), (.)-(.), the fact that the map t 	→ f (·, t) is continuous in t ∈ R and the domi-
nated convergence theorem we get

∫
�

f
(
x, uj(x)

)
uj(x) dx →

∫
�

f
(
x, u(x)

)
u(x) dx (.)

and

∫
�

f
(
x, uj(x)

)
u(x) dx →

∫
�

f
(
x, u(x)

)
u(x) dx (.)

as j → +∞. By I ′(uj) → , we have

〈
I ′(uj), uj

〉 ≤ ∥∥I ′(uj)
∥∥

(Hs
(�))∗‖uj‖Hs

(�) → , as j → +∞.
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Moreover, by (.)-(.), we have

(uj, uj)Hs
(�) =

〈
I ′(uj), uj

〉
+ λ

∫
�

∣∣uj(x)
∣∣ dx +

∫
�

f
(
x, uj(x)

)
uj(x) dx

→ λ

∫
�

∣∣u(x)
∣∣ dx +

∫
�

f
(
x, u(x)

)
u(x) dx

and

(uj, u)Hs
(�) =

〈
I ′(uj), u

〉
+ λ

∫
�

uj(x)u(x) dx +
∫

�

f
(
x, uj(x)

)
u(x) dx

→ λ

∫
�

∣∣u(x)
∣∣ dx +

∫
�

f
(
x, u(x)

)
u(x) dx.

Consequently, recalling also (.), we deduce that

‖uj‖
Hs

(�) → ‖u‖
Hs

(�) as j → +∞. (.)

Finally we have

‖uj – u‖
Hs

(�) = ‖uj‖
Hs

(�) + ‖u‖
Hs

(�) – (uj, u)Hs
(�)

→ ‖u‖
Hs

(�) – (u, u)Hs
(�) = ,

as j → +∞, thanks to (.) and (.). Then the assertion of Lemma . is proved. �

We define the operator A : Hs
(�) → Hs

(�) by

A(u) = (–�)–s ◦ h(u), ∀u ∈ Hs
(�),

where h(u)(x) := λu(x) + f (x, u(x)), ∀u ∈ Hs
(�), is the corresponding Nemytskii operator.

(–�)–s is equal to the inverse of the operator (–�)s (see [, , ]). A(u) is uniquely de-
termined by the relation

(
A(u),φ

)
Hs

(�) =
∫

�

(–�)sA(u)φ dx =
∫

�

(
λu(x) + f

(
x, u(x)

))
φ dx, ∀φ ∈ Hs

(�).

Lemma . The operator A : Hs
(�) → Hs

(�) is compact and I ′(u) = u–A(u), ∀u ∈ Hs
(�).

Proof The proof is similarly to Lemma . in []. Indeed, together with (f) and the com-
pact embedding Hs

(�) ↪→ Lr(�) for r ∈ [, ∗
s ), it is easy to see that A is compact. Note

that

(
I ′(u),φ

)
=

∫
�

(–�)su(x)φ(x) dx –
∫

�

(
λu + f (x, u)

)
φ(x) dx

=
∫

�

(–�)su(x)φ(x) dx –
∫

�

(–�)sA(u)φ(x) dx

=
(
u – A(u),φ

)
Hs

(�), ∀u,φ ∈ Hs
(�),

which implies that I ′(u) = u – A(u). �
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In order to apply the method of invariant set of descending flow (see []), we need the
following concepts and conclusions given by Liu and Sun [].

Let X be a Banach space, f a functional defined on X. Let K = {u : u ∈ X, f ′(u) = } and
X = X \ K .

Definition . (see []) A Lipschitz continuous map W : X → X is called a pseudogra-
dient vector field for f if it satisfies:

(i) 〈f ′(u), W (u)〉 ≥ 
‖f ′(u)‖, for all u ∈ X;

(ii) ‖W (u)‖ ≤ ‖f ′(u)‖, for all u ∈ X.

Let W be a pseudogradient vector field for f and u ∈ X, consider the following initial
value problems in X:

{
du(t)

dt = –W (u(t)), t ≥ ,
u() = u.

(.)

By the theory of ordinary differential equations in Banach spaces, problem (.) has a
unique solution, denoted by ϕ(t, u) with maximal interval of existence [, τ (u)). By Def-
inition .(i),

d
dt

f
(
ϕ(t, u)

)
=

〈
f ′(u), –W (u)

〉 ≤ –


∥∥f ′(u)

∥∥,

which implies that I(ϕ(t, u)) is strictly decreasing in [, τ (u)) and therefore ϕ(t, u)
( ≤ t < τ (u)) is called a descending flow curve associated with W .

Definition . (see []) A nonempty subset M of X is called an invariant set of descending
flow for f determined by W if

{
ϕ(t, u) :  ≤ t < τ (u)

} ⊂ M

for all u ∈ M \ K .

By the definition, it is easy to see that X is an invariant set of descending flow. Let M

and M be the invariant set of descending flow, both M ∩ M and M ∪ M are invariant
sets of descending flow.

Theorem . (see []) Assume that M is a closed invariant set of descending flow and f
satisfies the (PS) condition on M. If infu∈M f (u) > –∞, then infu∈M f (u) is a critical value of
f and f has critical point in M corresponding to this value.

Let M and D be invariant sets of descending flow for f , D ⊂ M. Denote

CM(D) :=
{

u ∈ D, or u ∈ M \ D and there is t ∈ [
, τ (u)

)
such that ϕ(t, u) ∈ D

}
.

If D = CM(D), then D is called a complete invariant set of descending flow relative to M.
Clearly, CM(D) ⊃ D and CM(D) is the maximal subset of M which is retracted by D and
CM(D) is the minimal one of all complete invariant sets of descending flow containing D
and contained in M.
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Theorem . (see []) Assume that M is connected, M is an invariant set of descending
flow, D is an open subsets of M, and D is also an invariant set of descending flow. Then

(i) CM(D) is an open subset of X ;
(ii) if CM(D) �= M and infu∈∂MD f (u) > –∞, then infu∈∂MCM(D) f (u) ≥ infu∈∂MD f (u).

Theorem . (see []) H denotes a Hilbert space and f a C function defined on H . As-
sume that f ∈ C(H ,R) and f ′(u) = u – A(u) for u ∈ H , D and D are open convex subset
of H with the properties that D ∩ D �= ∅, A(∂D) ⊂ D and A(∂D) ⊂ D. Then there
is a pseudogradient vector field W for f which enables D and D to be invariant sets of
descending flow, CH (D) ⊃ ∂D, and CH (D) ⊃ ∂D.

Theorem . (see []) Assume that M is connected and is an invariant set of descending
flow, D is an open subset of M and is a complete invariant set of descending flow relative
to M. If D �= M, then ∂MD, the boundary of D relative to M, is nonempty and is a complete
invariant set relative to M.

3 Proof of Theorem 1.1
The case λ ≤ : mountain pass sign-changing solution for problem (.). We consider the
convex cones

P =
{

u ∈ Hs
(�) : u ≥  a.e. in �

}
and –P =

{
u ∈ Hs

(�) : u ≤  a.e. in �
}

.

For ε > , we denote

D+
ε =

{
u ∈ Hs

(�) : dist(u, p) < ε
}

and D–
ε =

{
u ∈ Hs

(�) : dist(u, –p) < ε
}

.

Clearly, for any ε > , D+
ε and D–

ε are open convex subsets of Hs
(�) and Oε :=

D+
ε ∩ D–

ε �= ∅. Denote Dε = D̄+
ε ∪ D̄–

ε . Then Dε is a closed and symmetric set in Hs
(�).

Moreover, Hs
(�) \ Dε contains only sign-changing functions. In the following, K denotes

critical point set of I ,

K =
{

u ∈ Hs
(�) : I ′(u) = 

}
.

Lemma . Assume that (f)-(f) and λ ≤  hold. Then there exists ε >  such that

A
(
∂D+

ε

) ⊂ D+
ε and A

(
∂D–

ε

) ⊂ D–
ε , ∀ε ∈ (, ε]. (.)

Moreover, if u ∈ D+
ε (or D–

ε ) is a solution of problem (.), then u ∈ P (or –P).

Proof We just prove the case A(∂D–
ε ) ⊂ D–

ε . The other case can be obtained similarly. We
write u ∈ Hs

(�) as u = u+ + u–, where u+ = max{u, }, u– = min{u, }. For u ∈ ∂D+
ε , denote

v = A(u). Then

dist(v, –P) = inf
φ∈(–P)

‖v – φ‖Hs
(�) ≤ ∥∥v+∥∥

Hs
(�). (.)

By Proposition .(b), for any r ∈ [, ∗
s ), it follows that there exists Cr >  such that

∥∥u+∥∥
Lr (�) = inf

φ∈(–P)
‖u – φ‖Lr (�) ≤ Cr inf

φ∈(–P)
‖u – φ‖Hs

(�). (.)



Luo et al. Boundary Value Problems  (2017) 2017:108 Page 9 of 23

By (f)-(f), for any ε > , there exists Cε >  such that

∣∣f (x, t)
∣∣ ≤ ε|t| + Cε |t|p–, ∀x ∈ �,∀t ∈ R. (.)

Using Proposition ., (.)-(.) and λ ≤  it follows that

dist(v, –P)
∥∥v+∥∥

Hs
(�) ≤ ∥∥v+∥∥

Hs
(�) =

(
v, v+)

Hs
(�) =

(
A(u), v+)

Hs
(�)

=
∫

�

(
λu + f (x, u)

)
v+ dx

≤
∫

�

(
ε

∣∣u+∣∣∣∣v+∣∣ + Cε

∣∣u+∣∣p–∣∣v+∣∣)dx

≤ ε
∥∥u+∥∥

L(�)

∥∥v+∥∥
L(�) + Cε

∥∥u+∥∥p–
Lp(�)

∥∥v+∥∥
Lp(�)

≤
[
εCC inf

φ∈(–P)
‖u – φ‖Hs

(�)

+ CCε Cp–
p inf

φ∈(–P)
‖u – φ‖p–

Hs
(�)

]∥∥v+∥∥
Hs

(�), (.)

where Ci > , i = , , , p denote the embedding constant.
By (.), letting ε = 

CC
, we have

dist(v, –P) ≤ 


dist(u, –P) + M dist(u, –P)p–,

where M = CCε Cp–
p . Take ε ∈ (, (M)– 

p– ). If dist(u, –P) ≤ ε ≤ ε, then

dist(v, –P) ≤ 


dist(u, –P) + M dist(u, –P)


M
=




dist(u, –P) < ε, (.)

which implies that v = A(u) ∈ D–
ε , i.e., A(∂D–

ε ) ⊂ D–
ε .

Now if u ∈ D–
ε ,  < ε ≤ ε, is a nontrivial solution of problem (.), then u = A(u) and

hence by (.) if follows that dist(u, –P) = , i.e., u ∈ –P. In a similar way we see that u ∈
D+

ε ∩ (K \ {}) implies u ∈ P. �

Using both Theorem . and Lemma ., we have the following corollary.

Lemma . For any ε ∈ (, ε] and u ∈ D±
ε \ K , there is a pseudogradient vector field W

for I which enables D+
ε and D–

ε to be invariant sets of descending flow. Then Oε and Dε are
also invariant sets of descending flow. Here ε is taken from Lemma ..

In order to apply Theorem ., we have to check the validity of the Palais-Smale condi-
tion. Thanks to Lemma ., we only need to verify Lemma ..

Lemma . Assume that (f)-(f) and λ ≤  hold. Let c ∈ R and let {uj} be (PS)c sequence
in Hs

(�). Then {uj} is bounded in Hs
(�).
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Proof For any j ∈N by (.) it easily follows that there exists κ >  such that

∣∣I(uj)
∣∣ ≤ κ ,∣∣∣∣

〈
I ′(uj),

uj

‖uj‖Hs
(�)

〉∣∣∣∣ ≤ κ .
(.)

By (f) and (f), we obtain

∣∣f (x, t)
∣∣ ≤ ε|t| + cεp|t|p– and

∣∣F(x, t)
∣∣ ≤ ε|t| + cε|t|p. (.)

Let ε = , we have

∣∣∣∣
∫

�∩{|uj|≤r}

(
F(x, uj) –


μ

f (x, uj)uj

)
dx

∣∣∣∣
≤

(
r + crp +


μ

r +
p
μ

crp–
)

� =: κ̄ . (.)

Also, by λ ≤  and (f) and (.) we get

I(uj) –

μ

〈
I ′(uj), uj

〉

=
(




–

μ

)(‖uj‖
Hs

(�) – λ‖uj‖
L(�)

)
–

∫
�

(
F(x, uj) –


μ

f (x, uj)uj

)
dx

≥
(




–

μ

)
‖uj‖

Hs
(�) –

∫
�∩{|uj|≤r}

(
F(x, uj) –


μ

f (x, uj)uj

)
dx

≥
(




–

μ

)
‖uj‖

Hs
(�) – κ̄ . (.)

As a consequence of (.) and (.) we obtain

κ
(
 + ‖uj‖Hs

(�)
) ≥ I(uj) –


μ

〈
I ′(uj), uj

〉 ≥
(




–

μ

)
‖uj‖

Hs
(�) – κ̄ .

Hence, {uj} is bounded in Hs
(�). �

Lemma . Assume that (f)-(f) and λ ≤  hold. For any c ∈R, there exists constant ρ =
ρ(c) >  such that

‖u‖Hs
(�) +

∥∥A(u)
∥∥

Hs
(�) ≤ ρ

(
 +

∥∥u – A(u)
∥∥

Hs
(�)

)

for every u ∈ Ic := {u ∈ Hs
(�) : I(u) ≤ c}.
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Proof For u ∈ Hs
(�), by (f) and λ ≤  it follows that

I(u) –

μ

〈
I ′(u), u

〉

=
(




–

μ

)∫
�

∣∣(–�)
s
 u

∣∣ dx –
(




–

μ

)
λ

∫
�

|u| dx

–
∫

�

(
F(x, u) –


μ

uf (x, u)
)

dx

≥
(




–

μ

)
‖u‖

Hs
(�).

If u ∈ Ic, then there exists M >  such that

‖u‖
Hs

(�) ≤ M
(
 +

∣∣〈I ′(u), u
〉∣∣)

≤ M
(
 + ‖u‖Hs

(�)
∥∥u – A(u)

∥∥
Hs

(�)

)
.

Moreover, for any ε >  the Young inequality gives

‖u‖
Hs

(�) ≤ M

(
 +

ε


‖u‖

Hs
(�) +


ε

∥∥u – A(u)
∥∥

Hs
(�)

)
.

Letting ε < min{
√


 ,

√


M
}, then

(
 – M

ε



)
‖u‖

Hs
(�) ≤ M

(
 +


ε

∥∥u – A(u)
∥∥

Hs
(�)

)

≤ M


ε

(
 +

∥∥u – A(u)
∥∥

Hs
(�)

)

≤ M

ε

(
 +

∥∥u – A(u)
∥∥

Hs
(�)

).

We get some M >  such that

‖u‖Hs
(�) ≤ M

(
 +

∥∥u – A(u)
∥∥

Hs
(�)

)
,

which implies that

‖u‖Hs
(�) +

∥∥A(u)
∥∥

Hs
(�) ≤ ‖u‖Hs

(�) +
∥∥u – A(u)

∥∥
Hs

(�)

≤ (M + )
(
 +

∥∥u – A(u)
∥∥

Hs
(�)

)
.

Then Lemma . follows by taking ρ = M + . �

Lemma . (Regularity of solutions) Under the assumptions of Theorem . or Theo-
rem ., if u ∈ Hs

(�) is a weak solution of (.), then u ∈ Cσ (�̄) ∩ C(�̄) for some σ ∈ (, ).
Moreover, if f is a C,σ function, then u ∈ C,σ (�̄) ∩ C(�̄).

Proof The proof is similar to Theorem . in [] (see also []), we omit it. �
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Proof of Theorem .(i) In what follows, we use Theorem . to prove our problems.
(Trivial solution) By (.) and λ ≤  it follows that

I(u) ≥ 

‖u‖

Hs
(�) –

λ



∫
�

|u| dx – ε

∫
�

|u| dx – cε

∫
�

|u|p dx

≥ ε‖u‖
L(�) – cε‖u‖p

Lp(�)

≥ ε|�| p–
p ‖u‖

Lp(�) – cε‖u‖p
Lp(�),

when ε is small enough.
By (.), we can see that, if u ∈ D̄+

ε ∩ D̄–
ε with ε ∈ [, ε], where ε is taken from

Lemma ., then there exists Cp >  such that

∥∥u∓∥∥
Lp(�) ≤ Cp inf

φ∈(±P)
‖u – φ‖Hs

(�) = Cp dist(u,±P) ≤ Cpε.

Therefore, there exists αε > –∞ such that infu∈D̄+
ε ∩D̄–

ε
I(u) = αε . By Lemma ., D̄+

ε ∩ D̄–
ε

is a closed invariant set of descending flow. According to Theorem ., I has a critical
point u ∈ D̄+

ε ∩ D̄–
ε with critical value infu∈D̄+

ε ∩D̄–
ε

I(u). It is easy to see that D+
ε and D–

ε are
connected open invariant sets of descending flow for I , so ∂D+

ε ∩ K = ∅ and D–
ε ∩ K = ∅.

Then we have u ∈ D+
ε ∩ D–

ε . By Lemma ., we get u ∈ P ∩ (–P) ≡ .
(Positive and negative solutions) By (f), there exist c >  and c >  such that

F(x, t) ≥ c|t|μ – c, ∀x ∈ �,∀t ∈R, (.)

then, by Hs
(�) ↪→ L(�),

I(u) ≤ 

‖u‖

Hs
(�) –

λ



∫
�

|u| dx – c

∫
�

|u|μ dx + c|�|

≤ 


( – c̃λ)‖u‖
Hs

(�) – c‖u‖μ

Lμ(�) + c|�|,

where c̃ >  is embedding constant.
Let {ek} be the eigenfunctions of –� introduced in Proposition .. Take hR(t) =

Re cos(π t) + Re sin(π t) for t ∈ [, ], for some R ∈R
+. Then

I
(
hR(t)

) ≤ 


( – c̃λ)
∥∥hR(t)

∥∥
Hs

(�) – c

∫
�

∣∣hR(t)
∣∣μ dx + c|�|

=



( – c̃λ)R∥∥e cos(π t) + e sin(π t)
∥∥

Hs
(�)

– cRμ
∥∥e cos(π t) + e sin(π t)

∥∥μ

Lμ(�) + c|�|.

Since μ > , there exists Rε >  large enough such that I(hRε (t)) < ᾱ := infε∈[,ε] αε , and
then

I
(
hRε ()

) ≤ max
t∈[,]

I
(
hRε (t)

)
< inf

u∈D̄+
ε ∩D̄–

ε

I(u).

By Proposition . (e is positive), we have

hRε () = Rεe ∈ D+
ε \ D̄–

ε , hRε () = –Rεe ∈ D–
ε \ D̄+

ε .
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Note that D̄+
ε ∩ D–

ε is an open subsets of D̄+
ε and an invariant set of descending flow. It

is easy to see that hRε () ∈ D̄+
ε \ CD̄+

ε
(D̄+

ε ∩ D–
ε ). Therefore, CD̄+

ε
(D̄+

ε ∩ D–
ε ) �= D̄+

ε , then, by
Theorem ., ∂D̄+

ε
CD̄+

ε
(D̄+

ε ∩ D–
ε ) is nonempty and is a complete set relative to D̄+

ε . By The-
orem ., CD̄+

ε
(D̄+

ε ∩ D–
ε ) is an open subset of D̄+

ε and

inf
∂D̄+

ε
CD̄+

ε
(D̄+

ε ∩D–
ε )

I(u) ≥ inf
∂D̄+

ε
(D̄+

ε ∩D–
ε )

I(u) ≥ inf
D̄+

ε ∩D–
ε

I(u) > –∞.

According to Theorem ., I has a critical point u+ in ∂D̄+
ε
CD̄+

ε
(D̄+

ε ∩ D–
ε ). The facts that

∂D̄+
ε
CD̄+

ε
(D̄+

ε ∩ D–
ε ) ⊂ D̄+

ε and ∂D+
ε ∩ K = ∅ imply u+ ∈ D+

ε , while ∂D̄+
ε
CD̄+

ε
(D̄+

ε ∩ D–
ε ) ∩

D̄+
ε ∩ D–

ε = ∅ and ∂D–
ε ∩ K = ∅ imply u+ /∈ D̄–

ε . Hence u+ ∈ D+
ε \ D̄–

ε . Similarly, I has a
critical point u– ∈ D–

ε \ D̄+
ε .

By Lemma ., u+ ∈ Cσ (�̄), u– ∈ Cσ (�̄). By Lemma . in follows that u+ ≥  and u– ≤ .
Applying the strong maximum principle (see []), we get u+ >  and u– <  in �. �

To estimate the number of nodal domains, we need the following results.

Proposition . (see [, ]) Assume that � ⊂ R
n (n ≥ ) is a bounded open set and u ∈

C(�̄) ∩ Hs
(�). Choose a subdomain � of � such that u(x) =  for x ∈ ∂� ∩ �. Then the

restriction u� of u to � belongs to Hs
(�). Furthermore, defining

z(x) =

{
u(x) in �,
 on � \ �,

we have z ∈ Hs
(�).

In what follows, we come to prove the second part of Theorem ..

Proof of Theorem .(ii) We introduce a set N associated to I as follows:

N :=
{

u ∈ Hs
(�) : u+ �= , u– �= , I ′(u)u+ = I ′(u)u– = 

}
.

Obviously the set N contains all sign-changing solutions of (.). Now set

ζ = inf
u∈N

I(u).

For u ∈N , we have from λ ≤ 

‖u‖
Hs

(�) – λ‖u‖
L(�) =

∫
�

f (x, u)u dx ≥ .

Then, by (f), we have

I(u) =
∫

�

[



f (x, u)u – F(x, u)
]

dx ≥
(




–

μ

)∫
�

f (x, u)u dx ≥ .

This proves ζ > –∞.
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Write un = u+
n + u–

n , where u+
n = max{un, } and u–

n = {un, }. We claim that

I
(
u±

n
)

= max
t∈[,+∞)

I
(
tu±

n
)
. (.)

For this purpose we set h±(t) := I(tu±
n ) for t ≥ . Then h±() = , and

(
h±)′(t) =

〈
I ′(tu±

n
)
, u±

n
〉

= t
(∥∥u±

n
∥∥

Hs
(�) – λ

∥∥u±
n
∥∥

L(�) –
∫

�

f (x, tu±
n )

tu±
n

(
u±

n
) dx

)
.

Hence (f) implies that t 	→ (h±)′(t)
t is nonincreasing on (,∞), and thus the set � := {t >  :

(h±)′(t) = } is a closed subinterval of (,∞) which contains t =  by definition ofN . More-
over, h± is increasing on (, min�) and decreasing on (max�,∞), hence

h±() = max
t∈�

h±(t) = max
t≥

h±(t).

This proves (.). Setting

�n :=
{

tu+
n + su–

n : t ≥ , s ≥ 
}

, n ∈N,

(.) implies that

sup I(�n) = max
t≥

I
(
tu+

n
)

+ max
t≥

I
(
tu–

n
)

= I
(
u+

n
)

+ I
(
u–

n
)
.

Note that, fixing a n, u+
n and u–

n are linearly independent and �n is a two-dimensional
subspace of Hs

(�). Since all norms in a finite dimensional space are equivalent, we have

I(u) =


‖u‖

Hs
(�) –

λ


‖u‖

L(�) –
∫

�

F(x, u) dx

≤
(




–
λ


c

)
‖u‖

Hs
(�) – c‖u‖μ

Hs
(�) + c|�| (.)

for all u ∈ �n. Let

BRn :=
{

u ∈ �n : ‖u‖Hs
(�) < Rn

}
.

Then by (.) and μ > , there exists Rn >  such that

I(u) ≤ – for all u ∈ �n \ BRn .

Now we define the path

hn : [, ] → Hs
(�), hn(t) = t

Rn

‖u+
n‖Hs

(�)
u+

n + ( – t)
Rn

‖u–
n‖Hs

(�)
u–

n

connecting hn() ∈ (�n \ BRn ()) ∩ CX(D–
ε ) and hn() ∈ (�n \ BRn ()) ∩ CX(D+

ε ) for all ε ∈
(, ε]. Let Q := [, ] × [, ], define the homotopy map Hn : Q → Hs

(�) by

Hn(t, s) = shn(t), ∀(t, s) ∈ Q.
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Note that Oε is an open set in Hs
(�), Theorem .(i) implies that CX(Oε) is an open

set in Hs
(�), then On := H–

n (CX(Oε)) and O±
n := H–

n (CX(D±
ε )) are open subsets of Q. By

Hn(t, ) =  ∈ CX(Oε) for all t ∈ [, ] it follows that {(t, ) : t ∈ [, ]} ⊂On. In addition, by
(f), we have

I
(
Hn(t, )

)
= I

(
hn(t)

)
=




∫
�

∣∣(–�)
s
 hn(t)

∣∣ dx –


λ

∫
�

∣∣hn(t)
∣∣ dx –

∫
�

F
(
x, hn(t)

)
dx

≤ 

∥∥hn(t)

∥∥
Hs

(�) –


λ
∥∥hn(t)

∥∥
L(�) – c

∥∥hn(t)
∥∥μ

Lμ(�) + c|�|

=



R
n
∥∥γn(t)

∥∥
Hs

(�) –


λR

n
∥∥γn(t)

∥∥
L(�) – cRμ

n
∥∥γn(t)

∥∥μ

Lμ(�) + c|�|,

where γn(t) := t u+
n

‖u+
n‖Hs

(�)
+ ( – t) u–

n
‖u–

n‖Hs
(�)

, it is easily to see that there exists R >  such

that I(Hn(t, )) ≤ – for all t ∈ [, ] when Rn ≥ R. Recall that Oε is an invariant set of
descending flow for I and CX(Oε) ⊃ Oε , we have

inf
u∈CX (Oε )

I(u) ≥ inf
u∈Oε

I(u) ≥ inf
u∈Oε

I
(
ϕ(t, u)

)
= .

Hence,

{
(t, ) : t ∈ [, ]

} ∩On = ∅.

By Lemma . in [], there exists a connected component Pn of ∂QOn intersecting the sets
{(, s) : s ∈ [, ]} ⊂O–

n and {(, s) : s ∈ [, ]} ⊂O+
n .

Furthermore, since

Hn(Pn) ⊂ Hn(∂QOn) ⊂ ∂Hn(On) = ∂CX(Oε),

Hn
(
O+

n ∩O–
n
)

= Hn
(
O+

n
) ∩ Hn

(
O–

n
)

= CX
(
D+

ε

) ∩ CX
(
D–

ε

) ⊂ CX(Oε),

it follows that

Pn ∩O+
n ∩O–

n = ∅.

By

∂QOn ∩O±
n ⊃ Pn ∩O±

n �= ∅,

we may take (tn, sn) ∈ Pn \ (O+
n ∪O–

n ). Clearly,

v∗
n := Hn(tn, sn) ∈Mε := ∂CX(Oε) \ (

CX
(
D+

ε

) ∪ CX
(
D–

ε

))
.

Note that ∂CX(Oε) and CX(D±
ε ) are all invariant sets of ϕ(t, v∗

n), we get

{
ϕ
(
t, v∗

n
)

:  ≤ t ≤ τ
(
v∗

n
)} ⊂Mε . (.)



Luo et al. Boundary Value Problems  (2017) 2017:108 Page 16 of 23

By (.), it follows that ‖u±‖Lr(�) ≤ Crε for every u ∈ D̄+
ε ∩ D̄–

ε , where  ≤ r < ∗
s . Together

with (f), Lemma . and the above arguments, we have

inf
t∈[,τ (v∗

n))
I
(
ϕ
(
t, v∗

n
)) ≥ inf

u∈∂CX (Oε )
I(u) ≥ inf

u∈CX (Oε )
I(u) ≥ . (.)

For  < t < t < τ (v∗
n), we obtain

∥∥ϕ
(
t, v∗

n
)

– ϕ
(
t, v∗

n
)∥∥

Hs
(�) ≤

∫ t

t

∥∥ϕ
(
s, v∗

n
)

– B
(
ϕ
(
s, v∗

n
))∥∥

Hs
(�) ds

≤ 
∫ t

t

∥∥ϕ
(
s, v∗

n
)

– A
(
ϕ
(
s, v∗

n
))∥∥

Hs
(�) ds

≤ 
(∫ t

t

∥∥ϕ
(
s, v∗

n
)

– A
(
ϕ
(
s, v∗

n
))∥∥

Hs
(�) ds

) 


(t – t)



≤ 
(
I
(
ϕ
(
t, v∗

n
))

– I
(
ϕ
(
t, v∗

n
))) 

 (t – t)



≤ 
√

I
(
v∗

n
)√

(t – t).

Now two cases may occur. If τ (v∗
n) < ∞, then the previous inequality implies that

lim
t→τ (v∗

n)–

∥∥ϕ
(
t, v∗

n
)

– u∗
n
∥∥

Hs
(�) =  (.)

for some u∗
n ∈ Hs

(�).
If τ (v∗

n) = +∞, by (.) (I(ϕ(t, v∗
n)) ( ≤ t < τ (v∗

n)) is bounded), there is an increasing
sequence {tn} with tn → +∞ as n ∈ +∞ such that

 = lim
n→∞

d
dt

I
(
ϕ
(
t, v∗

n
))∣∣∣∣

t=tn

= lim
n→∞

〈
I ′(ϕ(

tn, v∗
n
))

, –ϕ
(
tn, v∗

n
)

+ B
(
ϕ
(
tn, v∗

n
))〉

= –C lim
n→∞

∥∥ϕ
(
tn, v∗

n
)

– A
(
ϕ
(
tn, v∗

n
))∥∥

Hs
(�), (.)

which together with Lemma . implies that

lim
n→∞

(∥∥ϕ
(
tn, v∗

n
)∥∥

Hs
(�) +

∥∥A
(
ϕ
(
tn, v∗

n
))∥∥

Hs
(�)

)

≤ C lim
n→∞

(
 +

∥∥ϕ
(
tn, v∗

n
)

– A
(
ϕ
(
tn, v∗

n
))∥∥

Hs
(�)

)

= C,

then ϕ(tn, v∗
n) is bounded. Since A is compact, A(ϕ(tn, v∗

n)) is convergent, which implies
that ϕ(tn, v∗

n) is convergent thanks to (.). So we find u∗
n ∈ Hs

(�) such that (.) holds.
In view of (.) we see that u∗

n ∈Mε ⊂N is a sign-changing critical point of I . By (.),
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we have

I
(
u∗

n
) ≤ I

(
v∗

n
)

≤ sup
≤t≤,s≥

I
(

s
(

t
u+

n
‖u+

n‖Hs
(�)

+ ( – t)
u–

n
‖u–

n‖Hs
(�)

))

≤ sup I(�n) = I
(
u+

n
)

+ I
(
u–

n
)

= I(un) → ζ = inf
u∈N

I(u).

Thus, {u∗
n} is a (PS) sequence in N . Together with Lemma . and Lemma ., I satisfies

the (PS) condition, so we can find a critical point ū of I such that ū ∈Mε , and ū is a least
energy sign-changing solution of (.).

Now we assume by contradiction that ū has three nodal domains �, �, � such that
ū >  in �, ū <  in �, ū >  in �. By Proposition ., we have ūχ�∪� ∈ N and
I(ūχ�∪� ) ≥ ζ . � is a nodal domain of ū, hence

〈
I ′(ūχ� ), ūχ�

〉
=

〈
I ′(ū), ūχ�

〉
= ,

which implies that

I(ūχ� ) = I(ūχ� ) –

μ

〈
I ′(ūχ� ), ūχ�

〉

=
(




–

μ

)
‖ūχ�‖

Hs
(�) –

(



–

μ

)
λ‖ūχ�‖

L(�)

–
∫

�

(
F(x, ūχ� ) –


μ

ūχ� f (x, ūχ� )
)

dx

≥
(




–

μ

)
‖ūχ�‖

Hs
(�) > .

However, we have

ζ ≤ I(ūχ�∪� ) < I(ūχ�∪� ) + I(ūχ� ) ≤ I(ū) = ζ .

This is a contradiction. �

4 Proof of Theorem 1.2
The case λ ≥ λs

: Linking type sign-changing solution for problem (.). Since λ ≥ λs
, we

can suppose that

λ ∈ [
λs

k ,λs
k+

)
for some k ∈N,

where λs
k is the kth eigenvalue of the operator (–�)s, as defined in Section .

Let Nk denote the eigenspace of λs
k . By Proposition ., dim Nk < ∞. We fix k and let

Yk
.= N ⊕ · · · ⊕ Nk ,

Zk+
.= Nk+ ⊕ Nk+ ⊕ · · · ,

then Hs
(�) = Yk ⊕ Zk+.
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Now we define a class of contractions of the Hilbert space X as follows.

Definition . (Contractions; see []) Let X be a Hilbert space, if the map γ (·, ·) ∈
C([, ] × X, X) satisfies:

(i) γ (, ·) = id;
(ii) ∀t ∈ [, ), γ (t, ·) is a homeomorphism of X onto itself;

(iii) γ –(·, ·) is continuous on [, ) × X ;
(iv) there exists a x ∈ X such that γ (, x) = x, ∀x ∈ X and that γ (t, x) → x as t → 

uniformly on bounded subsets of X ,
then the set � := {γ (·, ·)} is a class of contractions of the Hilbert space X.

Obviously, γ (t, u) = ( – t)u ∈ �.
The following concept of linking was introduced by Schechter and Tintarev [].

Definition . (Links; see []) Let X be a Hilbert space, a subset E of X links a closed
subset F of X if E ∩F = ∅ and, for every γ ∈ �, there is a t ∈ [, ] such that γ (t, E)∩F �= ∅.

In this section, our main tool is the following theorem.

Theorem . (see Theorem B in []) Let X be a Hilbert space, assume that a compact
subset E of X links a closed subset F which includes only sign-changing elements of X,
I ′ = Id – A, where A : X → X is a compact operator, and I satisfies (C)c condition. If

a := sup
E

I ≤ b := inf
F

I,

then there is a sign-changing critical point of I with critical value in [b – ε,
sup(t,u)∈[,]×E I(( – t)u) + ε] for all ε small.

Lemma . Assume that (f)-(f) and λs
k ≤ λ < λs

k+ hold. Then I satisfies the (PS)c condi-
tion.

Proof Let c ∈R and let {uj} be a sequence in Hs
(�) such that

I(uj) → c,

sup
ϕ∈Hs

(�),‖ϕ‖Hs
(�)=

{∣∣〈I ′(uj),ϕ
〉∣∣} → , (.)

as j → +∞. For any j ∈N by (.) it easily follows that there exists κ >  such that

∣∣I(uj)
∣∣ ≤ κ ,∣∣∣∣

〈
I ′(uj),

uj

‖uj‖H

〉∣∣∣∣ ≤ κ .
(.)

Let us fix σ ∈ (,μ), where μ >  is given in assumption (f). By (f), there exist r >  and
C >  such that

F(x, t) ≥ C|t|μ, ∀|t| ≥ r. (.)
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By (f) and (f), we obtain

∣∣f (x, t)
∣∣ ≤ ε|t| + cεp|t|p– and

∣∣F(x, t)
∣∣ ≤ ε|t| + cε|t|p.

Let ε = , we have

∣∣∣∣
∫

�∩{|uj|≤r}

(
F(x, uj) –


σ

f (x, uj)uj

)
dx

∣∣∣∣
≤

(
r + crp +


σ

r +
p
σ

crp–
)

� =: κ̄ , (.)

so that, using also (.) and (.),

I(uj) –

σ

〈
I ′(uj), uj

〉

=
(




–

σ

)(‖uj‖
Hs

(�) – λ‖uj‖
L(�)

)
–

∫
�

(
F(x, uj) –


σ

f (x, uj)uj

)
dx

≥
(




–

σ

)(‖uj‖
Hs

(�) – λ‖uj‖
L(�)

)
+

(
μ

σ
– 

)∫
�∩{|uj|≥r}

F(x, uj) dx

–
∫

�∩{|uj|≤r}

(
F(x, uj) –


σ

f (x, uj)uj

)
dx

≥
(




–

σ

)(‖uj‖
Hs

(�) – λ‖uj‖
L(�)

)
+

(
μ

σ
– 

)∫
�∩{|uj|≥r}

C|uj|μ dx – κ̄

≥
(




–

σ

)(‖uj‖
Hs

(�) – λ‖uj‖
L(�)

)
+

(
μ

σ
– 

)
C‖uj‖μ

Lμ(�) – κ̄ . (.)

Moreover, for any ε >  the Young inequality (with conjugate exponents μ

 >  and μ

μ– )
gives

‖uj‖
L(�) ≤ ε

μ
‖uj‖μ

Lμ(�) +
μ – 

μ
ε

– 
μ– |�|. (.)

Hence, by (.) and (.) we deduce that

I(uj) –

σ

〈
I ′(uj), uj

〉

≥
(




–

σ

)
‖uj‖

Hs
(�) +

[(
μ

σ
– 

)
C – λ

(



–

σ

)
ε

μ

]
‖uj‖μ

Lμ(�) – Cε , (.)

where Cε = λ( 
 – 

σ
) μ–

μ
ε

– 
μ– |�| + κ̄ is a constant such that Cε → +∞ as ε → , where

μ > σ > .
Now, choosing ε so small that

[(
μ

σ
– 

)
C – λ

(



–

σ

)
ε

μ

]
> ,
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by (.) we get

I(uj) –

σ

〈
I ′(uj), uj

〉 ≥
(




–

σ

)
‖uj‖

Hs
(�) – Cε . (.)

As a consequence of (.), (.) and (.) we obtain

κ
(
 + ‖uj‖Hs

(�)
) ≥ I(uj) –


σ

〈
I ′(uj), uj

〉 ≥
(




–

σ

)
‖uj‖

Hs
(�) – Cε .

Hence, {uj} is bounded in Hs
(�). By Lemma ., then there exists u ∈ Hs

(�) such that,
up to a subsequence, ‖uj – u‖Hs

(�) →  as j → +∞. So the assertion of Lemma . is
proved. �

Lemma . Assume that (f)-(f) and λs
k ≤ λ < λs

k+ hold. Then I(u) ≤ , ∀u ∈ Yk .

Proof Let u ∈ span{e, . . . , ek}, then u(x) =
∑k

i= aiei(x), with some ai ∈R, i = , . . . , k. Since
{e, . . . , ek , . . .} is an orthonormal basis of L(�) and an orthogonal one of Hs

(�) by Propo-
sition .(b), we get

∫
�

∣∣u(x)
∣∣ dx =

k∑
i=

a
i (.)

and

∫
�×�

|u(x) – u(y)|
|x – y|n+s dx dy =

k∑
i=

∫
�×�

|aiei(x) – aiei(y)|
|x – y|n+s dx dy

=
k∑

i=

a
i ‖ei‖

Hs
(�). (.)

Moreover, we obtain from (f)

F(x, t) ≥ , ∀x ∈ �, t ∈R. (.)

By Definition . and ei being the eigenfunctions of (–�), we have

‖ei‖
Hs

(�) = (ei, ei)Hs
(�) =

∫
�

ei(x)(–�)sei(x) dx =
∫

�

λs
i e


i (x) dx = λs

i .

Then, by (.)-(.), we get

I(u) =



k∑
i=

a
i
(‖ei‖

Hs
(�) – λ

)
–

∫
�

F
(
x, u(x)

)
dx

≤ 


k∑
i=

a
i
(
λs

i – λ
) ≤ ,

thanks to the fact that λs
i ≤ λs

k ≤ λ for any i = , . . . , k. �
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Lemma . Assume that (f)-(f) and λs
k ≤ λ < λs

k+ hold. Then there exist ρ > , β >  such
that

I(u) ≥ β for ‖u‖Hs
(�) = ρ, u ∈ Hs

(�).

Proof By u ∈ Zk+, we have u(x) =
∑+∞

i=k+ aiei(x), with some ai ∈ R, i = k + , k + , . . . . By
λs

k+ ≤ λs
k+ ≤ · · · , we have

λs
k+‖u‖

L(�) = λs
k+

+∞∑
i=k+

a
i

≤
+∞∑

i=k+

λs
ia


i =

+∞∑
i=k+

a
i ‖ei‖

Hs
(�)

= ‖u‖
Hs

(�).

Hence, by λs
k ≤ λ < λs

k+, we obtain

∫
�×�

|u(x) – u(y)|
|x – y|n+s dx dy – λ

∫
�

∣∣u(x)
∣∣ dx ≥

(
 –

λ

λk+

)
‖u‖

Hs
(�). (.)

By (f), (f), for any ε > , there exists a Cε such that

∣∣F(x, t)
∣∣ ≤ ε|t| + Cε|t|p,

and then

I(u) ≥ 


∫
�×�

|u(x) – u(y)|
|x – y|n+s dx dy –

λ



∫
�

∣∣u(x)
∣∣ dx

– ε

∫
�

∣∣u(x)
∣∣ dx – Cε

∫
�

∣∣u(x)
∣∣p dx

≥ 


(
 –

λ

λk+

)∫
�×�

|u(x) – u(y)|
|x – y|n+s dx dy

– ε|�|(∗
s –)/∗

s ‖u‖
L∗s (�)

– |�|(∗
s –p)/∗

s Cε‖u‖p
L∗s (�)

, (.)

thanks to the fact that L∗
s (�) ↪→ L(�) and L∗

s (�) ↪→ Lp(�) continuously (� being
bounded and max{, p} = p < ∗

s ). By Proposition ., there exists a C such that

‖u‖
Hs

(�) ≥ C–‖u‖
L∗s (�)

and then

I(u) ≥ 


(
 –

λ

λk+

)
‖u‖

Hs
(�)

– ε|�|(∗
s –)/∗

s C‖u‖
Hs

(�) – |�|(∗
s –p)/∗

s CεCp/‖u‖p
Hs

(�). (.)

Choosing ε >  such that 
 ( – λ

λk+
) – ε|�|(∗

s –)/∗
s C > , by (.), we can choose ρ > 

sufficiently small and β >  such that I(u) ≥ β for ‖u‖Hs
(�) = ρ , u ∈ Zk+. �
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Lemma . Fix a z ∈ Zk+ be such that ‖z‖ = ρ , the space Yk ⊕Rz is a finite dimensional
subspace of Hs

(�), then there exists R > ρ such that I(u) ≤  for any u ∈ Yk ⊕ Rz with
‖u‖Hs

(�) ≥ R, where ρ is given in Lemma ..

Proof By (f), there exist C >  and C >  such that

F(x, t) ≥ Ctμ – C, ∀t ∈R. (.)

Let u ∈ Yk ⊕Rz. Then the non-negativity of λ and (.) give

I(u) ≤ 

‖u‖

Hs
(�) –

λ


‖u‖

L(�) –
∫

�

(
C

∣∣u(x)
∣∣μ – C

)
dx

≤ 

‖u‖

Hs
(�) – C‖u‖μ

Hs
(�) + C|�| (.)

for some positive constant C, thanks to the fact that in any finite dimensional space all
the norms are equivalent.

Hence, if ‖u‖Hs
(�) → +∞, then I(u) → –∞, since μ >  by assumption, and so the as-

sertion of Lemma . follows. �

Proof of Theorem . By Lemma ., z ∈ Zk+ \ {}, ‖z‖Hs
(�) = ρ and  < ρ < R, define the

sets E and F as follows:

E :=
{

u = v + sz : v ∈ Yk , s ≥ ,‖u‖Hs
(�) = R

} ∪ (Yk ∩ B̄R),

F :=
{

u ∈ Zk+ : ‖u‖Hs
(�) = ρ

}
,

then E and F link each other (see [, ]) in the sense of Definition .. It is easy to see that
E ⊂ Hs

(�) is a compact set, thanks to the fact that Yk ⊕Rz is a finite dimensional space.
By Proposition .(c), the closed set F includes only sign-changing elements of Hs

(�).
Combining with Lemma .-., we have

inf
F

I(u) ≥ β >  ≥ max
E

I(u),

then there is a sign-changing critical point of I by using Theorem .. �

5 Conclusions
Sign-changing solutions of nonlinear elliptic equations have attracted much attention in
recent years. One reason is that sign-changing solutions arise naturally from mathematical
models in biology and physics. Another reason is that there are richer structures of sign-
changing solutions than that of negative and positive solutions for generic nonlinear and
linear elliptic equations.

In this paper, we study the sign-changing solution for the nonlinear equation involving
the fractional Laplacian. This type of operators arises in several areas such as anomalous
diffusion, the thin obstacle problem, optimization, finance, phase transitions, stratified
materials, crystal dislocation, soft thin films, semipermeable membranes, flame propa-
gation, conservation laws, quasi-geostrophic flows, multiple scattering and materials sci-
ence. Our problem (.) has different variational structures when λ takes different values.
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When λ ≤ , a positive, a negative and a sign-changing solution have been found by con-
structing different invariant sets on which the functional is bounded below. When λ > λs

,
by using a variation of the linking theorem, we also obtain a sign-changing solution. Our
results are new, and the work established in this article is of quite a general nature and cov-
ers a variety of special cases associated with particular values of the parameters involved
in the problem.
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