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Abstract
Based on the properties of nonlocal fractional calculus generated by conformable
derivatives, we establish some sufficient conditions for oscillation of all solutions for
fractional differential equations with damping term. Forced oscillation of conformable
differential equations in the frame of Riemann, as well as of Caputo type, is
established. Examples are provided to demonstrate the effectiveness of the main
results.
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1 Introduction
Fractional differential equations gained considerable importance due to their various ap-
plications in viscoelasticity, electroanalytical chemistry, control theory, many physical
problems, etc. The books [1–6] summarize and organize much of fractional calculus and
many of theories and applications of fractional differential equations. Many authors have
studied the existence and uniqueness of solutions for different types of fractional bound-
ary value problems; see the papers [7–18] and the references cited therein.

The oscillation theory for fractional differential and difference equations has been stud-
ied by some authors (see [19–29]). In [23] the authors studied the oscillation theory for
fractional differential equations by considering fractional initial value problem of the form

⎧
⎨

⎩

Dq
ax(t) + f1(t, x) = v(t) + f2(t, x), t > a,

limt→a+ J1–q
a x(t) = b,

(1.1)

where Dq
a denotes the Riemann–Liouville fractional derivative starting at a point a, of

order q with 0 < q ≤ 1, J1–q
a is the Riemann–Liouville fractional integral starting at a point

a, of order 1 – q, f1, f2 are continuous functions.
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Recently, in [21] the authors studied the oscillation of a conformable initial value prob-
lem of the form

⎧
⎨

⎩

aD
α,ρx(t) + f1(t, x) = r(t) + f2(t, x), t > a,

limt→a+ aJ
j–α,ρx(t) = bj (j = 1, 2, . . . , m),

(1.2)

where m = �α� = min{m ∈ Z|m ≥ α}, aD
α,ρ is the left conformable derivative of order

α ∈ C, �(α) ≥ 0 in the Riemann–Liouville setting and aJ
α,ρ is the left conformable integral

operator.
In [22] the authors studied forced oscillatory properties of solutions to the nonlinear

fractional initial value problem with damping

⎧
⎨

⎩

(D1+α
0+ y)(t) + p(t)(Dα

0+ y)(t) + q(t)f (y(t)) = g(t), t > 0,

(I1–α
0+ y)(0+) = b,

(1.3)

where b is a real number, α ∈ (0, 1) is a given constant, and Dα
0+ is the Riemann–Liouville

fractional derivative of order α.
In this paper, motivated by the above papers, we study forced oscillatory properties of

solutions to the conformable initial value problem with damping in the Riemann–Liouville
setting as follows:

⎧
⎨

⎩

aD
1+α,ρx(t) + p(t)aD

α,ρx(t) + q(t)f (x(t)) = g(t), t > a,

limt→a+ aI
j–α,ρx(t) = bj (j = 1, 2, . . . , m),

(1.4)

where m = �α�, 0 < ρ ≤ 1, p ∈ C(R+,R), q ∈ C(R+,R+), g ∈ C(R+,R), f ∈ C(R,R) are con-
tinuous functions, aD

α,ρ is the left conformable derivative of order α ∈C, �(α) ≥ 0 in the
Riemann–Liouville setting, and aI

α,ρ is the left conformable integral operator.
Moreover, we study the forced oscillation of conformable initial value problems in the

Caputo setting of the form

⎧
⎨

⎩

C
a D

1+α,ρx(t) + p(t)C
a D

α,ρx(t) + q(t)f (x(t)) = g(t), t > a,
k
aDρx(a) = bk (k = 0, 1, . . . , m – 1),

(1.5)

where m = �α�, and C
a D

α,ρx is the left conformable derivative of order α ∈ C, �(α) ≥ 0 in
the Caputo setting.

Definition 1.1 The solution x of problem (1.4) (respectively (1.5)) is called oscillatory if it
is neither eventually positive nor eventually negative. Otherwise, it is called nonoscillatory.

This paper is organized as follows. Section 2 introduces some notations and provides
the definitions of conformable fractional integral and differential operators together with
some basic properties and lemmas that are needed in the proofs of the main theorems. In
Sect. 3, forced oscillation of conformable fractional differential equations in the frame of
Riemann is presented, while in Sect. 4 forced oscillation of conformable fractional differ-
ential equations in the frame of Caputo is established. Examples are provided in Sect. 5 to
demonstrate the effectiveness of the main theorems.
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2 Preliminaries
The left conformable derivative starting from a of a function f : [a,∞) → R of order 0 <
ρ ≤ 1 is defined by

(
aDρ f

)
(t) = lim

ε→0

f (t + ε(t – a)1–ρ) – f (t)
ε

.

If (aDρ f )(t) exists on (a, b), then (aDρ f )(a) = limt→a+ (aDρ f )(t). If f is differentiable, then

(
aDρ f

)
(t) = (t – a)1–ρ f ′(t). (2.1)

The corresponding left conformable integral is defined as

aIρ f (x) =
∫ x

a
f (t)

dt
(t – a)1–ρ

, 0 < ρ ≤ 1.

For the extension to the higher order ρ > 1, see [30].

Definition 2.1 ([31]) The left conformable integral operator is defined by

aI
α,ρ f (x) =

1
Γ (α)

∫ x

a

(
(x – a)ρ – (t – a)ρ

ρ

)α–1 f (t) dt
(t – a)1–ρ

, (2.2)

where α ∈ C, �(α) ≥ 0.

Definition 2.2 ([31]) The left conformable derivative of order α ∈ C, �(α) ≥ 0 in the
Riemann–Liouville setting is defined by

aD
α,ρ f (x) = m

a Dρ
(

aI
m–α,ρ)f (x)

=
m
a Dρ

Γ (m – α)

∫ x

a

(
(x – a)ρ – (t – a)ρ

ρ

)m–α–1 f (t) dt
(t – a)1–ρ

, (2.3)

where m = ��(α)�, m
a Dρ = aDρ

aDρ · · · aDρ

︸ ︷︷ ︸
m times

, and aDρ f is the left conformable differential

operator presented in (2.1).

Definition 2.3 ([31]) The left Caputo conformable derivative of order α ∈C, �(α) ≥ 0 is
defined by

C
a D

α,ρ f (x) = aI
m–α,ρ(m

a Dρ f (x)
)

=
1

Γ (m – α)

∫ x

a

(
(x – a)ρ – (t – a)ρ

ρ

)m–α–1 m
a Dρ f (t) dt
(t – a)1–ρ

, (2.4)

where m = ��(α)�, m
a Dρ = aDρ

aDρ · · · aDρ

︸ ︷︷ ︸
m times

, and aDρ f is the left conformable differential

operator presented in (2.1).
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Lemma 2.1 ([31]) Let α ∈C and aI
j–α,ρx(t) be the conformable integral (2.2) of order j –α,

then

aI
α,ρ(

aD
α,ρ f (x)

)
= f (x) –

m∑

j=1

aI
j–α,ρ f (a)

ρα–jΓ (α – j + 1)
(x – a)ρ(α–j). (2.5)

3 Forced oscillation of conformable differential equations in the frame of
Riemann

In this section we study the oscillation theory for equation (1.4). We prove our result under
the following assumption:

(H) p ∈C(R+,R), q ∈C(R+,R+), g ∈C(R+,R), f ∈C(R,R) and f (u)/u > 0 for all u �= 0.
We set

Φ(t) = Γ (α)
m∑

j=1

bj(t – a)ρ(α–j)

ρα–jΓ (α – j + 1)
(3.1)

and

Λ(t, T) =
∫ T

a

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
(3.2)

for a ≤ t ≤ T , where M = aD
α,ρx(t1)V (t1).

Theorem 3.1 Suppose that (H) and for every sufficiently large T the following conditions
hold:

lim
t→∞ inf

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
= –∞

(3.3)

and

lim
t→∞ sup

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
= ∞,

(3.4)

where V (t) = exp
∫ t

t1
(s – a)ρ–1p(s) ds, t1 > a, and M is an arbitrary constant. Then every

solution of problem (1.4) is oscillatory.

Proof Let x be a nonoscillatory solution of problem (1.4). Without loss of generality, sup-
pose that T > a is large enough and t1 > T so that x(t) > 0 for t > t1. According to (1.4) and
(H), the following inequality is satisfied:

aDρ
[

aD
α,ρx(t)V (t)

]
= (t – a)1–ρ d

dt
[

aD
α,ρx(t)V (t)

]

= (t – a)1–ρ d
dt

(
aD

α,ρx(t)
)
V (t) + (t – a)1–ρ

aD
α,ρx(t)

d
dt

(
V (t)

)
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= aD
α+1,ρx(t)V (t) + p(t)aD

α,ρx(t)V (t)

= –q(t)f
(
x(t)

)
V (t) + g(t)V (t)

< g(t)V (t).

Taking the left conformable integral order ρ for the above inequality from t1 to t, we can
obtain

aD
α,ρx(t)V (t) < aD

α,ρx(t1)V (t1) + t1 Iρ
(
g(t)V (t)

)

= M + t1 Iρ
(
g(t)V (t)

)
. (3.5)

From Lemma 2.1 and (3.5) we get

aD
α,ρx(t) <

M + t1 Iρ(g(t)V (t))
V (t)

,

which leads to

x(t) –
m∑

j=1

aI
j–α,ρx(a)(t – a)ρ(α–j)

ρα–jΓ (α – j + 1)
< aI

α,ρ
[

M + t1 Iρ(g(t)V (t))
V (t)

]

.

So, we have

x(t) <
m∑

j=1

bj(t – a)ρ(α–j)

ρα–jΓ (α – j + 1)

+
1

Γ (α)

∫ t

a

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

for every sufficiently large T . Multiplying both sides of the above inequality by Γ (α), we
can obtain

Γ (α)x(t) < Γ (α)
m∑

j=1

bj(t – a)ρ(α–j)

ρα–jΓ (α – j + 1)

+
∫ T

a

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

+
∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

= Φ(t) + Λ(t, T)

+
∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
, (3.6)

where Φ and Λ are defined in (3.1) and (3.2), respectively.
Multiplying (3.6) by ( tρ

ρ
)1–α , we get

0 <
(

tρ

ρ

)1–α

Γ (α)x(t)
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<
(

tρ

ρ

)1–α

Φ(t) +
(

tρ

ρ

)1–α

Λ(t, T)

+
(

tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
. (3.7)

Taking T1 > T , we consider two cases as follows.
Case (1): Let 0 < α ≤ 1. Then m = 1 and ( tρ

ρ
)1–αΦ(t) = b1tρ–ρα(t – a)ρα–ρ . Since the func-

tion h1(t) = tρ–ρα(t – a)ρα–ρ is decreasing for ρ > 0 and α < 1, we get for t ≥ T1 (see [21])

∣
∣
∣
∣

(
tρ

ρ

)1–α

Φ(t)
∣
∣
∣
∣ ≤ |b1|Tρ–ρα

1 (T1 – a)ρα–ρ := c1(T1). (3.8)

The function h2(t) = tρ–ρα[(t – a)ρ – (w – a)ρ]α–1 is decreasing for ρ > 0 and α < 1. Thus,
we get

∣
∣
∣
∣

(
tρ

ρ

)1–α

Λ(t, T)
∣
∣
∣
∣

=
∣
∣
∣
∣

(
tρ

ρ

)1–α ∫ T

a

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

∣
∣
∣
∣

≤
∫ T

a

(
tρ

ρ

)1–α(
(t – a)ρ – (w – a)ρ

ρ

)α–1∣∣
∣
∣
M + t1 Iρ(g(w)V (w))

V (w)

∣
∣
∣
∣

dw
(w – a)1–ρ

≤
∫ T

a

(
Tρ

1
ρ

)1–α(
(T1 – a)ρ – (w – a)ρ

ρ

)α–1∣∣
∣
∣
M + t1 Iρ(g(w)V (w))

V (w)

∣
∣
∣
∣

dw
(w – a)1–ρ

:= c2(T , T1). (3.9)

Then, from equation (3.7) and t ≥ T1, we get

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

≥ –
[
c1(T1) + c2(T , T1)

]
,

hence

lim
t→∞ inf

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

≥ –
[
c1(T1) + c2(T , T1)

]

> –∞,

which is a contradiction to condition (3.3).
Case (2): Let α > 1. Then m ≥ 2. Also ( t–a

t )ρα–ρ < 1 for α > 1 and ρ > 0. The function
h3(t) = (t – a)ρ–ρj is decreasing for j > 1 and ρ > 0. Thus, for t ≥ T1, we have (see [21])

∣
∣
∣
∣

(
tρ

ρ

)1–α

Φ(t)
∣
∣
∣
∣ ≤ Γ (α)

m∑

j=1

|bj|(T1 – a)ρ–ρj

ρ1–jΓ (α – j + 1)
:= c3(T1). (3.10)
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Also, since ( tρ
ρ

)1–α < 1 and ( (t–a)ρ–(w–a)ρ
tρ )α–1 < 1 for α > 1 and ρ > 0, we get

∣
∣
∣
∣

(
tρ

ρ

)1–α

Λ(t, T)
∣
∣
∣
∣

=
∣
∣
∣
∣

(
tρ

ρ

)1–α ∫ T

a

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

∣
∣
∣
∣

≤
∫ T

a

(
(t – a)ρ – (w – a)ρ

tρ

)α–1∣∣
∣
∣
M + t1 Iρ(g(w)V (w))

V (w)

∣
∣
∣
∣

dw
(w – a)1–ρ

≤
∫ T

a

∣
∣
∣
∣

(
M + t1 Iρ(g(w)V (w))

V (w)

)∣
∣
∣
∣

dw
(w – a)1–ρ

:= c4(T). (3.11)

From (3.7), (3.10), and (3.11), we conclude that

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

≥ –
[
c3(T1) + c4(T)

]

for t ≥ T1. Hence

lim
t→∞ inf

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

≥ –
[
c3(T1) + c4(T)

]

> –∞,

which is a contradiction to condition (3.3). Therefore, we get that x(t) is oscillatory. In case
x is eventually negative, similar arguments lead to a contradiction with condition (3.4). The
proof is completed. �

4 Forced oscillation of conformable differential equations in the frame of
Caputo

In this section, we study the forced oscillation of conformable initial value problem (1.5).
We set

Ψ (t) = Γ (α)
m–1∑

k=0

bk(t – a)ρk

ρkk!
(4.1)

and

Ω(t, T) =
∫ T

a

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
(4.2)

for a ≤ t ≤ T , where M∗ = C
a D

α,ρx(t1)V (t1).

Lemma 4.1 [31] Let f ∈ Cm
ρ,a[a, b] and α ∈ C, then

aI
α,ρ(C

a D
α,ρ f (x)

)
= f (x) –

m–1∑

k=0

k
aDρ f (a)(x – a)ρk

ρkk!
. (4.3)
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Lemma 4.2 [31] Let α,β ∈ C. If the conformable derivatives C
a D

α,ρ f (x) and C
a D

α+β ,ρ f (x)
exist, then

C
a D

α,ρ(C
a D

β ,ρ f (x)
)

= C
a D

α+β ,ρ f (x). (4.4)

Lemma 4.3 [31] Let α ∈C, m = ��(α)�. If α ∈N, then

C
a D

α,ρ f (x) = m
a Dρ f (x). (4.5)

Theorem 4.1 Suppose that (H) and for every sufficiently large T the following conditions
hold:

lim
t→∞ inf

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1

×
(

M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
= –∞ (4.6)

and

lim
t→∞ sup

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1

×
(

M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
= ∞, (4.7)

where V (t) = exp
∫ t

t1
(s – a)ρ–1p(s) ds, t1 > a, and M∗ is an arbitrary constant. Then every

solution of problem (1.5) is oscillatory.

Proof Let x be a nonoscillatory solution of problem (1.5). Without loss of generality, sup-
pose that T > a is large enough and t1 > T so that x(t) > 0 for t > t1. According to (1.5) and
(H), the following inequality is satisfied:

aDρ
[C

a D
α,ρx(t)V (t)

]
= (t – a)1–ρ d

dt
[C

a D
α,ρx(t)V (t)

]

= (t – a)1–ρ d
dt

(C
a D

α,ρx(t)
)
V (t) + (t – a)1–ρC

a D
α,ρx(t)

d
dt

(
V (t)

)

= C
a D

α+1,ρx(t)V (t) + p(t)C
a D

α,ρx(t)V (t)

= –q(t)f
(
x(t)

)
V (t) + g(t)V (t)

< g(t)V (t).

Taking the left conformable integral of order ρ to the above inequality from t1 to t, we can
obtain

C
a D

α,ρx(t)V (t) < C
a D

α,ρx(t1)V (t1) + t1 Iρ
(
g(t)V (t)

)

= M∗ + t1 Iρ
(
g(t)V (t)

)
. (4.8)
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From Lemma 4.1 and (4.8) we have

C
a D

α,ρx(t) <
M∗ + t1 Iρ(g(t)V (t))

V (t)
.

Then we get

x(t) –
m–1∑

k=0

C
a Dρx(a)(t – a)ρk

ρkk!
< aI

α,ρ
[

M∗ + t1 Iρ(g(t)V (t))
V (t)

]

.

So, we have

x(t) <
m–1∑

k=0

C
a Dρx(a)(t – a)ρk

ρkk!

+
1

Γ (α)

∫ t

a

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

for every sufficiently large T . Multiplying both sides of the above inequality by a constant
Γ (α), we have

Γ (α)x(t) < Γ (α)
m–1∑

k=0

C
a Dρx(a)(t – a)ρk

ρkk!

+
∫ T

a

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

+
∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

= Ψ (t) + Ω(t, T)

+
∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
, (4.9)

where Ψ and Ω are defined in (4.1) and (4.2), respectively.
Multiplying (4.9) by ( tρ

ρ
)1–m, we get

0 <
(

tρ

ρ

)1–m

Γ (α)x(t)

<
(

tρ

ρ

)1–m

Ψ (t) +
(

tρ

ρ

)1–m

Ω(t, T)

+
(

tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1

×
(

M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
. (4.10)

Take T1 > T . We consider two cases as follows.
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Case (1): Let 0 < α ≤ 1. Then m = 1 and ( tρ
ρ

)1–mΨ (t) = Γ (α)b0.
The function h4(t) = ( (t–a)ρ–(w–a)ρ

ρ
)α–1 is decreasing for ρ > 0, t > T1 > w, and α < 1. Thus,

we get

∣
∣
∣
∣

(
tρ

ρ

)1–m

Ω(t, T)
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ T

a

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

∣
∣
∣
∣

≤
∫ T

a

(
(t – a)ρ – (w – a)ρ

ρ

)α–1∣∣
∣
∣
M∗ + t1 Iρ(g(w)V (w))

V (w)

∣
∣
∣
∣

dw
(w – a)1–ρ

≤
∫ T

a

(
(T1 – a)ρ – (w – a)ρ

ρ

)α–1∣∣
∣
∣
M∗ + t1 Iρ(g(w)V (w))

V (w)

∣
∣
∣
∣

dw
(w – a)1–ρ

:= c5(T , T1). (4.11)

Then, from equation (4.10) and t ≥ T1, we get

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

≥ –
[
Γ (α)b0 + c5(T , T1)

]
,

hence

lim
t→∞ inf

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

≥ –
[
Γ (α)b0 + c5(T , T1)

]

> –∞,

which contradicts condition (4.6).
Case (2): Let α > 1. Then m ≥ 2. Also ( t–a

t )ρm–ρ < 1 for m ≥ 2 and ρ > 0. The function
h5(t) = (t – a)ρ(k–m+1) is decreasing for k < m – 1 and ρ > 0. Thus, for t ≥ T1, we have

∣
∣
∣
∣

(
tρ

ρ

)1–m

Ψ (t)
∣
∣
∣
∣ =

∣
∣
∣
∣
∣

(
tρ

ρ

)1–m

Γ (α)
m–1∑

k=0

bk(t – a)ρk

ρkk!

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(
t – a

t

)ρm–ρ

Γ (α)
m–1∑

k=0

bk(t – a)ρ(k–m+1)

ρk–m+1k!

∣
∣
∣
∣
∣

≤ Γ (α)
m–1∑

k=0

|bk|(t – a)ρ(k–m+1)

ρk–m+1k!

≤ Γ (α)
m–1∑

k=0

|bk|(T1 – a)ρ(k–m+1)

ρk–m+1k!
:= c6(T1). (4.12)
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Also, since ( tρ
ρ

)1–m < 1 and ( (t–a)ρ–(w–a)ρ
tρ )α–1 < 1 for α > 1 and ρ > 0, we get

∣
∣
∣
∣

(
tρ

ρ

)1–m

Ω(t, T)
∣
∣
∣
∣

=
∣
∣
∣
∣

(
tρ

ρ

)1–m ∫ T

a

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

∣
∣
∣
∣

≤
∫ T

a

(
(t – a)ρ – (w – a)ρ

tρ

)α–1∣∣
∣
∣
M∗ + t1 Iρ(g(w)V (w))

V (w)

∣
∣
∣
∣

dw
(w – a)1–ρ

≤
∫ T

a

∣
∣
∣
∣

(
M∗ + t1 Iρ(g(w)V (w))

V (w)

)∣
∣
∣
∣

dw
(w – a)1–ρ

:= c7(T). (4.13)

From (4.10), (4.12), and (4.13), we conclude that

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

≥ –
[
c6(T1) + c7(T)

]

for t ≥ T1. Hence

lim
t→∞ inf

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

≥ –
[
c6(T1) + c7(T)

]

> –∞,

which contradicts condition (4.6). Therefore, we conclude that x is oscillatory. In case x
is eventually negative, similar arguments lead to a contradiction with condition (4.7). The
proof is completed. �

5 Examples
In this section, we present examples to illustrate our results.

Example 5.1 Consider the conformable initial value problem

⎧
⎨

⎩

0D
3
2 ,1x(t) – 0D

1
2 ,1x(t) + (t + 5)2(2x + 5)esin 2x = e2t cos t, t > 0,

limt→0+ 0I
1
2 ,1x(t) = 0.

(5.1)

Here α = 1/2, ρ = 1, a = 0, p(t) = –1, q(t) = (t + 5)2, f (x) = (2x + 5)esin 2x, g(t) = e2t cos t,
and V (s) = et1–s. It is easy to verify that assumption (H) is satisfied if x(t) > 0. Then

t1 I1(g(w)V (w)
)

=
∫ w

t1

g(s)V (s) ds

=
∫ w

t1

e2s cos set1–s ds

=
et1+w

2
(sin w + cos w) –

e2t1

2
(sin t1 + cos t1)
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=
et1+w

2
√

2 sin

(

w +
π

4

)

–
e2t1

2
(sin t1 + cos t1).

Set t1 = π/2. Hence, we can obtain

(
tρ

ρ

)1–α ∫ t

0

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

= t
1
2

∫ t

0
(t – w)– 1

2 ew– π
2

((

M –
eπ

2

)

+
√

2
2

e
π
2 +w sin

(

w +
π

4

))

dw.

Set t – w = s2, then the above integral can be written as the following form:

t
1
2

∫ 0

√
t

1
s

et–s2– π
2

((
2M – eπ

2

)

+
√

2
2

e
π
2 +t–s2

sin

(

t – s2 +
π

4

))

(–2s) ds

= t
1
2
(
2M – eπ

)
et– π

2

∫ √
t

0
e–s2

ds + t
1
2
√

2e2t
∫ √

t

0
e–2s2

sin

(

t – s2 +
π

4

)

ds

= t
1
2
(
2M – eπ

)
et– π

2

∫ √
t

0
e–s2

ds + t
1
2
√

2e2t sin

(

t +
π

4

)∫ √
t

0
e–2s2

cos s2 ds

– t
1
2
√

2e2t cos

(

t +
π

4

)∫ √
t

0
e–2s2

sin s2 ds.

Let t → +∞, as the result of |e–2s2
cos s2| ≤ e–2s2 , |e–2s2

sin s2| ≤ e–2s2 and
limt→+∞

∫ √
t

0 e–2s2 ds =
√

2π
4 . So, we know that

lim
t→+∞

∫ √
t

0
e–2s2

cos s2 ds and lim
t→+∞

∫ √
t

0
e–2s2

sin s2 ds

are convergent.
Thus, we can set limt→+∞

∫ √
t

0 e–2s2
cos s2 ds = A, limt→+∞

∫ √
t

0 e–2s2
sin s2 ds = B. Select the

sequence {tk} = { 7π
2 – π

4 + 2kπ – arctan –B
A }, limk→∞ tk = ∞, then we calculate the following

term:

lim
k→∞

{

t
1
2
k etk

[
(
2M – eπ

)
e– π

2

∫ √
tk

0
e–s2

ds +
√

2etk

(

sin

(

tk +
π

4

)∫ √
tk

0
e–2s2

cos s2 ds

– cos

(

tk +
π

4

)∫ √
tk

0
e–2s2

sin s2 ds
)]}

. (5.2)

Firstly, we consider the following limit:

lim
k→∞

(

sin

(

tk +
π

4

)∫ √
tk

0
e–2s2

cos s2 ds – cos

(

tk +
π

4

)∫ √
tk

0
e–2s2

sin s2 ds
)

= A · lim
k→∞

sin

(
7π

2
+ 2kπ – arctan

–B
A

)

– B · lim
k→∞

cos

(
7π

2
+ 2kπ – arctan

–B
A

)

= A · sin

(
7π

2
– arctan

–B
A

)

– B · cos

(
7π

2
– arctan

–B
A

)

= –
√

A2 + B2.
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Secondly, we know that limk→∞ t
1
2
k etk = +∞ and limk→∞(2M – eπ )e– π

2
∫ √

tk
0 e–s2 ds = (2M –

eπ )e– π
2

√
π

2 . Hence, for (5.2), we have

lim
k→∞

{

t
1
2
k etk

[
(
2M – eπ

)
e– π

2

∫ √
tk

0
e–s2

ds +
√

2etk

(

sin

(

tk +
π

4

)∫ √
tk

0
e–2s2

cos s2 ds

– cos

(

tk +
π

4

)∫ √
tk

0
e–2s2

sin s2 ds
)]}

= (+∞) ·
[
(
2M – eπ

)
e– π

2

√
π

2
+ (+∞)

(
–
√

A2 + B2
)
]

= –∞.

Then we obtain

lim
t→∞ inf

(
tρ

ρ

)1–α ∫ t

0

(
(t – a)ρ – (w – a)ρ

ρ

)α–1

×
(

M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
= –∞.

Similarly, selecting the sequence {tl} = { 5π
2 – π

4 + 2lπ – arctan –B
A }, we can obtain

lim
t→∞ sup

(
tρ

ρ

)1–α ∫ t

0

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
= ∞.

Hence, by Theorem 3.1 all solutions of (5.1) are oscillatory.

Example 5.2 Consider the Caputo conformable initial value problem

⎧
⎨

⎩

C
0 D

3
2 ,1x(t) – C

0 D
1
2 ,1x(t) + et2

ln(x + e) = e2t sin t, t > 0,

x(0) = 0.
(5.3)

Here α = 1/2, ρ = 1, a = 0, m = 1, p(t) = –1, q(t) = et2 , f (x) = ln(x + e), g(t) = e2t sin t, and
V (s) = et1–s. Thus assumption (H) is satisfied. Then we have

t1 I1(g(w)V (w)
)

=
et1+w

2
√

2 sin

(

w –
π

4

)

–
e2t1

2
(sin t1 – cos t1).

By setting t1 = π/4 and t – w = s2, we obtain

(
tρ

ρ

)1–m ∫ t

0

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

=
∫ t

0
(t – w)– 1

2 ew– π
4

(

M∗ +
√

2
2

e
π
4 +w sin

(

w –
π

4

))

dw

and

∫ 0

√
t

1
s

et–s2– π
4

(

M∗ +
√

2
2

e
π
4 +t–s2

sin

(

t – s2 –
π

4

))

(–2s) ds
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= 2M∗et– π
4

∫ √
t

0
e–s2

ds +
√

2e2t sin

(

t –
π

4

)∫ √
t

0
e–2s2

cos s2 ds

–
√

2e2t cos

(

t –
π

4

)∫ √
t

0
e–2s2

sin s2 ds,

respectively. Using the method in Example 5.1, we choose a sequence

{tk} =
{

3π

2
+

π

4
+ 2kπ – arctan

–B
A

}

,

where the constants A and B are defined in Example 5.1. Then we calculate

lim
k→∞

(

sin

(

tk –
π

4

)∫ √
tk

0
e–2s2

cos s2 ds – cos

(

tk –
π

4

)∫ √
tk

0
e–2s2

sin s2 ds
)

= A · lim
k→∞

sin

(
3π

2
+ 2kπ – arctan

–B
A

)

– B · lim
k→∞

cos

(
3π

2
+ 2kπ – arctan

–B
A

)

= –
√

A2 + B2

and

lim
k→∞

{

etk

[

2M∗e– π
4

∫ √
tk

0
e–s2

ds +
√

2etk

(

sin

(

tk –
π

4

)∫ √
tk

0
e–2s2

cos s2 ds

– cos

(

tk –
π

4

)∫ √
tk

0
e–2s2

sin s2 ds
)]}

= (+∞) ·
[

2M∗e– π
4

√
π

2
+ (+∞)

(
–
√

A2 + B2
)
]

= –∞.

Then we obtain

lim
t→∞ inf

(
tρ

ρ

)1–m ∫ t

0

(
(t – a)ρ – (w – a)ρ

ρ

)α–1

×
(

M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
= –∞.

Similarly, by selecting the sequence {tl} = {π
2 + π

4 + 2lπ – arctan –B
A }, we can obtain

lim
t→∞ sup

(
tρ

ρ

)1–m ∫ t

0

(
(t – a)ρ – (w – a)ρ

ρ

)α–1

×
(

M∗ + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ
= ∞.

Hence, by Theorem 4.1 all the solutions of (5.3) are oscillatory.

Example 5.3 By direct computation, we can find that the function x(t) = –t2 is a nonoscil-
latory solution of problem

⎧
⎨

⎩

0D
3
2 ,1x(t) +

√
t( 4√

π
+ e

√
x

x
1
4

) = et , t > 0,

limt→0+ 0I
1
2 ,1x(t) = 0.

(5.4)
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Next we will show that condition (3.3) does not hold by setting α = 1/2, ρ = 1, a = 0,
p(t) = 0, q(t) =

√
t, f (x) = ((4/

√
π ) + (e

√
x/x1/4)), g(t) = et , and V (s) = 1. It is obvious that

(H) is satisfied. Therefore, we get

t1 I1(g(w)V (w)
)

= ew – et1 .

By setting t1 = 1, we obtain

(
tρ

ρ

)1–α ∫ t

0

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

= 2t
1
2

(

(M – e)
√

t + et
∫ √

t

0
e–s2

ds
)

,

which yields

lim
t→∞ inf

(
tρ

ρ

)1–α ∫ t

0

(
(t – a)ρ – (w – a)ρ

ρ

)α–1(M + t1 Iρ(g(w)V (w))
V (w)

)
dw

(w – a)1–ρ

= lim
t→∞ inf

{

2t
1
2

(

(M – e)
√

t + et
∫ √

t

0
e–s2

ds
)}

= (+∞) ·
[

(M – e)(+∞) + (+∞)
√

π

2

]

= ∞.

6 Conclusion
In this paper force oscillatory properties of solutions of conformable differential equations
with damping term are established. The cases of conformable differential equations in the
frame of Riemann and Caputo type are considered. A sufficient condition for oscillation
of all solutions is given. The obtained results are illustrated by numerical examples. More-
over, a counterexample is presented to show the existence of a nonoscillatory solution in
case the conditions do not hold.
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