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Abstract
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1 Introduction
The current work concentrates on the existence and uniqueness of solutions for a cat-
egory of singular nonlinear fractional differential equations (NFDEs) subject to integral
boundary conditions (BCs). Specifically, we discuss the problem

⎧
⎪⎪⎨

⎪⎪⎩

cDα
0+ x(t) = f (t, x(t)), 0 < t < 1,

x(0) = x′(0) = 0,

x(1) =
∫ 1
γ

x(τ ) dτ ,

(1.1)

where cDα
0+ stands for the Caputo derivative of order α, α and γ are real numbers satisfying

2 < α ≤ 3 and 0 < γ < 1, respectively, and the function f (t, x(t)) has singular characteristics
limt→0+ f (t, x(t)) = limt→1– f (t, x(t)) = ∞.

In recent decades, great growth has been attained on the theory and applications of
fractional calculus. There is a vast literature on this subject, where the basic concepts,
properties, and applications of fractional-order operators are introduced [1–6], and the
related initial and boundary value problems are studied [7–21]. Darwish and Ntouyas [16]
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verified the existence of solutions for the BVP
⎧
⎨

⎩

cDq
0+ x(t) = f (t, x(t)), 0 < t < 1, 0 < q ≤ 1,

x(0) + α
∫ ν

μ
x(τ ) dτ = x(1), 0 < μ < ν < 1(μ �= ν),

where cDα
0+ stands for the Caputo derivative, and f : [0, 1] × R → R is a continuous func-

tion. Various fixed point theorems state the existence and uniqueness of solutions.
BVPs for singular NFDEs have become a hot research topic in recent years [22–28]. For

example, Qiu and Bai [25] discussed the problem
⎧
⎨

⎩

Dα
0+ y(t) = f (t, y(t)), 0 < t < 1,

y(0) = y′(1) = y′′(0) = 0,

where 2 < α ≤ 3, Dα
0+ stands for the Caputo derivative, and f : (0, 1] × [0, +∞) → [0, +∞)

satisfies limt→0+ f (t, ·) = +∞. They hypothesized that tσ f (t, y(t)) is continuous on [0, 1] ×
[0, +∞) and employed nonlinear alternative and Krasnoselskii’s fixed point theorem to
extract two positive solutions to this problem.

Several papers have dealt with problems for singular NFDEs containing integral bound-
ary conditions [29–33].

He [29] discussed the existence and multiplicity of positive solutions for NFDEs with
integral BCs

⎧
⎪⎪⎨

⎪⎪⎩

cDαy(t) + f (t, y(t)) = 0, 0 < t < 1,

y′′(0) = y′′′(0) = 0,

y′(0) = y(1) = η
∫ 1

0 y(τ ) dτ ,

where cDα stands the Caputo’s fractional derivative of order α, 3 < α ≤ 4, 0 < η < 2, and f
can have a singularity at u = 0.

Vong [32] verified the following nonlocal BVP for a class of singular NFDEs:

⎧
⎪⎪⎨

⎪⎪⎩

cDαy(t) + f (t, y(t)) = 0, 0 < t < 1,

y′(0) = · · · = y(n–1)(0) = 0,

y(1) =
∫ 1

0 y(τ ) dτ ,

where n ≥ 2, α ∈ (n – 1, n), μ(s) denotes a bounded-variation function, which can be sin-
gular at t = 0.

Motivated by all the mentioned studies, we aim to demonstrate the existence and
uniqueness of solutions to problem (1.1). We use some typical fixed point theorems and
the generalized Hölder inequality to obtain fundamental results.

2 Preliminaries
This subsection contains the required concepts and features of the fractional calculus and
some lemmas necessary to prove our essential results.

Definition 2.1 ([1]) Let � = [a, b] (–∞ < a < b < +∞) be a bounded interval on R. The
Riemann–Liouville fractional integrals Iα

a+ f and Iα
b– f of order α ∈ C (	(α) > 0) can be rep-
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resented as

(
Iα

a+ f
)
(x) :=

1
	(α)

∫ x

a

f (t)
(x – t)1–α

dt
(
x > a;	(α) > 0

)

and

(
Iα

b– f
)
(x) :=

1
	(α)

∫ b

x

f (t)
(t – x)1–α

dt
(
x < b;	(α) > 0

)
,

respectively, where 	 is the gamma function.

Definition 2.2 ([1]) If y(x) ∈ ACn[a, b], the Caputo derivatives (cDα
a+ y)(x) and (cDα

b– y)(x)
exist almost everywhere on [a, b].

(a) When α /∈ N0, (cDα
a+ y)(x) and (cDα

b– y)(x) are definedd as

(cDα
a+ y

)
(x) =

1
	(n – α)

∫ x

a

y(n)(t)
(x – t)α–n+1 dt

and

(cDα
b– y

)
(x) =

(–1)n

	(n – α)

∫ b

x

y(n)(t)
(t – x)α–n+1 dt,

respectively, where D stands for the derivative operator, and n = [	(α)] + 1, α ∈ C,
	(α) ≥ 0.

(b) If α ∈ N0, then (cDn
a+ y)(x) = y(n)(x) and (cDn

b– y)(x) = (–1)(n)y(n)(x).

Lemma 2.1 ([1]) The general solution of the fractional-order equation (cDα
a+ y)(x) = 0 can

be obtained as

y(x) =
n–1∑

k=0

y(i)(a)
i!

(x – a)i.

In particular, for a = 0, it can be presented as

y(x) = c0 + c1x + c2x2 + · · · + cn–1xn–1,

where ci = y(i)(0)
i! (i = 0, 1, . . . n – 1) stand for certain constants.

Lemma 2.2 Let y(t) ∈ C[0, 1]. Then the BVP

⎧
⎪⎪⎨

⎪⎪⎩

cDα
0+ x(t) = y(t), 0 < t < 1,

x(0) = x′(0) = 0,

x(1) =
∫ 1
γ

x(τ ) dτ ,

(2.1)

has a unique solution

x(t) =
1

	(α)

∫ t

0
(t – τ )α–1y(τ ) dτ +

3t2

(2 + γ 3)	(α + 1)

∫ 1

0
(1 – τ )αy(τ ) dτ
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–
3t2

(2 + γ 3)	(α)

∫ 1

0
(1 – τ )α–1y(τ ) dτ –

3t2

(2 + γ 3)	(α + 1)

∫ γ

0
(γ – τ )αy(τ ) dτ .

where 2 < α ≤ 3 and 0 < γ < 1.

Proof By Lemma 2.1 we easily get

x(t) = Iα
0+ y(t) + c0 + c1t + c2t2 =

1
	(α)

∫ t

0
(t – τ )α–1y(τ ) dτ + c0 + c1t + c2t2

and

x′(t) =
1

	(α – 1)

∫ t

0
(t – τ )α–2y(τ ) dτ + c1 + 2c2t

for some c0, c1, c2 ∈ R. From the BCs in (2.1) we have c0 = c1 = 0 and

c2 = –
1

	(α)

∫ 1

0
(1 – τ )α–1y(τ ) dτ +

∫ 1

γ

x(τ ) dτ .

Hence

x(t) =
1

	(α)

∫ t

0
(t – τ )α–1y(τ ) dτ –

t2

	(α)

∫ 1

0
(1 – τ )α–1y(τ ) dτ + t2

∫ 1

γ

x(τ ) dτ . (2.2)

Integrating both sides of (2.2) from γ to 1 yields

∫ 1

γ

x(t) dt

=
1

	(α)

∫ 1

γ

[∫ 1

0
(t – τ )α–1y(τ ) dτ

]

dt –
1

	(α)

∫ 1

γ

t2 dt
∫ 1

0
(1 – τ )α–1y(τ ) dτ

+
∫ 1

γ

t2 dt
∫ 1

γ

x(τ ) dτ

=
1

α	(α)

∫ 1

0
(1 – τ )αy(τ ) dτ –

1
α	(α)

∫ γ

0
(γ – τ )αy(τ ) dτ

–
1 – γ 3

3	(α)

∫ 1

0
(1 – τ )α–1y(τ ) dτ +

1 – γ 3

3

∫ 1

γ

x(τ ) dτ .

By switching and rearranging this equation we have

∫ 1

γ

x(t) dt =
3

(2 + γ 3	(α + 1)

∫ 1

0
(1 – τ )αy(τ ) dτ dt

–
3

(2 + γ 3)	(α + 1)

∫ γ

0
(γ – τ )αy(τ ) dτ

–
1 – γ 3

(2 + γ 3)	(α + 1)

∫ 1

0
(1 – τ )α–1y(τ ) dτ .

Substituting this equation into equation (2.2), we get

x(t) =
1

	(α)

∫ t

0
(t – τ )α–1y(τ ) dτ +

3t2

(2 + γ 3)	(α + 1)

∫ 1

0
(1 – τ )αy(τ ) dτ
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–
3t2

(2 + γ 3)	(α)

∫ 1

0
(1 – τ )α–1y(τ ) dτ –

3t2

(2 + γ 3)	(α + 1)

∫ γ

0
(γ – τ )αy(τ ) dτ .

The proof is finished. �

The conclusions of this paper are mainly derived from the following fixed point theo-
rems.

Lemma 2.3 ([1] Banach’s fixed point theorem) Let (U , d) be a nonempty complete metric
space, let 0 ≤ ω < 1, and let T : U → U be a mapping such

d(Tu, Tv) ≤ ω d(u, v)

for all u, v ∈ U . Then T contains a unique fixed point (FP) u∗ ∈ U , that is, Tu∗ = u∗.

Lemma 2.4 ([34] Krasnoselskii’s fixed point theorem) Let M be a closed, bounded, con-
vex, and nonempty subset of a Banach space X. Let A and B are mappings satisfying the
following conditions: (a) Ax + By ∈ M for x, y ∈ M; (b) A is compact and continuous; (c) B
is a contraction. Then there is z ∈ M such that z = Az + Bz.

Lemma 2.5 ([35] Schaefer’s fixed point theorem) Let X be a Banach space. Let T : X → X
be a completely continuous operator, and let V = {u ∈ X | u = μTu, 0 < μ < 1} be a bounded
set. Then T has a fixed point in X.

Finally, we introduce some basic knowledge of Lp space and present the Hölder inequal-
ity and its generalized form [36].

Let � ⊂ Rn be an open set (or a measurable set), let f (x) be a real-valued measur-
able function on �. For 1 ≤ p < ∞, since |f (x)|p is also measurable on �, the integral
∫

�
|f (x)|p dx makes sense. Then the function space Lp(�) is defined as follows:

Lp(�) = {f (x)|f (x) is measurable on �, and
∫

�
|f (x)|p dx < ∞}.

For f ∈ Lp(�), the following norm can be defined:

‖f ‖p =
(∫

�

∣
∣f (x)

∣
∣p dx

)1/p

.

We call 1 < p, q < ∞ conjugate exponentials of each other if 1
p + 1

q = 1.

Lemma 2.6 ([36] Hölder’s inequality) Let � ⊂ Rn be an open set, let p, q be conjugate
exponentials, let f (x) ∈ Lp(�) and g(x) ∈ Lq(�). Then the function f (x)g(x) is integrable on
�, and

∫

�

∣
∣f (x)g(x) dx

∣
∣dx ≤ ‖f ‖p‖g‖q.

This inequality can be generalized as follows:

∫

�

∣
∣f1(x) · · · fn(x) dx

∣
∣dx ≤ ‖f1‖pi · · · ‖fn‖pn .

provided that fi(x) ∈ Lpi (�), 1 < pi < ∞, and
∑n

k=1
1
pi

= 1.
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3 Fundamental results
Let X = C([0, 1], R) be the Banach space of real-valued continuous functions on [0, 1] en-
dowed with norm ‖x‖ = maxt∈[0,1] |x(t)|.

Throughout this paper, we make the following assumption on the singularity of nonlin-
ear function f (t, x(t)) in (1.1):

(H1) f (t, x(t)) has a singularity at t = 0 and t = 1, that is,

lim
t→0+

f (t, ·) = ∞, lim
t→1–

f (t, ·) = ∞.

Moreover, there exist constants 0 < θ1 < 1 and 0 < θ2 < 1 such that tθ1 (1 – t)θ2 f (t, x(t)) is
continuous on [0, 1].

Based on condition (H1), we know that there is a positive constant M0 such that

∣
∣tθ1 (1 – t)θ2 f

(
t, x(t)

)∣
∣ ≤ M0, x ∈ X, t ∈ [0, 1]. (3.1)

Let λ = 3
2+γ 3 . By Lemma 2.2 the operator A : X → X can be represented as

(Ax)(t) =
1

	(α)

∫ t

0
(t – τ )α–1f

(
τ , x(τ )

)
dτ +

λt2

	(α + 1)

∫ 1

0
(1 – τ )αf

(
τ , x(τ )

)
dτ

–
λt2

	(α)

∫ 1

0
(1 – τ )α–1f

(
τ , x(τ )

)
dτ

–
λt2

	(α + 1)

∫ γ

0
(γ – τ )αf

(
τ , x(τ )

)
dτ . (3.2)

Then the solutions of problem (1.1) include the FPs of A.

Lemma 3.1 Suppose 0 < θ1 < 1 and 0 < θ2 < 1. Then the integral operator J defined as

J(t) =
∫ t

0
(t – τ )α–1τ–θ1 (1 – τ )–θ2 dτ , t ∈ [0, 1]

has the following specifications:
(1) limt→0+ J(t) = 0;
(2) |J(t) – J(t0)| < (α – 1)B(1 – θ1,α – θ2 – 1)|t – t0| for all t, t0 ∈ [0, 1],

where B(·, ·) denotes the beta function.

Proof (1) By Lemma 2.6, for any p1 > 1, p2 > 1, p3 > 1 such that 1
p1

+ 1
p2

+ 1
p3

= 1, 0 < p1θ1 < 1,
and 0 < p2θ2 < 1, we have

J(t) ≤
[∫ t

0
τ–p1θ1 dτ

]1/p1[∫ t

0
(1 – τ )–p2θ2 dτ

]1/p2[[∫ t

0
(t – τ )p3(α–1) dτ

]1/p3

=
[

1
1 – p1θ1

τ 1–p1θ1

∣
∣
∣
∣

t

0

]1/p1[

–
1

1 – p2θ2
(1 – τ )1–p2θ2

∣
∣
∣
∣

t

0

]1/p2

·
[

–
1

1 + p3(α – 1)
(t – τ )1+p3(α–1)

∣
∣
∣
∣

t

0

]1/p3

=
1

p1
√

1 – p1θ1

1
p2
√

1 – p2θ2

1
p3
√

1 + p3(α – 1)
p1
√

t1–p1θ1
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· p2
√

1 – (1 – t)1–p2θ2 · p3
√

t1+p3(α–1).

Since J(t) ≥ 0, and limt→0+ ( p1
√

t1–p1θ1 · p2
√

1 – (1 – t)1–p2θ2 · p3
√

t1+p3(α–1)) = 0, we get

lim
t→0+

J(t) = 0.

(2) By the expression of J(t) we easily get

J ′(t) = (α – 1)
∫ t

0
(t – τ )α–2τ–θ1 (1 – τ )–θ2 dτ

≤ (α – 1)
∫ 1

0
(1 – τ )α–2τ–θ1 (1 – τ )–θ2 dτ

= (α – 1)
∫ 1

0
(1 – τ )α–θ2–2τ–θ1 dτ

= (α – 1)B(1 – θ1,α – θ2 – 1).

Hence the mean value theorem gives us

∣
∣J(t) – J(t0)

∣
∣ = J ′(ξ )|t – t0| < (α – 1)B(1 – θ1,α – θ2 – 1)|t – t0|,

where the number ξ is between t and t0. �

Lemma 3.2 Let 2 < α ≤ 3, and let g : (0, 1) → R be a continuous function such that
limt→0+ g(t) = ∞ and limt→1– g(t) = ∞. Suppose that there exist two constants 0 < θ1 < 1
and 0 < θ2 < 1 such that tθ1 (1 – t)θ2 g(t) is continuous in [0, 1]. Then the function

G(t) :=
1

	(α)

∫ t

0
(t – τ )α–1g(τ ) dτ +

λt2

	(α + 1)

∫ 1

0
(1 – τ )αg(τ ) dτ

–
λt2

	(α)

∫ 1

0
(1 – τ )α–1g(τ ) dτ –

λt2

	(α + 1)

∫ γ

0
(γ – τ )αg(τ ) dτ

is continuous in [0, 1].

Proof Based on the expression of G(t), we easily find G(0) = 0. As tθ1 (1 – t)θ2 g(t) is con-
tinuous in [0, 1], there is a positive constant M1 such that |tθ1 (1 – t)θ2 g(t)| ≤ M1 for all
t ∈ [0, 1]. For all t0 ∈ [0, 1], we will prove the continuity of G(t) in three cases.

(a) t0 = 0, t ∈ [0, 1]. We have

∣
∣G(t) – G(0)

∣
∣

=
∣
∣
∣
∣

1
	(α)

∫ t

0
(t – τ )α–1τ–θ1 (1 – τ )–θ2τ θ1 (1 – τ )θ2 g(τ ) dτ

+
λt2

	(α + 1)

∫ 1

0
(1 – τ )ατ–θ1 (1 – τ )–θ2τ θ1 (1 – τ )θ2 g(τ ) dτ

–
λt2

	(α)

∫ 1

0
(1 – τ )α–1τ–θ1 (1 – τ )–θ2τ θ1 (1 – τ )θ2 g(τ ) dτ
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–
λt2

	(α + 1)

∫ γ

0
(γ – τ )ατ–θ1 (1 – τ )–θ2τ θ1 (1 – τ )θ2 g(τ ) dτ

∣
∣
∣
∣

≤ M1

	(α)

∫ t

0
(t – τ )α–1τ–θ1 (1 – τ )–θ2 dτ +

λM1t2

	(α + 1)

∫ 1

0
(1 – τ )ατ–θ1 (1 – τ )–θ2 dτ

+
λM1t2

	(α)

∫ 1

0
(1 – τ )α–1τ–θ1 (1 – τ )–θ2 dτ +

λM1t2

	(α + 1)

∫ γ

0
(γ – τ )ατ–θ1 (1 – τ )–θ2 dτ

≤ M1

	(α)
J(t) +

λM1t2

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ +

λM1t2

	(α)

∫ 1

0
(1 – τ )α–θ2–1τ–θ1 dτ

+
λM1t2

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ

=
M1

	(α)
J(t) +

2λM1t2

	(α + 1)
B(1 – θ1,α – θ2 + 1) +

λM1t2

	(α)
B(1 – θ1,α – θ2)

→ 0 (t → t0 = 0).

(b) t0 ∈ (0, 1], t ∈ [0, t0). Then

∣
∣G(t) – G(t0)

∣
∣

=
∣
∣
∣
∣

1
	(α)

∫ t0

0
(t0 – τ )α–1g(τ ) dτ –

1
	(α)

∫ t

0
(t – τ )α–1g(τ ) dτ

+
λ(t2

0 – t2)
	(α + 1)

∫ 1

0
(1 – τ )αg(τ ) dτ +

λ(t2
0 – t2)
	(α)

∫ 1

0
(1 – τ )α–1g(τ ) dτ

+
λ(t2

0 – t2)
	(α + 1)

∫ γ

0
(γ – τ )αg(τ ) dτ

∣
∣
∣
∣

≤
∣
∣
∣
∣

1
	(α)

∫ t

0

[
(t0 – τ )α–1 – (t – τ )α–1]g(τ ) dτ +

1
	(α)

∫ t0

t
(t0 – τ )α–1g(τ ) dτ

∣
∣
∣
∣

+
λM1(t0 + t)(t0 – t)

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ

+
λM1(t0 + t)(t0 – t)

	(α)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ

+
λM1(t0 + t)(t0 – t)

	(α + 1)

∫ γ

0
(γ – τ )ατ–θ1 (1 – τ )–θ2 dτ

≤ M1

	(α)

∫ t

0

[
(t0 – τ )α–1 – (t – τ )α–1]τ–θ1 (1 – τ )–θ2 dτ

+
M1

	(α)

∫ t0

t
(t0 – τ )α–1τ–θ1 (1 – τ )–θ2 dτ

+
2λM1(t0 – t)

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ +

2λM1(t0 – t)
	(α)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ

+
2λM1(t0 – t)

	(α + 1)

∫ 1

0
(1 – τ )ατ–θ1 (1 – τ )–θ2 dτ

=
M1

	(α)

∫ t0

0
(t0 – τ )α–1τ–θ1 (1 – τ )–θ2 dτ –

M1

	(α)

∫ t

0
(t – τ )α–1τ–θ1 (1 – τ )–θ2 dτ

+
2λM1(t0 – t)

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ +

2λM1(t0 – t)
	(α)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ
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+
2λM1(t0 – t)

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ

=
M1

	(α)
[
J(t0) – J(t)

]
+

4λM1(t0 – t)
	(α + 1)

B(1 – θ1,α – θ2 + 1)

+
2λM1(t0 – t)

	(α)
B(1 – θ1,α – θ2 + 1).

By the second result of Lemma 3.1 we have

∣
∣G(t) – G(t0)

∣
∣ ≤ M1

α(α – 1) + 4λ + 2λα

	(α + 1)
· B(1 – θ1,α – θ2 + 1)(t0 – t) → 0(t → t0).

(c) t0 ∈ (0, 1), t ∈ (t0, 1]. Since the proof for this case is the same as that in case (b), we omit
it. �

Lemma 3.3 Let 2 < α ≤ 3, and let f : (0, 1) × R → R be a continuous function satisfying the
singularity condition (H1). Then the operator A : X → X is completely continuous.

Proof According to Lemma 3.2, A : X → X is continuous. Let D ⊂ X = C([0, 1], R) be a
bounded set, that is, there is a positive constant L1 such that ‖x‖ ≤ L1 for all x ∈ D.

Relations (3.1) and (3.2) give

|Ax| ≤ 1
	(α)

∣
∣
∣
∣

∫ t

0
(t – τ )α–1f

(
τ , x(τ )

)
dτ

∣
∣
∣
∣ +

λ

	(α + 1)

∣
∣
∣
∣

∫ 1

0
(1 – τ )αf

(
τ , x(τ )

)
dτ

∣
∣
∣
∣

+
λ

	(α)

∣
∣
∣
∣

∫ 1

0
(1 – τ )α–1f

(
τ , x(τ )

)
dτ

∣
∣
∣
∣ +

λ

	(α + 1)

∣
∣
∣
∣

∫ γ

0
(γ – τ )αf

(
τ , x(τ )

)
dτ

∣
∣
∣
∣

≤ M0

	(α)

∫ t

0
(t – τ )α–1τ–θ1 (1 – τ )–θ2 dτ +

λM0

	(α + 1)

∫ 1

0
(1 – τ )ατ–θ1 (1 – τ )–θ2 dτ

+
λM0

	(α)

∫ 1

0
(1 – τ )α–1τ–θ1 (1 – τ )–θ2 dτ

+
λM0

	(α + 1)

∫ γ

0
(γ – τ )ατ–θ1 (1 – τ )–θ2 dτ

≤ M0

	(α)

∫ 1

0
(1 – τ )α–θ2–1τ–θ1 dτ +

λM0

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ

+
λM0

	(α)

∫ 1

0
(1 – τ )α–θ2–1τ–θ1 dτ +

λM0

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ

=
(1 + λ)M0

	(α)
B(1 – θ1,α – θ2) +

2λM0

	(α + 1)
B(1 – θ1,α – θ2 + 1) := L2,

that is, ‖Ax‖ ≤ L2, for all x ∈ D. Thus the operator A is bounded on D. This yields the
compactness of A. For every t ∈ [0, 1], we have

∣
∣(Ax)′(t)

∣
∣ =

∣
∣
∣
∣

1
	(α – 1)

∫ t

0
(t – τ )α–2f

(
τ , x(τ )

)
dτ +

2λt
	(α + 1)

∫ 1

0
(1 – τ )αf

(
τ , x(τ )

)
dτ

–
2λt
	(α)

∫ 1

0
(1 – τ )α–1f

(
τ , x(τ )

)
dτ –

2λt
	(α + 1)

∫ γ

0
(γ – τ )αf

(
τ , x(τ )

)
dτ

∣
∣
∣
∣

≤ M0

	(α – 1)

∫ t

0
(t – τ )α–2τ–θ1 (1 – τ )–θ2 dτ
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+
2λM0

	(α + 1)

∫ 1

0
(1 – τ )ατ–θ1 (1 – τ )–θ2 dτ

+
2λM0

	(α)

∫ 1

0
(1 – τ )α–1τ–θ1 (1 – τ )–θ2 dτ

+
2λM0

	(α + 1)

∫ γ

0
(γ – τ )ατ–θ1 (1 – τ )–θ2 dτ

≤ M0

	(α – 1)

∫ 1

0
(1 – τ )α–θ2–2τ–θ1 dτ +

2λM0

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ

+
2λM0

	(α)

∫ 1

0
(1 – τ )α–θ2–1τ–θ1 dτ +

2λM0

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ

=
M0

	(α – 1)
B(1 – θ1,α – θ2 – 1) +

4λM0

	(α + 1)
B(1 – θ1,α – θ2 + 1)

+
2λM0

	(α)
B(1 – θ1,α – θ2) := L3.

Now the following inequality holds for t1, t2 ∈ [0, 1] and t1 < t2:

∣
∣(Ax)(t2) – (Ax)(t1)

∣
∣ =

∣
∣
∣
∣

∫ t2

t1

(Ax)′(s) ds
∣
∣
∣
∣ ≤ L3(t2 – t1).

Therefore A is equicontinuous on D. Thus, by the Arzelà–Ascoli theorem the operator A
is completely continuous on X. �

Now we present and demonstrate our fundamental results. The first result deals with
the existence and uniqueness of the solution to problem (1.1).

Theorem 3.1 Let 2 < α ≤ 3 and 0 < θ1, θ2 < 1 be constants, and let f (t, x(t)) satisfy condi-
tion (H1) and the following conditions:

(H2) There is a function m(t) ∈ Lp([0, 1], R+) (p > 1) such that

tθ1 (1 – t)θ2
∣
∣f (t, x) – f (t, y)

∣
∣ ≤ m(t)|x – y|.

(H3) There exist three constants p1, p2, p3 satisfying p1 > 1, p2 > 1, p3 > 1, 0 < p1θ1 < 1,
and 1

p1
+ 1

p2
+ 1

p3
= 1. If

‖m‖p3
1

p1
√

1 – p1θ1
[
1 + λ

	(α)
1

p2
√

1 + p2(α – θ2 – 1)

+
2λ

	(α + 1)
1

p2
√

1 + p2(α – θ2)
< 1, (3.3)

then the solution to problem (1.1) is unique.

Proof For x, y ∈ X = C([0, 1]) and t ∈ [0, 1], by (H2) we have

∣
∣(Ax)(t) – (Ay)(t)

∣
∣ ≤ 1

	(α)

∫ t

0
(t – τ )α–1∣∣f

(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣
∣dτ

+
λ

	(α + 1)

∫ 1

0
(1 – τ )α

∣
∣f

(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣
∣dτ
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+
λ

	(α)

∫ 1

0
(1 – τ )α–1∣∣f

(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣
∣dτ

+
λ

	(α + 1)
|
∫ γ

0
(γ – τ )α

∣
∣f

(
τ , x(τ )

)
– f

(
τ , y(τ )

)∣
∣dτ

≤ 1
	(α)

∫ 1

0
(1 – τ )α–θ2–1τ–θ1 m(τ )

∣
∣x(τ ) – y(τ )

∣
∣dτ

+
λ

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 m(τ )

∣
∣x(τ ) – y(τ )

∣
∣dτ

+
λ

	(α)

∫ 1

0
(1 – τ )α–θ2–1τ–θ1 m(τ )

∣
∣x(τ ) – y(τ )

∣
∣dτ

+
λ

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 m(τ )

∣
∣x(τ ) – y(τ )

∣
∣dτ .

By (H3) and the Hölder inequality we have

∣
∣(Ax)(t) – (Ay)(t)

∣
∣

≤ ∥
∥x(τ ) – y(τ )

∥
∥ ·

{
1

	(α)

[∫ 1

0
τ–θ1p1 dτ

]1/p1[∫ 1

0
(1 – τ )(α–θ2–1)p2 dτ

]1/p2

×
[∫ 1

0
mp3 (τ ) dτ

]1/p3

+
λ

	(α + 1)

[∫ 1

0
τ–θ1p1 dτ

]1/p1[∫ 1

0
(1 – τ )(α–θ2)p2 dτ

]1/p2[∫ 1

0
mp3 (τ ) dτ

]1/p3

+
λ

	(α)

[∫ 1

0
τ–θ1p1 dτ

]1/p1[∫ 1

0
(1 – τ )(α–θ2–1)p2 dτ

]1/p2[∫ 1

0
mp3 (τ ) dτ

]1/p3

+
λ

	(α + 1)

[∫ 1

0
τ–θ1p1 dτ

]1/p1[∫ 1

0
(1 – τ )(α–θ2)p2 dτ

]1/p2[∫ 1

0
mp3 (τ ) dτ

]1/p3}

= ‖m‖p3
1

p1
√

1 – p1θ1

[
1 + λ

	(α)
1

p2
√

1 + p2(α – θ2 – 1)
+

2λ

	(α + 1)
1

p2
√

1 + p2(α – θ2)

]

× ∥
∥x(τ ) – y(τ )

∥
∥.

Noticing (3.3), we conclude that A is a contraction mapping. Thus by Lemma 2.3 it has a
unique FP, which is also the unique solution to problem (1.1). �

The second result states the existence of the solution to the BVP (1.1) derived from
Lemma 2.4.

Theorem 3.2 Let 2 < α ≤ 3 and 0 < θ1, θ2 < 1 be constants, and let f (t, x(t)) satisfy condi-
tions (H1)–(H3) and the following condition:

‖m‖p3
1

p1
√

1 – p1θ1

[
λ

	(α)
1

p2
√

1 + p2(α – θ2 – 1)

+
2λ

	(α + 1)
1

p2
√

1 + p2(α – θ2)

]

< 1. (3.4)

Then problem (1.1) has a solution.
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Proof We fix a constant

r ≥ M0

[
1 + λ

	(α)
B(1 – θ1,α – θ2) +

2λ

	(α + 1)
B(1 – θ1,α – θ2 + 1)

]

.

Consider a ball Br = {x ∈ X = C([0, 1], R) : ‖x‖ ≤ r}. Define two operators A1 and A1 on Br

as

(A1x)(t) =
1

	(α)

∫ t

0
(t – τ )α–1f

(
τ , x(τ )

)
dτ ,

(A2x)(t) =
λt2

	(α + 1)

∫ 1

0
(1 – τ )αf

(
τ , x(τ )

)
dτ

–
λt2

	(α)

∫ 1

0
(1 – τ )α–1f

(
τ , x(τ )

)
dτ

–
λt2

	(α + 1)

∫ γ

0
(γ – τ )αf

(
τ , x(τ )

)
dτ .

For x, y ∈ Br , by (3.1) we can check that

‖A1x + A2y‖ ≤ M0

	(α)

∫ 1

0
(1 – τ )α–θ2–1τ–θ1 dτ +

λM0

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ

+
λM0

	(α)

∫ 1

0
(1 – τ )α–θ2–1τ–θ1 dτ +

λM0

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ

= M0

[
(1 + λ)
	(α)

B(1 – θ1,α – θ2) +
2λ

	(α + 1)
B(1 – θ1,α – θ2 + 1)

]

≤ r.

So A1x + A2y ∈ Br . Like in the proof of Theorem 3.1, from (H2), (H3), and (3.4) we can
conclude that the operator A2 is also a contraction mapping. Lemma 3.2 and (H1) ensure
the continuity of the operator A1. For any x ∈ Br , we have

‖A1x‖ ≤ M0

	(α)

∫ 1

0
(1 – τ )α–1τ–θ1 (1 – τ )–θ2 dτ

≤ M0

	(α)

∫ 1

0
(1 – τ )α–θ2–1τ–θ1 dτ

=
M0

	(α)
B(1 – θ1,α – θ2).

Thus A1 is uniformly bounded on Br . For all t1, t2 ∈ [0, 1] such that t1 < t2, we obtain

∣
∣(A1x)(t2) – (A1x)(t1)

∣
∣

=
1

	(α)

∣
∣
∣
∣

∫ t2

0
(t2 – τ )α–1f

(
τ , x(τ )

)
dτ –

∫ t1

0
(t1 – τ )α–1f

(
τ , x(τ )

)
dτ

∣
∣
∣
∣

≤ 1
	(α)

∣
∣
∣
∣

∫ t1

0

[
(t2 – τ )α–1 – (t1 – τ )α–1]f

(
τ , x(τ )

)
dτ +

∫ t2

t1

(t2 – τ )α–1f
(
τ , x(τ )

)
dτ

∣
∣
∣
∣

≤ M0

	(α)

[∫ t1

0

[
(t2 – τ )α–1 – (t1 – τ )α–1]τ–θ1 (1 – τ )–θ2 dτ
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+
∫ t2

t1

(t2 – τ )α–1τ–θ1 (1 – τ )–θ2 dτ

]

=
M0

	(α)
[
J(t2) – J(t1)

]
.

By Lemma 3.1 we have

∣
∣(A1x)(t2) – (A1x)(t1)

∣
∣ =

(α – 1)M0

	(α)
B(1 – θ1,α – θ2 – 1)(t2 – t1).

This means that A1 is equicontinuous and relatively compact on Br . Accordingly, by the
Arzelà–Ascoli theorem A1 is compact on Br . Accordingly, Lemma 2.4 ensures the exis-
tence of a solution for problem (1.1) in [0, 1]. �

The Schaefer fixed point theorem gives the last result.

Theorem 3.3 Let 2 < α ≤ 3 and 0 < θ1, θ2 < 1 be constants, and let f (t, x(t)) satisfy condi-
tions (H1) and (3.1). Then problem (1.1) has a solution in [0, 1].

Proof By Lemma 3.3 we know that the operator A : X → X is completely continuous.
Next, we prove that the set V = {x ∈ C([0, 1], R) : x = μAx, 0 < μ < 1} is bounded.
Let x ∈ V . Then x = μ(Ax). Thus, for each t ∈ [0, 1], we have

|x| = μ
∣
∣(Ax)(t)

∣
∣

= μ

∣
∣
∣
∣

1
	(α)

∫ t

0
(t – τ )α–1f

(
τ , x(τ )

)
dτ +

λt2

	(α + 1)

∫ 1

0
(1 – τ )αf

(
τ , x(τ )

)
dτ

–
λt2

	(α)

∫ t

0
(1 – τ )α–1f

(
τ , x(τ )

)
dτ –

λt2

	(α + 1)

∫ γ

0
(γ – τ )αf

(
τ , x(τ )

)
dτ

∣
∣
∣
∣

≤ M0

[
1

	(α)

∫ 1

0
(1 – τ )α–θ2–1τ–θ1 dτ +

λ

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ

]

+
λ

	(α)

∫ 1

0
(1 – τ )α–θ2–1τ–θ1 dτ +

λ

	(α + 1)

∫ 1

0
(1 – τ )α–θ2τ–θ1 dτ ]

= M0

[
1 + λ

	(α)
B(1 – θ1,α – θ2) +

2λ

	(α + 1)
B(1 – θ1,α – θ2 + 1)

]

= L2.

Hence we have

‖x‖ ≤ L2.

This shows that the set V is bounded. Lemma 2.5 ensures the existence of fixed points
of A. Accordingly, there is at least one solution to problem (1.1) in [0, 1]. �

4 Examples
We introduce three examples to clarify the performed work.
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Example 4.1 Consider the following fractional BVP:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cD
9
4
0+ x(t) = sin x

46√t· 5√1–t
, 0 < t < 1,

x(0) = x′(0) = 0,

x(1) =
∫ 1

0.5 x(τ ) dτ .

(4.1)

Thus f (t, x) = sin x
46√t· 5√1–t

, α = 9
4 , γ = 0.5. Take θ1 = 1

23 , θ2 = 5
6 , and p1 = p3 = 22, p2 = 1.1. Since

t
1

23 (1 – t)
5
6
∣
∣f (t, x) – f (t, y)

∣
∣ = t

1
46 (1 – t)

19
30 | sin x – sin y|

= 2t
1

46 (1 – t)
19
30

∣
∣
∣
∣cos

x + y
2

sin
x – y

2

∣
∣
∣
∣

≤ t
1

46 (1 – t)
19
30 |x – y|.

Accordingly, m(t) = t
1

46 (1 – t) 19
30 . We can calculate the following: λ = 3

2+γ 3 ≈ 1.4118,
	(α) = 	( 9

4 ) ≈ 1.128, 	(α + 1) = 	(1 + 9
4 ) ≈ 2.5493, 1+λ

	(α) ≈ 2.1381, 2λ
	(α+1) ≈ 1.1076,

‖m‖p3 = {∫ 1
0 [t

1
46 (1 – t) 19

30 ]22 ds}1/22 ≈ 0.1521, 1
p1
√

1–p1θ1
≈ 1.1532, 1

p2
√

1+p2(α–θ2–1)
≈ 0.7097,

1
p2
√

1+p2(α–θ2)
≈ 0.4258, ‖m‖p3

1
p1
√

1–p1θ1
[ 1+λ
	(α)

1
p2
√

1+p2(α–θ2–1)
+ 2λ

	(α+1)
1

p2
√

1+p2(α–θ2)
] ≈

0.3489 < 1. Since conditions (H1)–(H3) and (3.3) are all satisfied, Theorem 3.1 ensures
a unique solution x(t) in [0, 1] for this example.

Example 4.2 Consider the following fractional BVP:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cD
7
3
0+ x(t) = sin(tx)

8√t· 3√1–t
, 0 < t < 1,

x(0) = x′(0) = 0,

x(1) =
∫ 1

0.2 x(τ ) dτ .

(4.2)

Thus f (t, x) = sin(tx)
8√t· 3√1–t

, α = 7
3 , γ = 0.2. Take θ1 = 1

7 , θ2 = 2
3 , and p1 = 6, p2 = 30, p3 = 1.25.

Since

t
1
7 (1 – t)

2
3
∣
∣f (t, x) – f (t, y)

∣
∣ = t

1
56 (1 – t)

1
3
∣
∣sin(tx) – sin(ty)

∣
∣

= 2t
1

56 (1 – t)
1
3

∣
∣
∣
∣cos

t(x + y)
2

sin
t(x – y)

2

∣
∣
∣
∣

≤ t1+ 1
56 (1 – t)

1
3 |x – y|.

Therefore m(t) = t1+ 1
56 (1 – t) 1

3 . We can obtain the following: λ = 3
2+γ 3 ≈ 1.4940, 	(α) =

	( 7
3 ) ≈ 1.1960, 	(α + 1) = 	(1 + 7

3 ) ≈ 2.7907, 1+λ
	(α) ≈ 2.0853, 2λ

	(α+1) ≈ 1.0707, λ
	(α) ≈ 1.2492,

‖m‖p3 = {∫ 1
0 [t1+ 1

56 (1 – t) 1
3 ]5/4 ds}4/5 ≈ 0.3268, 1

p1
√

1–p1θ1
≈ 1.3831, 1

p2
√

1+p2(α–θ2–1)
≈ 0.9035,

1
p2
√

1+p2(α–θ2)
≈ 0.8772, ‖m‖p3

1
p1
√

1–p1θ1
[ 1+λ
	(α)

1
p2
√

1+p2(α–θ2–1)
+ 2λ

	(α+1)
1

p2
√

1+p2(α–θ2)
] ≈ 1.2762 >

1, ‖m‖p3
1

p1
√

1–p1θ1
[ λ
	(α)

1
p2
√

1+p2(α–θ2–1)
+ 2λ

	(α+1)
1

p2
√

1+p2(α–θ2)
] ≈ 0.9318 < 1.

Accordingly, conditions (H1)–(H3) and (3.4) are all satisfied for this example, which
means that this problem has at least a solution x(t) in [0, 1] by Theorem 3.2.
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Example 4.3 Consider the following fractional BVP:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cD
5
2
0+ x(t) =

5√tan t
3√t· 4√1–t

[sin(x – t) + cos(tx)], 0 < t < 1,

x(0) = x′(0) = 0,

x(1) =
∫ 1

0.4 x(τ ) dτ .

(4.3)

We have f (t, x(t)) =
5√tan t

3√t· 4√1–t
[sin(x – t) + cos(tx)], α = 5

2 , γ = 0.4. Take θ1 = 2
3 , θ2 = 2

3 . Then

t 2
3 (1 – t) 2

3 f (t, x) = 6√t 3√1 – t 5√tan t[sin(x – t) + cos(tx)] is continuous in [0, 1], and |t 2
3 (1 –

t) 2
3 f (t, x)| ≤ 2 6

√
4

27 · 10√3.
Since conditions (H1) and (3.1) are all satisfied for this example, by Theorem 3.3 this

problem has at least a solution x(t) in [0, 1].
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