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Abstract
This paper focuses on second-order differential equations involving causal operators
with nonlinear two-point boundary conditions. By applying the monotone iterative
technique in the presence of upper and lower solutions, with a new comparison
theorem, we obtain the existence of extremal solutions. This is an extension of
classical theory of second-order differential equations. Finally, we present two
examples to show the usefulness of our results.
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1 Introduction
The theory of boundary value problem (BVP) for differential equations has highly signif-
icant applications in applied science and engineering, for example, many practical prob-
lems in the fields of engineering, mechanics, astronomy, economics, and biology are usu-
ally attributed to solving boundary value problems. Readers can refer to [2, 11–13] for
details. Along this line, it is of great significance in mathematical theory and practical
applications to find solutions to differential equations with boundary conditions. In re-
cent years, driven by the theory of functional analysis and practical problems, the BVP
for second-order differential equations has developed rapidly, many authors have made a
profound study on this subject [1, 3, 10] and obtained many new research methods. One
of them is the monotone iterative technique. It is worthwhile mentioning that this tech-
nique and the method of upper and lower solutions is an effective way to demonstrate
existence results of nonlinear BVPs. There is an extensive literature on the applications
of this method in differential equations; for details, see [8, 14–16]. This paper develops
the monotone iterative technique to discuss the following second-order causal differen-
tial equation:

⎧
⎨

⎩

–u′′(s) = (Qu)(s), s ∈ J = [0, 1],

Pu(θ ) = χθ , θ = 0, 1,
(1)

where Pu(θ ) = αθ u(θ ) + (–1)θ+1βθ u′(θ ) = χθ , α0,α1 ≥ 0, β0,β1 > 0, χθ ∈ R, E = C([0, 1],R),
Q ∈ C(E, E), and Q is a causal operator.
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A causal operator is adopted from the engineering literature, it was first used by Volterra
implicitly in his work on integral equations. For more information, see [9]. In recent years,
causal differential equations have been studied widely [5, 6, 17–19]. Compared with the
traditional model, the framework of causal differential equations seems to be an excel-
lent model for the real-world problems, and has a wider range of real-time applications in
many disciplines. However, there is not so much work on second-order causal differential
equations [4, 7]. This paper extends the notion of casual operators to second-order differ-
ential equations with nonlinear boundary conditions. Now, we will provide some sufficient
conditions for the existence results of problem (1) and present two illustrative examples.

The paper is organized as follows: Sect. 2 presents a new comparison theorem while
Sect. 3 proves the existence and uniqueness of solutions to second-order linear causal
differential equations. Then, based on the monotone iterative technique, the existence of
extremal solutions to (1) is obtained. Finally, in the last section, we provide two illustrative
examples.

2 A new comparison theorem
Definition 2.1 An operator Q ∈ C(E, E) is called causal if μ(x) = ν(x), 0 ≤ x ≤ y ≤ N , N
being arbitrary, where μ,ν ∈ E, and

(Qμ)(x) = (Qν)(x), 0 ≤ x ≤ y.

Lemma 2.1 Let λ ∈ C2([0, 1],R) satisfy

⎧
⎨

⎩

λ′′(s) ≥ Z (s)λ(s) + (�λ)(s), s ∈ J = [0, 1],

Pλ(θ ) ≤ 0, θ = 0, 1,
(2)

where Z ∈ C(J , [0, +∞]), Z (s) > 0, s ∈ (0, 1), � is a positive linear operator with � ∈
C(E, E), and

∫ 1

0

(∫ 1

s

[
Z (s) + (�1)(s)

]
ds

)

ds ≤ 1, 1(s) = 1, s ∈ [0, 1]. (3)

Then λ(s) ≤ 0 for s ∈ J .

Proof Assume that λ(s) ≤ 0, s ∈ J is not true. It means that λ(s) will have a positive maxi-
mum at some s0 ∈ J , i.e., λ(s0) = maxs∈J λ(s) = L > 0.

Case 1: Suppose that λ(s) ≥ 0 for all s ∈ J .
If s0 ∈ (0, 1), then λ′′(s0) ≤ 0 and λ′(s0) = 0. Then (2) implies that 0 ≥ λ′′(s0) ≥ 	(s0)L > 0,

this is a contradiction. If s0 = 0, then we only have λ′(0) = limt→0+ λ(s)–λ(0)
s

≤ 0. How-
ever, using the boundary conditions, we obtain α0λ(0) – β0λ

′(0) ≤ 0, which implies 0 ≤
α0L = α0λ(0) ≤ β0λ

′(0) ≤ 0, and since β0 > 0, we get λ′(0) = 0. Using (2), we have λ′′(0) ≥
	(0)λ(0) + (�λ)(0) ≥ 0. That is a contradiction. A similar argument holds if s0 = 1.

Case 2: Assume that there is an s∗ satisfying λ(s∗) < 0.
If s0 = 0 or 1, utilizing the boundary conditions as before, a contradiction is also ob-

tained. If s0 ∈ (0, 1), then λ′(s0) = 0, and we set mins∈J λ(s) = –d, d > 0. Without loss of
generality, set λ(s∗) = –d.
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It yields

λ′′(s) ≥ Z (s)λ(s) + (�λ)(s) ≥ λ(s∗)
[
Z (s) + (�1)(s)

]
= –d

[
Z (s) + (�1)(s)

]
.

The latter formula is integrated from s to s0 to obtain

–λ′(s) ≥ –d
∫ s0

s

[
	(s) + (�1)(s)

]
ds.

Continuing to integrate the above formula from s∗ to s0, we get

–d > λ(s∗) – z(s0) ≥ –d
∫ s0

s∗

(∫ s0

s

[
	(s) + (�1)(s)

]
ds

)

ds.

Thus one can get

∫ 1

0

(∫ 1

s

[
Z (s) + (�1)(s)

]
ds

)

ds > 1,

which is a contradiction due to (3), and the proof is completed. �

3 Extremal solutions
In this part, the existence of extremal solutions to (1) is shown.

The function φ ∈ C2(J ,R) is called a lower solution of (1) if

–φ′′(s) ≤ (Qφ)(s), Pφ(θ ) ≤ χθ , θ = 0, 1,

and an upper solution of (1) if the reversed inequalities hold.
To demonstrate the existence of extremal solutions to (1), the corresponding linear prob-

lem is considered, given by

⎧
⎨

⎩

–ϕ′′(s) = –Z (s)ϕ(s) – (�ϕ)(s) + σδ(s), s ∈ J ,

Pϕ(θ ) = χθ , θ = 0, 1,
(4)

where σδ(s) = (Qδ)(s) + Z (s)δ(s) + (�δ)(s).

Theorem 3.1 Assume that
(H1) (3) holds with Z ∈ C(J , [0, +∞]), 	(s) > 0, s ∈ (0, 1), and � being a positive linear

operator;
(H2) φ,ψ ∈ C2(J ,R) are lower and upper solutions of problem (1), respectively, and φ ≤ ψ ;
(H3) Q ∈ C(E, E) satisfies

(Qḡ)(s) – (Qg)(s) ≥ –Z (s)
(
ḡ(s) – g(s)

)
–

(
�(ḡ – g)

)
(s),

for φ(s) ≤ g(s) ≤ ḡ(s) ≤ ψ(s), s ∈ J ;
(H4) δ ∈ C2(J ,R) and φ(s) ≤ δ(s) ≤ ψ(s), s ∈ J .

Then problem (4) has only one solution in the sector

[φ,ψ] =
{
ϕ ∈ C2(J ,R) : φ(s) ≤ ϕ(s) ≤ ψ(s), s ∈ J

}
.
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Proof We need four steps to complete the proof.
Step 1. We rewrite problem (4) in the following way:

ϕ(s) =
∫ 1

0
G(s, s)

[
Z (s)ϕ(s) + (�ϕ)(s) – σδ(s)

]
ds + ω(s), s ∈ J , (5)

where G(s, s) is the Green’s function defined by

G(s, s) =
1

β0
α0

+ β1
α1

+ 1

⎧
⎨

⎩

(s + β0
α0

)(s – 1 – β1
α1

), 0 ≤ s ≤ s≤ 1,

(s + β0
α0

)(s – 1 – β1
α1

), 0 ≤ s≤ s ≤ 1,

and ω(s) = k1s + k2 is the solution of the associated boundary value problem:

ϕ′′ = 0, Pϕ(θ ) = χθ , θ = 0, 1, (6)

where k1 = α0χ1–α1χ0
α0(α1+β1)+α1β0

and k2 = χ0(α1+β1)+χ1β0
α0(α1+β1)+α1β0

.
Apparently, if ϕ(s) ∈ C2(J ,R) is a solution of (5), we have α0ϕ(0) – β0ϕ

′(0) = χ0, α1ϕ(1) +
β1ϕ

′(1) = χ1, and ϕ′′(s) = Z (s)ϕ(s) + (�ϕ)(s) – σδ(s), so ϕ is a solution of problem (4).
Step 2. We show that problem (5) has a solution.
Notice that E is a Banach space and ‖ϕ‖ = maxs∈J |ϕ(s)|. For the purpose of using

Schauder’s fixed point theorem, we consider the right-hand side of (5) and denote it us-
ing operator P : E → E. It follows that Z (s)ϕ(s) + (�ϕ)(s) – σδ(s) is bounded on J , P is
continuous and bounded.

Moveover, let |Z (s)ϕ(s) + (�ϕ)(s) – σδ(s)| ≤ T , T > 0, and take s1, s2 ∈ J , s1 < s2. Then
we have

∣
∣(Pϕ)(s1) – (Pϕ)(s2)

∣
∣

≤
∣
∣
∣
∣

∫ 1

0

[
G(s1, s) – G(s2, s)

][
Z (s)ϕ(s) + (�ϕ)(s) – σδ(s)

]
ds

∣
∣
∣
∣ + |k1||s1 – s2|

≤ 1
β0
α0

+ β1
α1

+ 1

∣
∣
∣
∣(s1 – s2)

∫ s1

0

[
Z (s)ϕ(s) + (�ϕ)(s) – σδ(s)

]
ds

+
(

s1 +
β0

α0

)∫ s2

s1

(

s – 1 –
β1

α1

)
[
Z (s)ϕ(s) + (�ϕ)(s) – σδ(s)

]
ds

–
(

s2 – 1 –
β1

α1

)∫ s2

s1

(

s +
β0

α0

)
[
Z (s)ϕ(s) + (�ϕ)(s) – σδ(s)

]
ds

+ (s1 – s2)
∫ 1

s2

(

s – 1 –
β1

α1

)
[
Z (s)ϕ(s) + (�ϕ)(s) – σδ(s)

]
ds

∣
∣
∣
∣ + |k1||s1 – s2|

≤
(

1
4

QT + k
)

|s1 – s2|,

where Q = 1
β0
α0

+ β1
α1

+1
and k = |k1|. As s2 → s1, the right-hand side of the above inequality

tends to zero. Thus operator P is compact. It then follows from Schauder’s fixed point
theorem that P has a fixed point. Apparently, this fixed point is the solution of (4).

Step 3. We show that problem (4) has at most one solution.
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We suppose that problem (4) has two different solutions ϕ1,ϕ2 ∈ C2(J , R). Set λ = ϕ1 –ϕ2,
then λ′′(s) = Z (s)λ(s) + (�λ)(s) and Pλ(θ ) = 0, θ = 0, 1 on J . From (H1) and Lemma 2.1,
we obtain ϕ1(s) ≥ ϕ2(s), s ∈ J . Now letting λ = ϕ2 – ϕ1, we get ϕ2(s) ≥ ϕ1(s), s ∈ J , based
on Lemma 2.1. Hence ϕ1(s) = ϕ2(s), s ∈ J .

By the above steps, we obtain that problem (4) has a unique solution. Denote it as ϕ =
ϕ(s).

Step 4. We can prove ϕ ∈ [φ,ψ].
Setting λ(s) = φ(s) – ϕ(s), due to (H2), (H3), and (H4), we acquire

λ′′(s) = φ′′(s) – ϕ′′(s)

≥ –(Qv)(s) + (Qδ)(s) + Z (s)
(
δ(s) – ϕ(s)

)
+

(
�(δ – ϕ)

)
(s)

≥ Z (s)λ(s) + (�λ)(s).

Noticing Pλ(θ ) ≤ 0, θ = 0, 1, it then follows from Lemma 2.1 that φ ≤ ϕ. Analogously, we
can prove that ϕ ≤ ψ , and we have ϕ ∈ [φ,ψ]. The proof is then completed. �

Theorem 3.2 Let the assumptions (H1)–(H3) be satisfied. Then problem (1) has extremal
solutions in the sector [φ,ψ].

Proof For each δ ∈ [φ,ψ], consider the boundary value problem (4). By Theorem 3.1,
problem (4) possesses a unique solution ϕ ∈ C2(J ,R), and we define the mapping F by
Fδ = ϕ. We shall use this mapping to construct two sequences {φn}, {ψn}. For this pur-
pose, we shall prove that

(1) φ ≤Fφ, ψ ≥Fψ ;
(2) F is a monotone mapping in [φ,ψ].
In order to prove (1), set λ(s) = φ(s) – φ1(s), where φ1 = Fφ. Then we have

λ′′(s) = φ′′(s) – φ′′
1 (s)

≥ –(Qφ)(s) – Z (s)φ1(s) – (�φ1)(s) +
[
(Qφ)(s) + Z (s)φ(s) + (�φ)(s)

]

= Z (s)λ(s) + (�λ)(s), s ∈ J ,

and

α0λ(0) – β0λ
′(0) =

[
α0φ(0) – β0φ

′(0)
]

–
[
α0φ1(0) – β0φ

′
1(0)

] ≤ 0,

α1λ(1) + β1λ
′(1) =

[
α1φ(1) + β1φ

′(1)
]

–
[
α1φ1(1) + β1φ

′
1(1)

] ≤ 0.

By virtue of Lemma 2.1, one arrives at λ ≤ 0, so φ ≤ φ1. Analogously, one attains Fψ ≤ ψ .
In order to prove (2), let δ1 ≤ δ2 be such that δ1, δ2 ∈ [φ,ψ]. Assume that ϕ1 = Fδ1, ϕ2 =

Fδ2, and λ(s) = ϕ1(s) – ϕ2(s). We obtain

λ′′(s) = ϕ′′
1 (s) – ϕ′′

2 (s)

= Z (s)
(
ϕ1(s) – ϕ2(s)

)
+

(
�(ϕ1 – ϕ2)

)
(s)

+
[
(Qδ2)(s) – (Qδ1)(s) + Z (s)

(
δ2(s) – δ1(s)

)
+

(
�(δ2 – δ1)

)
(s)

]

≥ Z (s)λ(s) + (�λ)(s), s ∈ J ,
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and

α0λ(0) – β0λ
′(0) =

[
α0ϕ1(0) – β0ϕ

′
1(0)

]
–

[
α0ϕ2(0) – β0ϕ

′
2(0)

]
= 0,

α1λ(1) + β1λ
′(1) =

[
α1ϕ1(1) + β1ϕ

′
1(1)

]
–

[
α1ϕ2(1) + β1ϕ

′
2(1)

]
= 0.

In view of Lemma 2.1, we derive λ ≤ 0, which implies Fδ1 ≤Fδ2.
Now, define the sequences {φn(s)}, {ϕn(s)} by φn = Fφn–1, ψn = Fψn–1, and φ0 = φ, ψ0 =

ψ , and conclude from previous arguments that

φ0 ≤ φ1 ≤ φ2 ≤ · · · ≤ φn ≤ · · · ≤ ψn ≤ · · · ≤ ψ2 ≤ ψ1 ≤ ψ0.

By means of standard arguments, we derive that limn→∞ φn(s) = ξ (s) and limn→∞ ψn(s) =
ζ (s) uniformly and monotonically on J . It is easy to see that ξ , ζ are solutions of prob-
lem (1).

To demonstrate ξ and ζ are extremal solutions to (1), we set u be an arbitrarily solution to
(1) with φ ≤ u ≤ ψ . Suppose that for some n ∈N, φn ≤ u ≤ ψn. Employing the monotonic
nondecreasingness property of F , we acquire φn+1 = Fφn ≤ Fu = u, hence φn+1 ≤ u on J .
Analogously, we have u ≤ ψn+1 on J . Note that φ0 ≤ u ≤ ψ0, so by induction we see that
φn ≤ u ≤ ψn for every n. Taking the limit as n → ∞, one concludes ξ ≤ u ≤ ζ , and the
proof is complete. �

4 Examples
Example 4.1 Consider the problem below

⎧
⎨

⎩

–ϕ′′(s) = –sϕ(s) –
∫ s

0 sϕ(s) ds + s3 + 1
4s

4 – 2, s ∈ J = [0, 1],

ϕ(0) – ϕ′(0) = 0, ϕ(1) + ϕ′(1) = 3.
(7)

Put ρ(s) = s2 – 1, r(s) = 1 + s. We can easily check that ρ(s) ≤ r(s), and ρ(s), r(s) are also
lower and upper solutions, respectively.

Set (Qϕ)(s) = –sϕ(s) –
∫ s

0 sϕ(s) ds + s3 + 1
4s

4 – 2 and (�ϕ)(s) =
∫ s

0 sϕ(s) ds. By computing,
one achieves

(Qḡ)(s) – (Qg)(s) ≥ –s
(
ḡ(s) – g(s)

)
–

(
�(ḡ – g)

)
(s),

where ρ(s) ≤ g(s) ≤ ḡ(s) ≤ r(s) on s ∈ J , Z (s) = s.
We may easily prove that

∫ 1
0 (

∫ 1
s [Z (s) + (�1)(s)] ds) ds = 11

24 < 1. Applying Theorem 3.2,
one arrives at the existence of monotone sequences that approximate the extremal solu-
tions to (7) in [ρ, r].

Example 4.2 Consider the following problem:
⎧
⎨

⎩

–ϕ′′(s) = –A (s) cosϕ(s) – B(s) sinϕ( 1
2s) – 2

3π
(B(s) + ε)ϕ( 1

3s), s ∈ J ,

α0ϕ(0) – β0ϕ
′(0) = χ0, α1ϕ(1) + β1ϕ

′(1) = χ1.
(8)

Suppose that J = [0, 1], A ,B ∈ C(J , [0, +∞)), α0,α1 ≥ 0, β0,β1 > 0, and ε > 0 is suffi-
ciently small. Also assume that –α0 ≤ 2

3π
χ0 ≤ α0, –α1 ≤ 2

3π
χ1 ≤ α1, and

∫ 1
0 (

∫ 1
s (A (s) +

2B(s)) ds) ds ≤ 1.
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Let φ(s) = – 3π
2 , ϕ(s) = 3π

2 . It is easy to prove that φ(s) is a lower solution, ψ(s) is an upper
solution, and φ(s) ≤ ψ(s), s ∈ J .

Take (Qϕ)(s) = –A (s) cosϕ(s) – B(s) sinϕ( 1
2s) – 2

3π
(B(s) + ε)ϕ( 1

3s) and (�ϕ)(s) =
B(s) sinϕ( 1

2s) + 2
3π

(B(s) + ε)ϕ( 1
3s). By computing, one attains

(Qḡ)(s) – (Qg)(s)

= –A (s)
(
cos ḡ(s) – cos g(s)

)
– B(s)

(

sin ḡ
(

1
2
s

)

– sin g
(

1
2
s

))

–
2

3π

(
B(s) + ε

)
(

ḡ
(

1
3
s

)

– g
(

1
3
s

))

≥ –A (s)
(
ḡ(s) – g(s)

)
– B(s) sin

(

ḡ
(

1
2
s

)

– g
(

1
2
s

))

–
2

3π

(
B(s) + ε

)
(

ḡ
(

1
3
s

)

– g
(

1
3
s

))

= –Z (s)
(
ḡ(s) – g(s)

)
–

(
�(ḡ – g)

)
(s),

where φ(s) ≤ g(s) ≤ ḡ(s) ≤ ψ(s) on s ∈ J , Z (s) = A (s), and

∫ 1

0

(∫ 1

s

[
Z (s) + (�1)(s)

]
ds

)

ds < 1.

In view of Theorem 3.2, we obtain the existence of monotone sequences that approximate
the extremal solutions to (8) in [φ,ψ].
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