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Abstract
This paper aims to consider the multiplicity of solutions for a kind of boundary value
problem to a fractional quasilinear differential model with impulsive effects. By
establishing a new variational structure and overcoming the difficulties brought by
the influence of impulsive effects, some new results are acquired via the symmetry
mountain-pass theorem, which extend and enrich some previous results.
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1 Introduction
In this paper, we are concerned with the following fractional quasilinear differential model
with impulsive effects.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tDα
T (0Dα

t u(t)) + b(t)u(t) + 2u(t)|0Dα
t u(t)|2 + 2tDα

T (|u(t)|20Dα
t u(t))

= f (t, u(t)), a.e. t ∈ J ,

�(tI1–α
T (0Dα

t u(tj))) = I1j(u(tj)), j = 1, 2, . . . , m,

�(tI1–α
T (|u(tj)|20Dα

t u(tj))) = I2j(u(tj)), j = 1, 2, . . . , m,

u(0) = u(T) = 0,

(1.1)

where Dα
t and tDα

b are the left and right Riemann–Liouville fractional derivatives,
respectively, tIα

b is the right Riemann–Liouville fractional integral, f (t, u) = g(t, u) +
ζh(t)|u(t)|ν–2u(t), g ∈ C([0, T] × R,R), α ∈ ( 1

2 , 1], b, h ∈ C([0, T],R), t0 = 0 < t1 < t2 < · · · <
tm < tm+1 = T , J = [0, T] \ {t1, t2, . . . , tm}, m ∈ N, Ij ∈ C(R,R), ζ ∈ R, v ∈ [1, 2),

�
(

tI
1–α
T

(

0Dα
t u(tj)

))
= tIT

1–α
(

0Dα
t u

(
t+
j
))

– tIT
1–α

(

0Dα
t u

(
t–
j
))

,

tIT
1–α

(

0Dα
t u

(
t+
j
))

= lim
t→t+

j
tI1–α

T
(

0Dα
t u(tj)

)
,

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-022-01643-9
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-022-01643-9&domain=pdf
mailto:stfcool@126.com
http://creativecommons.org/licenses/by/4.0/


Shen and Shen Boundary Value Problems         (2022) 2022:60 Page 2 of 14
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j
tI1–α

T
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0Dα
t u(tj)

)
,

�
(

tI
1–α
T

(∣
∣u(tj)

∣
∣2

0Dα
t u(tj)

))
= tI1–α

T
(∣
∣u

(
t+
j
)∣
∣2

0Dα
t u

(
t+
j
))

– tI1–α
T

(∣
∣u

(
t–
j
)∣
∣2

0Dα
t u

(
t–
j
))

,

tIT
1–α

(∣
∣u

(
t+
j
)∣
∣2
0Dα

t u
(
t+
j
))

= lim
t→t+

j
tI1–α

T
(∣
∣u(tj)

∣
∣2
0Dα

t u(tj)
)
,

tIT
1–α

(∣
∣u

(
t–
j
)∣
∣2
0Dα

t u
(
t–
j
))

= lim
t→t–

j
tI1–α

T
(∣
∣u(tj)

∣
∣2
0Dα

t u(tj)
)
.

In fact, the idea of a fractional quasilinear differential model comes from the standing-
wave solutions (ϕ(t, x) = e–iwtu(x), w ∈R) of the following integer quasilinear Schrödinger
equation.

i∂tϕ = –∂xxϕ + V (x)ϕ – ∂xx
(|ϕ|2)ϕ – |ϕ|v–1ϕ, x ∈R, v > 1, (1.2)

which plays an important role in some research fields of physics (see [1, 2] and the refer-
ences therein). An interesting question as to whether the existence or multiplicity of so-
lutions to this fractional quasilinear differential model with suitable boundary conditions
generated by impulsive effects can be obtained naturally comes to mind. It is well known
that the impulsive differential models describe the discontinuous process and originate
from some important research fields. In recent years, critical-point theory has been suc-
cessfully applied to deal with the existence and multiplicity of solutions of boundary value
problems (BVPs for short) to differential equations with impulsive effects. Based on some
critical-point theorems, Nieto and O’Regan [3] considered the impulsive Dirichlet BVP

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(t) + λu(t) = f (t, u(t)), a.e. t ∈ J ,

�(u′(tj)) = Ij(u(tj)), j = 1, 2, . . . , m,

u(0) = u(T) = 0

(1.3)

and obtained some existence results. Subsequently, more and more scholars have paid
attention to this problem, such as Sun and Chen [4], Zhou and Li [5], Zhang and Yuan [6],
etc. Moreover, for the case of impulsive BVPs with p-Laplacian operator, one can refer to
[7, 8] and references therein.

On the other hand, recently, Jiao and Zhou [9] proved that under the Dirichlet boundary
condition u(0) = u(T) = 0, the operator c

t Dα
T 0Dα

t has a variational structure. Also, by the
mountain-pass theorem, the existence of solutions to the following systems was obtained
under the Ambrosetti–Rabinowitz condition:

⎧
⎨

⎩

tDα
T (0Dα

t u(t)) = ∇F(t, u(t)), a.e. t ∈ [0, T],

u(0) = u(T) = 0,
(1.4)

where α ∈ ( 1
2 , 1]. After that, Bonanno, Rodríguez-López and Tersian [10] discussed the ex-

istence of three solutions to the following problem with impulsive effects and parameters:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (c

0Dα
t u(t)) + a(t)u(t) = λf (t, u(t)), a.e. t ∈ J

�(tI1–α
T (c

0Dα
t u(tj))) = μIj(u(tj)), j = 1, 2, . . . , m,

u(0) = u(T) = 0,

(1.5)
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where α ∈ ( 1
2 , 1]. Nyamoradi and Rodríguez-López [11] extended the scalar model of (1.5)

to the case of Hamiltonian systems and obtained the multiplicity of solutions by the vari-
ant Fountain theorems. Moreover, by the gene property and the mountain-pass theorem,
Ledesma and Nyamoradi [12] investigated the eigenvalue problem tDα

Tφp(0Dα
t u) = λφp(u)

with the Dirichlet boundary conditions u(0) = u(T) = 0 and obtained the existence of solu-
tions to the Dirichlet boundary problem of a fractional p-Laplacian equation with impul-
sive effects. Liu, Wang and Shen [13] extended the results of [12] to the case of combined
nonlinearity. Furthermore, for the Dirichlet BVPs and other BVPs of fractional differen-
tial equations with or without impulsive effects, one can refer to [14–21] and references
therein.

Motivated by the works mentioned above, we are concerned with the multiplicity of
solutions to the fractional quasilinear differential model with impulsive effects (1.1). Let
us present our paper’s contribution: To begin with, the variational structure of (1.1) is
established, which makes the critical-point theory applicable to discuss the existence and
multiplicity of solutions to this problem. Moreover, the impulsive effects produced by the
quasilinear term u|0Dα

t u|2 + tDα
T (|u|20Dα

t u) are more complex than the case of c
t Dα

T (0Dα
t u),

which make this problem challenging. Furthermore, there are few papers considering this
problem.

In order to describe our main conclusion, the following assumptions are presented:
(I1) For any t ∈R, I1j(t) and I2j(t) are odd on t and

∫ t

0

(
I1j(s) + I2j(s)

)
ds ≥ 0.

(I2) There exist constants a1j, a2j, d1j, d2j > 0 such that

∣
∣I1j(t)

∣
∣ ≤ a1j + d1j|t|γ1j for any t ∈R,γ1j ∈ [0, 1),

∣
∣I2j(t)

∣
∣ ≤ a2j + d2j|t|γ2j for any t ∈R,γ2j ∈ [2, 3).

(I3) For any t ∈R, I1j(t) and I2j(t) satisfy

θ

∫ t

0

(
I1j(s) + I2j(s)

)
ds –

(
I1j(t) + I2j(t)

)
t ≥ 0,

where θ ≥ 4 is a constant.
(G1) lim|u|→+∞ G(t,u)

|u|4 = +∞ uniformly for t ∈ [0, T].
(G2) There exist constants M1 > 0, L1 > 0 such that for t ∈ [0, T], |u| ≥ L1,

ug(t, u) – θG(t, u) ≥ –M1|u|2.

(G3) There exist constants M2 > 0, L2 > 0, μ > θ such that for t ∈ [0, T], |u| ≥ L2,

G(t, u) ≤ M2|u|μ.

(G4) g(t, u) = o(|u|) as |u| → 0 uniformly for t ∈ [0, T].
(G5) g(t, u) is odd on u.

Now, we state our main results.
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Theorem 1.1 Assuming that the conditions (I1)–(I3) and (G1)–(G5) are satisfied, there
exists a constant ζ∗ > 0 such that the problem (1.1) has infinitely many nontrivial weak
solutions, provided that ζ ∈ [0, ζ∗).

Remark 1.2 It should be pointed out that if ζ = 0, the condition (G3) can be re-
moved. Moreover, the conditions (G1) and (G2) are weaker than the following classical
Ambrosetti–Rabinowitz condition:

0 < θG(t, u) ≤ ug(t, u), θ > 4, u ∈R \ {0}.

Remark 1.3 If α = 1, the quasilinear term 2u|0Dα
t u|2 +2tDα

T (|u|20Dα
t u) is equal to –(|u|2)′′u.

Moreover, I2j(u) = |u|2I1j(u).

Corollary 1.4 If the assumptions (I2) and (G1) in Theorem 1.1 are replaced by
(I2)∗ there exist constants a1j, a2j, d1j, d2j > 0 such that

∣
∣I1j(t)

∣
∣ ≤ a1j + d1j|t|γ1j for any t ∈R,γ1j ∈ [0, θ – 3),

∣
∣I2j(t)

∣
∣ ≤ a2j + d2j|t|γ2j for any t ∈R,γ2j ∈ [2, θ – 1).

(G1)∗ lim|u|→+∞ F(t,u)
|u|θ = +∞ uniformly for t ∈ [0, T].

Then, the conclusion of Theorem 1.1 is also true.

Remark 1.5 It should be pointed out that the impulsive nonlinearity I1j could be superlin-
ear growth when θ > 4.

2 Preliminaries
Set C := C([0, T],R) with norm ‖u‖∞ = maxt∈[0,T] |u(t)| and Lp := Lp([0, T],R) with norm
‖u‖Lp = (

∫ T
0 |u(t)|p dt)

1
p . For the definitions of fractional integrals and derivatives relating

to the well-known left and right Riemann–Liouville and Caputo, one can refer to refer-
ences [22, 23]. Next, some of the necessary results and properties will be presented. Define
the Sobolev space

Eα
0 =

{
u : [0, T] → R | u, 0Dα

t u ∈ L2, u(0) = u(T) = 0
}

by C∞
0 ([0, T],R)

‖·‖α , where ‖ · ‖α = 〈·, ·〉 1
2 ,

〈u, v〉 =
∫ T

0

((
u(t)v(t) + 0Dα

t u(t)0Dα
t v(t)

)
dt.

Let

P(u) =
1
2
‖u‖2

α –
1
2

∫ T

0

(
1 – b(t)

)
u2(t) dt.

By the method of [24], the space Eα
0 can be decomposed as follows. In fact, based on the

Riesz representation theorem, we can find a linear self-adjoint operator Q : Eα
0 → Eα

0 such
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that

〈Qu, v〉 =
∫ T

0

(
1 – b(t)

)
u(t)v(t) dt for u, v ∈ Eα

0 ,

which implies that

P(u) =
1
2
〈
(I – Q)u, u

〉
.

Noting that the embedding Eα
0 ↪→ C is compact (see [9]), it implies that Q is compact. In

view of the well-known compact operator’s spectral theory, for the operator I – Q, we can
decompose the Sobolev space Eα

0 into the orthogonal sum of invariant subspaces as

Eα
0 = E– ⊕ E0 ⊕ E+,

where E– and E+ are negative and positive spectral subspaces corresponding to the oper-
ator I – Q, E0 = N(I – Q). Moreover, letting  = {1, 2, . . . , ι} with ι ∈ N, Q possesses only
finitely many eigenvalues {λi}i∈ satisfying λi > 1 because Q is compact on Eα

0 , which im-
plies that the dimension of subspace E– is finite. By the classical self-adjoint operator the-
ory, for I – Q that can be viewed as a compact perturbation relating to the self-adjoint
operator I , it is clear that 0 is excluded in the essential spectrum of I – Q. Thus, the di-
mension of subspace E0 is also finite. Furthermore, there exists a positive constant κ such
that

±P(u) ≥ κ‖u‖2
α , u ∈ E±. (2.1)

Lemma 2.1 ([22, 23]) Let n ∈ N and n – 1 < α < n. If u is a function defined on [a, b] for
which the Caputo fractional derivatives c

aDα
t u(t) and c

t Dα
b u(t) of order α exist together with

the Riemann–Liouville fractional derivatives aDα
t u(t) and tDα

b u(t), then

c
aDα

t u(t) = aDα
t u(t) –

n–1∑

j=0

uj(a)
�(j – α + 1)

(t – a)j–α , t ∈ [a, b], (2.2)

c
t Dα

b u(t) = tDα
b u(t) –

n–1∑

j=0

uj(b)
�(j – α + 1)

(b – t)j–α , t ∈ [a, b]. (2.3)

Remark 2.2 From (2.2) and (2.3), one has c
0Dα

t u(t) = 0Dα
t u(t), c

t Dα
T u(t) = tDα

T u(t), t ∈ [0, T]
by u(0) = u(T) = 0.

Proposition 2.3 ([23]) The following property of fractional integration

∫ b

a

[

aIα
t f (t)

]
g(t) dt =

∫ b

a

[

tI
α
b g(t)

]
f (t) dt, α > 0

holds, provided that u ∈ Lp([a, b],RN ), g ∈ Lq([a, b],RN ) and p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1 +α

or p �= 1, q �= 1, 1/p + 1/q = 1 + α, where aIα
t and tIα

b are the left and right Riemann–Liouville
fractional integrals, respectively.
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Lemma 2.4 ([9]) Let 0 < α ≤ 1. If u ∈ Eα
0 , one has

‖u‖L2 ≤ Sα

∥
∥0Dα

t u
∥
∥

L2 , (2.4)

where Sα = Tα

�(α+1) . Moreover, if α > 1
2 , then

‖u‖∞ ≤ S∞‖0Dα
t u‖L2 , (2.5)

where S∞ = Tα–1/2

�(α)(2(α–1)+1)1/2 . Based on (2.4), clearly, the norm of Eα
0 is equivalent to ‖0Dα

t u‖L2 .

Proposition 2.5 ([9]) Let 0 < α ≤ 1. Assume that α > 1
2 and the sequence un converges

weakly to u in Eα
0 , i.e., un ⇀ u. Then, un → u in C, i.e., ‖un – u‖∞ → 0, n → +∞.

If u ∈ Eα
0 is a solution of the problem (1.1), for v ∈ Eα

0 , based on Lemma 2.1 and Propo-
sition 2.3, it implies that

∫ T

0
tDα

T
(∣
∣u(t)

∣
∣2

0Dα
t u(t)

)
v(t) dt

= –
m∑

j=0

∫ tj+1

tj

v(t) d
[

tI1–α
T

(∣
∣u(t)

∣
∣2

0Dα
t u(t)

)]

–
m∑

j=0
tI1–α

T
(∣
∣u(t)

∣
∣2

0Dα
t u(t)

)
v(t)|t

–
j+1

t+
j

+
m∑

j=0

∫ tj+1

tj

∣
∣u(t)

∣
∣2

0Dα
t u(t)0Dα

t v(t) dt

=
m∑

j=1

(
tI1–α

T
(∣
∣u

(
t+
j
)∣
∣2

0Dα
t u

(
t+
j
))

v(tj) – tI1–α
T

(∣
∣u

(
t–
j
)∣
∣2

0Dα
t u

(
t–
j
))

v(tj)
)

+
∫ T

0

∣
∣u(t)

∣
∣2

0Dα
t u(t)0Dα

t v(t) dt

=
m∑

j=1

I2j
(
u(tj)

)
v(tj) +

∫ T

0

∣
∣u(t)

∣
∣2

0Dα
t u(t)0Dα

t v(t) dt.

Similarly, one has

∫ T

0
tDα

T
(

0Dα
t u(t)

)
v(t) dt =

m∑

j=1

I1j
(
u(tj)

)
v(tj) +

∫ T

0
0Dα

t u(t)0Dα
t v(t) dt.

As a conclusion, the definition of a weak solution is shown as follows.

Definition 2.6 A function u ∈ Eα
0 is a weak solution of problem (1.1) if

∫ T

0
0Dα

t u(t)0Dα
t v(t) dt +

∫ T

0
b(t)u(t)v(t) dt +

∫ T

0
2
∣
∣0Dα

t u(t)
∣
∣2u(t)v(t) dt

+
∫ T

0
2
∣
∣u(t)

∣
∣2

0Dα
t u(t)0Dα

t v(t) dt +
m∑

j=1

(
I1j

(
u(tj)

)
+ I2j

(
u(tj)

))
v(tj)

=
∫ T

0
f
(
t, u(t)

)
v(t) dt

holds for any v ∈ Eα
0 .
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Define the functional � : Eα
0 →R by

�(u) =
1
2

∫ T

0

∣
∣0Dα

t u(t)
∣
∣2 dt +

1
2

∫ T

0
b(t)

∣
∣u(t)

∣
∣2 dt +

m∑

j=1

∫ u(tj)

0

(
I1j(t) + I2j(t)

)
dt

+
∫ T

0

∣
∣0Dα

t u(t)
∣
∣2∣∣u(t)

∣
∣2 dt –

∫ T

0
G

(
t, u(t)

)
dt –

ζ

ν

∫ T

0
h(t)

∣
∣u(t)

∣
∣ν dt,

where G(t, u) =
∫ u

0 g(t, s) ds. Since g , I1j and I2j are continuous, by the standard arguments,
one can obtain that �(u) ∈ C1(Eα

0 ,R). Moreover, it is clear that the critical points of �(u)
are weak solutions of the problem (1.1).

Lemma 2.7 ([25]) Let E be a Banach space and � ∈ C1(E,R) be even with �(0) = 0.
Assume that E = V ⊕ X, where V is finite-dimensional. Moreover, � satisfies the (PS)-
condition and the following conditions.

(i) There exist constants ρ,σ > 0 such that � |∂Bρ∩X≥ σ .
(ii) For each finite-dimensional subspace X̃ ⊂ E, there exists an l = l(X̃) such that � ≤ 0

on X̃ \ Bl .
Then, � has an unbounded sequence of critical values.

3 Main results
In order to prove our main conclusions, we need the following lemmas. First, in Eα

0 , let
V = E– ⊕ E0 and X = E+, then the dimension of subspace V is finite and Eα

0 = V ⊕ X.

Lemma 3.1 Assuming that the conditions (I1), (G3), and (G4) are satisfied, we can find
constants ρ,σ , ζ ∗ > 0 such that �|∂Bρ∩X ≥ σ , provided that ζ ∈ [0, ζ ∗).

Proof Based on (G3) and (G4), for any ε > 0, we can find a constant cε such that for t ∈
[0, T],

G(t, u) ≤ ε|u|2 + cε|u|μ, (3.1)

which shows that

∫ T

0
G(t, u) dt ≤ ε

∫ T

0
|u|2 dt + cε

∫ T

0
|u|μ dt

≤ εTS2
∞‖u‖2

α + cεTSμ
∞‖u‖μ

α .

Hence, for u ∈ Eα
0 , by (I1), one has

�(u) ≥ κ‖u‖2
α +

m∑

j=1

∫ u(tj)

0

(
I1j(t) + I2j(t)

)
dt +

∫ T

0

∣
∣0Dα

t u(t)
∣
∣2∣∣u(t)

∣
∣2 dt

–
∫ T

0
G

(
t, u(t)

)
dt –

ζ

ν

∫ T

0
h(t)

∣
∣u(t)

∣
∣ν dt

≥ κ‖u‖2
α –

∫ T

0
G

(
t, u(t)

)
dt –

ζ

ν

∫ T

0
h(t)

∣
∣u(t)

∣
∣ν dt
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≥ ‖u‖ν
α

(
(
κ – εTS2

∞
)‖u‖2–ν

α – cεTSμ
∞‖u‖μ–ν

α –
ζ

ν
TSv

∞‖h‖L1

)

.

Letting ε = ζ

2TS2∞
, leads to

�(u) ≥ ‖u‖ν
α

(
κ

2
‖u‖2–ν

α – cεTSμ
∞‖u‖μ–ν

α –
ζ

ν
TSv

∞‖h‖L1

)

.

Set

y(t) =
κ

2
t2–ν – cεTSμ

∞tμ–ν , t ≥ 0.

Clearly, there exists a ρ = [ κ(2–ν)
2cεTSμ∞(μ–ν) ]

1
μ–2 such that

y(ρ) = max
t≥0

y(t) =
κ(μ – 2)
2(μ – ν)

[
κ(2 – ν)

2cεTSμ∞(μ – ν)

] 2–ν
μ–2

> 0.

Therefore, we can find

ζ ∗ =
νκ(μ – 2)

TSv∞(μ – ν)‖h‖L1

[
κ(2 – ν)

2cεTSμ∞(μ – ν)

] 2–ν
μ–2

.

If ζ ∈ [0, ζ ∗), there exists a constant σ > 0 such that �|X∩∂Bρ ≥ σ . �

Lemma 3.2 If the conditions (I2) and (G1) are satisfied, there exists a constant l > 0 such
that for each finite-dimensional subspace X̃ ⊂ Eα

0 , �(u) ≤ 0, ∀u ∈ X̃\Bl , provided that ζ ∈
[0, +∞).

Proof Actually, for ζ ∈ [0, +∞), the key point is to prove that �(u) is anticoercive, i.e.,

�(u) → –∞ as ‖u‖α → +∞ for u ∈ X̃. (3.2)

If not, let the sequence {un} ⊂ X̃ and τ ∈R such that

�(un) ≥ τ when ‖un‖α → +∞ as n → +∞. (3.3)

Setting ωn = un
‖un‖α

, then ‖ωn‖α = 1. Since dim X̃ < ∞, we can find a subsequence of {ωn}
(named again {ωn}) such that ωn → ω in Eα

0 , which implies ‖ω‖α = 1. From ω �= 0, one has
|un(t)| → +∞ as n → +∞. Define

W (t, u) = G(t, u) +
ζ

ν
h(t)|u|ν –

1
2

b(t)|u|2.

In view of (G1), it follows that for any t ∈ [0, T],

lim|u|→+∞
W (t, u)

|u|4 = +∞. (3.4)
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Moreover, by a standard measure estimation on a finite-dimensional space (see [4]), it
follows that there exists a positive constant ε > 0 such that

meas
{

t ∈ [0, T] :
∣
∣u(t)

∣
∣ ≥ ε‖u‖α

} ≥ ε for u ∈ X̃ \ {0}. (3.5)

Let  = {t ∈ [0, T] : |u(t)| ≥ ε‖u‖α}. Based on (3.4), it means that for 2S2∞
ε4 > 0, there exists

η > 0 such that

W (t, u) ≥ 2S2∞
ε4 |u|4 for |u| ≥ η. (3.6)

Hence, for u ∈ X̃ with ‖u‖α ≥ η

ε
, we can obtain that

W (t, u) ≥ 2S2
∞‖u‖4

α for t ∈ . (3.7)

Let ‖un‖α ≥ η

ε
for n large enough. From (I2), one has

�(u) =
1
2

∫ T

0

∣
∣0Dα

t un(t)
∣
∣2 dt +

m∑

j=1

∫ un(tj)

0

(
I1j(t) + I2j(t)

)
dt

+
∫ T

0

∣
∣0Dα

t un(t)
∣
∣2∣∣un(t)

∣
∣2 dt

–
∫ T

0
W

(
t, un(t)

)
dt

≤ 1
2
‖un‖2

α +
m∑

j=1

a1jS∞‖un‖α +
m∑

j=1

a2jS∞‖un‖α +
m∑

j=1

d1jS
γ1j+1
∞ ‖un‖γ1j+1

α

+
m∑

j=1

d2jS
γ2j+1
∞ ‖un‖γ2j+1

α + S2
∞‖un‖4

α –
∫ T

0
W

(
t, u(t)

)
dt

= ‖un‖4
α

(
1

2‖un‖2
α

+
m∑

j=1

a1jS∞
1

‖un‖3
α

+
m∑

j=1

a2jS∞
1

‖un‖3
α

+
m∑

j=1

d1jS
γ1j+1
∞

1

‖un‖3–γ1j
α

+
m∑

j=1

d2jS
γ2j+1
∞

1

‖un‖3–γj
α

+ S2
∞ –

∫ T

0

W (t, un)
‖un‖4

α

dt

)

≤ ‖un‖4
α

(
1

2‖un‖2
α

+
m∑

j=1

a1jS∞
1

‖un‖3
α

+
m∑

j=1

a2jS∞
1

‖un‖3
α

+
m∑

j=1

d1jS
γ1j+1
∞

1

‖un‖3–γ1j
α

+
m∑

j=1

d2jS
γ2j+1
∞

1

‖un‖3–γj
α

+ S2
∞ –

∫



W (t, un)
‖un‖4

α

dt

)

→ –∞ if ‖un‖α → +∞ as n → +∞,
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which is in contradiction to (3.3). Hence, �(u) is anticoercive. Therefore, there exists a
constant l > 0 such that �(u) ≤ 0, ∀u ∈ X̃\Bl for ζ ∈ [0, +∞). �

Lemma 3.3 If the assumptions (I2), (I3), (G1), (G2), and (G4) are satisfied, �(u) meets the
(PS)-condition, provided that ζ ∈ [0, +∞).

Proof Let {un} ⊂ Eα
0 such that �(un) is bounded and �′(un) → 0 as n → +∞, which im-

plies that there exists a constant β > 0 such that

∣
∣�(un)

∣
∣ ≤ β ,

∥
∥�′(un)

∥
∥

(Eα
0 )∗ ≤ β .

We claim that the sequence {un} is bounded. If not, let ‖un‖ → +∞ as n → +∞. Setting
ωn = un

‖un‖α
, it follows that ωn is bounded in Eα

0 . Noting that Eα
0 is a reflexive Banach space,

it implies that {ωn} has a convergent subsequence (named again {ωn}) such that ωn ⇀ ω

in Eα
0 and ωn → ω uniformly in C.

In view of (I2), one has

∫ T

0
W

(
t, un(t)

)
dt =

1
2

∫ T

0

∣
∣0Dα

t un(t)
∣
∣2 dt +

m∑

j=1

∫ un(tj)

0

(
I1j(t) + I2j(t)

)
dt

+
∫ T

0

∣
∣0Dα

t un(t)
∣
∣2∣∣un(t)

∣
∣2 dt – �(un)

≤ 1
2
‖un‖2

α +
m∑

j=1

a1jS∞‖un‖α +
m∑

j=1

a2jS∞‖un‖α

+
m∑

j=1

d1jS
γ1j+1
∞ ‖un‖γ1j+1

α

+
m∑

j=1

d2jS
γ2j+1
∞ ‖un‖γ2j+1

α + S2
∞‖un‖4

α + β ,

which shows that for n large enough,

∫ T

0

W (t, un)
‖un‖4

α

dt ≤ S2
∞ + o(1). (3.8)

Based on the continuity of g , we can find a constant ϑ1 > 0 such that

∣
∣ug(t, u) – θG(t, u)

∣
∣ ≤ ϑ1 for |u| ≤ L1, t ∈ [0, T],

which together with (G2) yields

ug(t, u) – θG(t, u) ≥ –M1|u|2 – ϑ1 for |u| ∈R, t ∈ [0, T]. (3.9)

In view of (I3) and (3.9), we have

θβ + β‖un‖α ≥ θ�(un) –
〈
�′(un), un

〉
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=
(

θ

2
– 1

)

‖un‖2
α + (θ – 4)

∫ T

0

∣
∣0Dα

t un(t)
∣
∣2∣∣un(t)

∣
∣2 dt

+
(

θ

2
– 1

)∫ T

0
b(t)u2

n(t) dt

+ θ

m∑

j=1

∫ un(tj)

0

(
I1j(t) + I2j(t)

)
dt –

m∑

j=1

(
I1j

(
un(tj)

)
+ I1j

(
un(tj)

))
un(tj)

+
∫ T

0

(
un(t)g

(
t, un(t)

)
– θG

(
t, un(t)

))
dt – ζ

θ – ν

ν

∫ T

0
h(t)

∣
∣un(t)

∣
∣ν dt

≥
(

θ

2
– 1

)

‖un‖2
α +

∫ T

0

(
un(t)g

(
t, un(t)

)
– θG

(
t, un(t)

))
dt

+
(

θ

2
– 1

)∫ T

0
b(t)u2

n(t) dt – ζ
θ – ν

ν

∫ T

0
h(t)

∣
∣un(t)

∣
∣ν dt

≥
(

θ

2
– 1

)

‖un‖2
α –

(

M1T +
(

θ

2
– 1

)

‖b‖L1

)

‖un‖2
∞

– ζ
θ – ν

ν
Sν

∞‖h‖L1‖un‖ν
α – ϑ1T ,

which means that there exists a positive constant ϑ2 such that

lim
n→+∞‖ωn‖∞ = lim

n→+∞
‖un‖∞
‖un‖α

≥ ϑ2 > 0.

Therefore, we can obtain ω �= 0. Define

�1 =
{

t ∈ [0, T] : ω �= 0
}

, �2 = [0, T] \ �1.

In view of (G1), there exists a constant ϑ3 > 0 such that G(t, u) ≥ 0, fort ∈ [0, T], |u| ≥ ϑ3,
which together with (G4) yields that there exist constants ϑ4,ϑ5 > 0 such that

G(t, u) ≥ –ϑ4u2 – ϑ5 for t ∈ [0, T], u ∈ R.

Based on Fatou’s lemma, it follows that

lim inf
n→+∞

∫

�2

G(t, un)
‖un‖4

α

dt > –∞.

By (G1), for t ∈ [0, T], we can obtain that

lim inf
n→+∞

∫ T

0

G(t, un)
‖un‖4

α

dt

= lim inf
n→+∞

(∫

�1

G(t, un)
|un|4 |ωn|4 dt +

∫

�2

G(t, un)
|un|4 |ωn|4 dt

)

→ +∞, (3.10)

which is in contradiction to (3.8). Thus, {un} is bounded, which implies that {un} possesses
a convergent subsequence (named again {un}) such that un = u+

n + u–
n + u0

n ⇀ u = u+ +
u– + u0 and u+

n ⇀ u+ in Eα
0 . Moreover, un → u and u+

n → u+ uniformly in C. It should be
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mentioned that the dimensions of subspaces E– and E0 are finite. Hence, u–
n → u– and

u0
n → u0 in Eα

0 . Furthermore, if n → +∞, one has

〈
�′(un) – �′(u), u+

n – u+〉 → 0,
∫ T

0
b(t)

(
un(t) – u(t)

)(
u+

n(t) – u+(t)
)

dt → 0,

m∑

j=1

(
I1j

(
un(tj)

)
– I1j

(
u(tj)

))(
u+

n(tj) – u+(tj)
) → 0,

m∑

j=1

(
I2j

(
un(tj)

)
– I2j

(
u(tj)

))(
u+

n(tj) – u+(tj)
) → 0,

∫ T

0

(
f
(
t, un(t)

)
– f

(
t, u(t)

))(
u+

n(t) – u+(t)
)

dt → 0,

∫ T

0

(∣
∣0Dα

t un(t)
∣
∣2un(t) –

∣
∣0Dα

t u(t)
∣
∣2u(t)

)(
u+

n(t) – u+(t)
)

dt → 0

and
∫ T

0

(∣
∣un(t)

∣
∣2

0Dα
t un(t) –

∣
∣u(t)

∣
∣2

0Dα
t u(t)

)(
0Dα

t u+
n(t) – 0Dα

t u+(t)
)

dt

=
∫ T

0

((∣
∣un(t)

∣
∣2 –

∣
∣u(t)

∣
∣2)

0Dα
t un(t) –

∣
∣u(t)

∣
∣2(

0Dα
t un(t) – 0Dα

t u(t)
))

× (
0Dα

t u+
n(t) – 0Dα

t u+(t)
)

dt

=
∫ T

0

∣
∣u(t)

∣
∣2∣∣0Dα

t u+
n(t) – 0Dα

t u+(t))
∣
∣2 dt + o(1),

which implies that

〈
�′(un) – �′(u), u+

n – u+〉 → 0

=
∫ T

0

∣
∣0Dα

t u+
n(t) – 0Dα

t u+(t)
∣
∣2 dt +

∫ T

0

∣
∣u(t)

∣
∣2∣∣0Dα

t u+
n(t) – 0Dα

t u+(t)
∣
∣2 dt + o(1).

Since the norm of Eα
0 is equivalent to ‖0Dα

t u‖L2 , it is clear that u+
n → u+ in Eα

0 . Thus, un → u
in Eα

0 . Therefore, �(u) satisfies the (PS)-condition. �

Proof of Theorem 1.1 From Lemma 3.1, Lemma 3.2, and Lemma 3.3, Theorem 1.1 can be
proven immediately by Lemma 2.7. �

Proof of Corollary 1.4 The proof is similar to Theorem 1.1. Therefore, we omit the de-
tail. �

4 Conclusions
By establishing a new variational structure and overcoming the difficulties brought by
the influence of impulsive effects, the multiplicity of solutions for a kind of boundary
value problem to a fractional quasilinear differential model with impulsive effects is ob-
tained, which extend and enrich some previous results. Moreover, the impulsive effects
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produced by the quasilinear term u|0Dα
t u|2 + tDα

T (|u|20Dα
t u) are more complex than the

case of c
t Dα

T (0Dα
t u), which makes this problem challenging. Furthermore, there are few

papers that consider this problem.
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