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with b, 07 € C([tg, 00),[0,00)) such that oy(t) < t and lim_ s 0)(t) =00, /=1,2,...,m.
The obtained results are applicable for the nonmonotone delay case. Their strength is
supported by a detailed practical example.
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1 Introduction

Consider the first-order differential equation with several delays of the form

X6+ Y bi(t)x(ot) =0, t>1, (1.1)

=1

with by, 0; € C([ty, 00), [0, 00)) such that oy(¢) < ¢ and lim,_, o 0y(£) = 00, [ = 1,2,...,m.

Let ¢_; be a real number defined by £_; = min; <;<,,{infi>¢, 01(£)}. A function x(¢) is called
a solution of Eq. (1.1) if » € C([t_1,00),R) is continuously differentiable on [ty, c0) and
satisfies Eq. (1.1) for all £ > #,. If x(¢) has arbitrary large zeros, then it is said to be oscillatory.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory; otherwise, it is
nonoscillatory.

Oscillation and delay phenomena appear in various models from real-world applica-
tions; see, e.g., [30, 31] for models from mathematical biology, where oscillation and/or
delay actions may be formulated by means of cross-diffusion terms. In particular, the oscil-
lation of first-order delay differential equations has numerous applications in the analysis
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of higher-order differential equations with deviating arguments (e.g., we can investigate
the oscillation and asymptotic behavior of higher-order differential equations with devi-
ating arguments by relating the oscillation of these equations to that of associated first-
order delay differential equations); see, e.g., [16, 22, 28, 32] for more detail. Indeed, the
oscillation of first-order delay differential equations has attracted the attention of many
mathematicians; see [1-15, 17-21, 23-27, 29, 33—42] and the references therein.

Note that most known criteria require the delays to be nondecreasing, although in many
situations, relaxation of the monotonicity of the delay is required for some equations to
be more realistic; see [13]. Indeed, the nonmonotonicity of the delay adds difficulties to
the problem. As a result, some known criteria for the monotonic case fail to extend to
the nonmonotone one; see Braverman and Karpuz [9]. This motivates us to investigate
the oscillation of Eq. (1.1) without restricting the monotonic behavior of the delays. Our
focus will be only on the lim sup-type conditions in the product form. Next, we give a brief

summary of these criteria. First, we introduce the following important notation:

1
e)

t
{,,lzliminf/ b(u)du, ¢ <
t>o0 Jo

t

> biwdu, & < L
e

7(£) =1

¢ m
1
’ = liminf/ b(uw)du, ¢=<-,
=00 Omax (t) Z €

=1

¢y = liminf /
t—00 o

—_

t
N = liminf/ b(uw)du, n<-,
¢

t—00 [(t) e

and

t
1
= liminf bi(u) du, < -,
n HOO/ME 1(1) n=

=1

where 7,/ =1,2,...,m, and ¢;(¢) and ¢(¢) are nondecreasing continuous functions such
that

o(t) <@it), and @(&) <), t>t,6 >1t,1=1,2,...,m,
and

Omax () = lrgi)jnol(t) and 6,(t)= sup oy(u), [=1,2,...,m,t>t,. (1.2)

tysu=<t

Furthermore, the number A(«) is defined as the smaller real root of the equation e** = z,
and the number Q(«) is defined by

l-a—-+1-20—a?
Qla) = 5 , 0<a<

@ | =
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The first work in our summary of oscillation criteria is due to Infante et al. [24]. They

obtained the following two criteria:

1
</7r1 by f(,l (wy) 21 =120 (uz)duzd m 1
hmsupl ||:1_[/ b, (u)e Jory @ Z’ 1 bite)e “Cdul > — (1.3)
m
or(t

t=oo r=1Lr=1
and
m 0] z
t ory (& b 4 m 1
lim sup hmsupl_[ l_[/ by, (u)e elon w ZL1GEL-bilu duy. >—, (1.4)
€—>0* (=00 3 r1=1 or(t) m"

where ¢;;>0,[=1,2,...,m
Koplatadze [25] established the following three conditions:

6-1>% and llmsupn[ﬁ/t /{;1 (Hbrz(ul)) duldu:|m>0: (1.5)

t=oo ri=1 er(®) ro=1

where d = liminf, .o Y77 [2 ([T by ()7 du,

1
Ryt [(5)p—— b Ld m
11msup1_[|:l_[/ by, we™ @)=€) fg, ) [Ty bra (1)) iy du:|

t=oo G ri=1 or(®)
1 m
_ Hr=1 Q(nr)’ (1.6)
m" m"

where 0 < d < %, € € (0,A(d)), and finally

1

]—[/ M)emf:;rll(u) l_[r2 1br2(u1))MYl(u1)du1 dui| "

r=1 or(t

lim sup 1_[ |:

t—00 r=1

1 HZ] Qnr)
P (7
m t m % A
where Yy (£) = 0 and Y;(¢) = eZIZI fo’l([)(l_[y:‘l by(u)) "fz—l(u)du’ P23
Attia et al. [4] introduced the condition

limsup(l_[(H /t er(u)du) [1- ’;Q(nr) S X by u)du)

t=o0 r=1 \ri=1 er(®)

1
> W’ (18)
where
Pry
bry (u1) di A()— m b d
er(u)_efwl ) 2rg=1 bry (u1) ulz by, () brl(ul)e( (n)-€ )/(,,2 231 5 (1) duy du,

rp=1 ory ()

withn>0,e €(0,A(n)),andr; =1,2,...,m
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Bereketoglu et al. [7] defined the sequence {®(¢)},>0 by

o(®) = m(]_[ bn(t)> :

ri=1
‘Dz(t)=2bll(t)|:1+m<n/ by(w)elorto ¥1 () dum) } (=12,
h=1 r=1 w’l(t)
and obtained the condition
()<I> (u1)du % 1 “
llmsupl—[|:l_[/ b, (u)e “’2“’ o 1du:| >—m<1—1_[Q(n,)>. (1.9)
t=oo h=1Ll=1 ‘pll() m r=1

Moremedi et al. [33] established the criterion

1

Y Nndn [T 1 “
brl(u) (771(14 y Aelur)d lduj| . = I_HQ(nr) , (1.10)

s /1

=00 r=1Lr=1 @r(®)
where Ag(¢) = Y%, bi(¢) and
ful(ul)f\zfl(uz)duz

¢ "M by (up)e L
Ag(t) = Zhl(t)|:1+ X:bh(bt)ef"h(’”zlzz1 I (r)e 2

@i(t) h=1

du
1dbt:|, £ eN.

Attia and El-Morshedy [5] improved (1.3) and (1.7) with i = 3 and obtained the criterion

t—00

m 1_% m m m 1_% l
lim sup (m (]‘[ Q(m)) Y zZiy+ Yy m (]‘[ Q(ml)) ]‘[z,(t)>
r=1 =1 =2 r=1

=1
m
>1-TTewm), (1.11)
r=1
where
moo G0 [ 1y Ty by )i z
Zy(t) = 1_[/ b(u)e ) S by e Wy
r=1 @i(t)

for[=1,2,...,m,n>0,and € € (0,A(n)).

In the next section, we obtain several new oscillation criteria for Eq. (1.1). Moreover, we
give a practical example to show that our results can be used to test the oscillation of a
certain equation, whereas the criteria listed above fail.

2 Main results
We state some important results for Eq. (1.1) when it possesses a positive solution x(£). In
this case, x(¢) is eventually nonincreasing and eventually satisfies the inequalities

& () +x(01(0)bi(8) <0, 1=1,2,...,m
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and
X(8) + x(oman (£) D bult) <0.
=1

Therefore [42], [24, Lemma 3.1], [19, Lemma 2.1.2], and the nonincreasing nature of x(z)
imply respectively, for [ = 1,2,...,m, that

limint 27 = Q) 1)
iminf XD S i, 1=12,..m (2.2)
t—00 x(t)

and
liminf x(;:(,gr)) > lim gf’% > A(¢), (2.3)

where ¢,¢;; > 0.
If nothing else is stated, all inequalities are assumed to hold eventually.

Lemma 2.1 [fx(t) is an eventually positive solution of Eq. (1.1), then

liminf M > emax{Zﬁl {r,l)»?(,)»*(f){r}’ 7= 1, 2’ ...,m, (24)
t—oo  x(t)

where A} = max{A*(¢;), A*(¢)}, and

1, z=0,
rz), z>0.

A (2) =

Proof Dividing Eq. (1.1) by x(¢) and integrating from u to t, u < t, we obtain

x(t) x(az(m )
(x(u ) Zf Talu)

which is equivalent to

PR x(oy(u1))
x(u) = x(t)efu 2y bi(ur) x(uq) din . @5)
Therefore
O _ _ft o Tty i e
0 . (2.6)

Equation (2.6) leads to the following two inequalities, using (2.2) and (2.3), for all suffi-

ciently small € > 0:

Hod) | e cyrai-o
x(t)
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and

2(0(8) _ o @-a-o
x(t) ’

Now taking the lower limits as ¢t — oo and then letting € — 0, we get

liminf Mor(®) elit1 S
t—>00 x(t -
and
i OO e,
t—00 x(t)
The last two inequalities are equivalent to (2.4). 0

For an easy reference, the sequences { Qg")(t)},,zo, r=1,2,...,m, are defined as follows:

1 {=¢y=0forall=1,2,...,m

T | emax S Gk @) —¢€, otherwise,

Zk 1b/< )2 () du
V

Q(”)(t): , o n=12,...,
’ 1-G5V(0)

where €, € (0, em™ (X7 &€ and
o) ' L2 S @ ) din ,
G0 = [ betaeRm T Gy o
@i(t)

Lemma 2.2 Assume that x(t) is an eventually positive solution of Eq. (1.1), n € Ny, and
j€1{1,2,...,m}. Then the inequalities G;;')(t) <1and

m (D) " "
H(TW)(H(M;@))) -y H<HG'”“)> )Sl 7

= r=1 \r=1
ri#r

are satisfied.

Proof Since x(t) is an eventually positive solution of Eq. (1.1), for any sufficiently small
€, > 0, inequality (2.4) yields

x(0,(2)) > eMax{ 2y &nidy A7 (0)er)
x(t)

—€, ¢>0o0r¢,;>0forsomel=1,2,...,m

Combining this inequality with the fact that = ) > 1, we obtain

#(0(0) _

0 > QO ). (2.8)
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Integrating Eq. (1.1) from ¢;(t) to t,i=1,2,...,m, we get

x(t) — x(goi(t)) b (u)x(al(u) du + Z bl(u)x(crl(u)) du =0. (2.9)

¢ilt I=1
I#i

On the other hand, proceeding as in the proof of Lemma 2.1, we obtain (2.5), which yields

x(oy(u1))
#(0:0) = %(¢i (D)™ e i e <u <,

and

x(o, gy (1))

x(up)

x(01()) () = 2t )x(ffz(u)) Sy by ) diy

Cx(w) x(ut) , g <u<t

x(oy(w)) =

Substituting into (2.9), we get

t x(oy(u1))

@t
by(u)eleito X D )™ A g

x(60)) = x(0) + x(0,(0)) /

@i(t)
*(oy; (1))

+x(t)Z b[( ) ())) /uzll bll ul)Tl)dul du.

l #t
Therefore

t

m x(og(u1))
x(gi(8) = x(t) + x(gi(0)) f bi(w)e” i Zity b G s

v;i(t)
x(oj(u1))
t m ft 1b1(”1)/7d”1
x\o(u / x(uq)
+x(t)/ Zbl(u)u J#i du,
wl®) x(u)
I#i

that is,

t

@i (t) xal (u1))
x(00) = (0:0) / (e T D TG e g
@i(t)

St S by
+x(t)e i

Hence

(o7(w)
/(;L‘(L) lemﬂ bl(u) = x(lu,; du
i

Hpe) _ e
— o7(u1)) :
x(2) 1— f bi(u)e a(u) Zl 1 bi(u1) xl,q% du g,

Now by (2.8) it follows that

L o 7 b2 ) du
Ii

J9i
x(p:®) _ e
x(t) ~ e S b2l () d
1= [ bilupelot S beer e g,
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Syt Sy a2 ) d
e i

= = ().
-G2()

Continuing in this way, we can prove that

Tt o Xty b2V @ du
I#i

x(‘Pi(t)) - € _ Q(-n)(t)
) T 1-G6" V) P
Returning to (2.5), we obtain
x(og(u1))

(000 = ) i T e S

Therefore (2.9) implies that

t

x(i(8)) = %) + x(g:(2)) / (u)efn o biten™

vi(t)

vi(t)

b, —
+ Z ‘Pl(t) bz(u)e rrl<u Zzl I (ul)
l#z

However, (2.10) leads to

x(0y(u1)) - x(pi(£)
x(m) T x()

> Q" ().

Consequently, the previous equation leads to the inequality

m

2(0i(0) (1- G(0) = x() + Y x(u(8)) G

=1
I#i

This proves that G;?(t) <land

1437 o) o)y
gty 0 O
x(t) ~ 1-G(0)

Then the arithmetic—geometric mean leads to

x(ei(®))

eit) <u<t.

1+(m-1) (I—[m xfc’(’t(t 1(1—1, lGl,(t))’" I

x(6) 1-GP )
Taking the product of both sides, we get

7 ( *er ()
l_[( x(t) >

=1

m0+w qu@j“ﬁﬁ”

ri=1
r #r

Page 8 of 19
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where A"(¢) = [1,(——). Therefore

1-G (@)
= (%(en(0)
H( x(t) >

r=1
W) 1+ (m-1)" = 2l (2) M\ T m m o .
" [l x(t) [T(ITe @ :
r=1 1 };11;}
Thus
[1(557) =m0 (ISP M(Tom0) )
r=1 L1 rrll#}
Then

A() (l’[(x(y;(,?t))) Hm-1)" H(H Git%(r)) 7 ) <1.

r=1 \r=1
ri#r

O

Theorem 2.1 Assume that i € {1,2,...,m} and either one of the following conditions is
satisfied for some n € Ny:
(i) there exists a sequence {ci}k=o such that limg_, o cx = 00 and

G(c) =1 forallkeNy, (2.12)

“Iii‘ip(n 1-G r,()<HQ("')+ ‘1”"171(11‘”’)‘“)) ))
Vll;r

> 1. (2.13)

Then Eq. (1.1) is oscillatory.

Proof We assume for contradiction that Eq. (1.1) has a nonoscillatory solution x(z). Be-
cause of the linearity of Eq. (1.1), there is no loss of generality to assume the existence of a
sufficiently large T > £, such that x(f) > 0 for all £ > 7. Then Lemma 2.2 leads to G (t) <1
foralli=1,2,...,mand n € Ny. This contradicts (2.12) and hence proves (i). For the proof
of (ii), we see from (2.1) and (2.7) that

limsup<1_[ =TT <]_[Q(nr)+ m— 1)m1_[<1‘[ Gm(t)> _ )) <1

=00 r=1 ri=1
r#r

which is impossible due to (2.13). O
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Next, we define the functions Cﬁn) (t) and Dg") (¢) for some n € Ny as follows:
o (B
Ch () = f b (1) du
t

1
r t m (n)
+/ b (u)/ § bl(ul)e'[”l("l)zllzlhll(uz)ﬂll (u) duy du, du

() "oy
I#r

o7t m JES )@l () d
+/ D by(u)elore &= R O gy,
t

l;r
and

SO by ) [ brar) sy du
V)

() =

where ¢,(t) are strictly increasing functions for all r=1,2,...,m.
Theorem 2.2 Assume that the function ¢,(t) is strictly increasing for each r = 1,2,...,m.

Suppose that for some n € Ny,
(i) there exists a sequence {dy}r=o such that limy_,  dy = 00,

Cf")(dk) >1 forsomere{l,2,...,m}and all k € Ny, (2.14)

or

(i)

liﬂgp(ﬁ<1_Gﬁ”ﬁ t))(ﬁ o H(ll_[lGl )11>)

> 1. (2.15)

Then Eq. (1.1) is oscillatory.

Proof As in the proof of the previous theorem, we assume that Eq. (1.1) has an eventually

positive solution x(¢). Integrating Eq. (1.1) from ¢ to ¢, ' (¢), we have

7l m
x((pr—l(t)) —x(t) + /w Zbl(u)x(o;(u)) du =0,
¢ I=1

that is,

R0 Yo m

x(%-l(t)) —x(t) + /‘/’r b (u)x(ar(u) du + / Zb;(u)x(al(u)) du =0. (2.16)
l;r
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Again, integrating Eq. (1.1) from o, () to ¢ < u < ¢.'(¢), we obtain

x(0, () = x(t) + f Zbl(ul)x(al(ul))dul.

r(0) 121

Substituting into (2.16), we get

o7 L(t) o7l ¢
x(t) = x(go;l(t)) + x(t)f b, (1) du + f b,(u)/ ( )b,(ul)x(ar(ul)) du; du

t
—1

o o) m
+ / b, (u) / Zbl(ul)x(m(ul)) duy du + / > bi(w)x(oy(w) du
or ¢ =1

w121 -
I#r I#r

Recalling that (2.5) holds and x(¢) is nonincreasing, it follows that

t

x(t) > x(<p,1(t) +x(t)/ b.(u)du +x(<pr(t))/ o b,(u) b, (uy) duy du

t or(u)

ok t m (o) (2))
by () — 227 g
+x(t)/ u)/ E bz(m)efaz(mzll:l i 02) Sy~ M2 g g
t o

) =y
I#r

-1
o0 o oy, (1)
+ x(t) / Z bl(u)efal(u) 211:1 by (ul)Tl) duy dus.
t
l;r

Since M > QET)(uz) (from (2.11)), we have

o7l

x(0) = x(9;(0)) + (0 / ’

t

S t
b, (u) du+x((p,(t)) ‘/(p b,(u)/( )br(ul)dul du

(n )
+x(t)/ / Zbl ul)e ay( “1)211 bll u Ql (u2) duy du du
or() "y
I#r
ot
+x(t)/ Zbl W 20 - bzl(uﬂ " (1) duiy du.
t
l#r

Therefore

t

=10
x(O(1-C @) > (¢, (1) + (01 (2)) / ’ bo(u) |  b(w)durdu>0,  (2.17)

or(u)

which leads to Cﬁ")(t) < 1. This contradicts (2.14) and completes the proof of (i).

To prove (ii), we notice from (2.17) that

x(t) ftw;w) b, (u) f;r(u) b, (1) du, du
>
x(gr(2)) 1-CY()

=DM (¢).

Page 11 0of 19
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Substituting into (2.7) and then taking the upper limit of both sides, we get a contradiction
with (2.15). The proof of the theorem is complete. d

Corollary 2.1 Let qk,uk > 0 be such that oy(t) <t — i, bi(t) = qi omn (aj,a; + 3u*), k €
{1,2,...,m} and j € Ny, 1™ = max pg <x<,n» and lim;_, o, a; = 00. If

I1 = (]_[Q ny) + (m — l)m]_[(]_[Drn) 7 ) > 1, (2.18)

r=1 r=1 r=1 \r;=1
ri#r

where D;y = %(e“iB -1)andB=3]", T ,uqz =1,2,...,m, then Eq. (1.1) is oscillatory.

Proof Let gi(t) =t — i, k=1,2,...,m. Then

¢ ©) t
G/(f])((t) =/ bk(u)efak Zl 1bi( ’41)9[ (1) duy du > f bk(u) du
ok (0) t=pg

This leads to
f(/ik(t) pys) bl(“)QEO)(u)du
W, _ € Ik )
Q1) = o > 7 . (2.19)
1-Gi() 1- ff—uk bi(u) du
Also,

! (1)
by(u1)Q d
Gg,lk)(t)_/ (u)ef“k Z’ o) ) duy,
@,

‘ itk Tt — din
Z/ br(u)e 1=y byug) diy du ieL2.m
L=
Therefore
ai+3M< a3 o
GE k)(“/ +3ui) > / qkef” i 20l Ty A du
aj 3kt

_ (em ~1) =Dy (220)

"B
Now let

m 1 y T
1(t) = Hm(HQ(nr +(m-1) ﬂ(rll_[lGMl(t) )
ri#r

Then (2.20) leads to

I +3u0 =[] = (]_[Q(nr)+(m 1)'”1‘[(1‘[13,,1) )>1.

r=1 r, r=1 \ri=1
r1#r
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It follows that (2.13) with # = 1 is satisfied, and hence (ii) of Theorem 2.1 guarantees the
oscillation of Eq. (1.1). |

Corollary 2.2 Let gy, jux > 0 be such that oy (t) <t — pux, bi(t) = qi on (aj,a; + 4u*), k €
{L,2,...,m}, and j € N, u* = max pig; <<, and limj_, o a; = oo. If

HI_ID (1‘[ (qmr +(m— 1)mH<HDm> )>1, (2.21)

r= ri=1
r1#r

where B, D; i are defined as in Corollary 2.1, and

" eBuy " eBu
Hi = qrju + qi(1 - e7%%) Z%? + (€% — Bug — 1) ZQZ?:

=1 =1

17k 17k

then Eq. (1.1) is oscillatory.

Proof Let gi(t) =t — i, k=1,2,...,m. Then
L+
) > f b () ds

27003 i ¢ m )
N / be() / 3 bl n St e e g g,
t u-—

Kk =1
Ik
tpig
/ sz(u)ef“ g Xiy=1 b )2 ’1 ) diy du.
t I=1
Ik
In view of (2.19), we have
W t g
Cy (t)z/ bi(u)du
t
by, (u2)
ik Sy 201 T oo Y2
~ (u3) du:
+/ bk(u)/ Zbl uye Jug=pgy iy (43) 3 du, du
t U=tk g-q
Ik
by, (u1)
e S D e G
+/ Zbl(u)e My h du.
t I=1
Ik

Thus

aj+4 aj+3L aj+3ig
Y Bd
Ck (@) + 3pu) = paqk + qr Zqu ela-w Bl gy

aj+3pg  Ju—pk

I;Zk
m aj+4 g aj+3p
/ k
Bd
g [ e
-1 aj+3pLg
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that is,
W 5 "o eBu 5 KN
Ci' (@ +311) = qiepun + qi(1 — e7PH6) Z@? + (e — By — 1) Zqz i
=3 73
= Hg.
Also,

<p,:1(a/-+3u,k) aj+3pk ) aj+diig aj+3pg 1 -
[ b [ nydnduzgt [ [ ddu= Stk
a u

i +3 4k o (u) aj+3pg ~Hk

This inequality and (2.22) lead to

+3 k) a:i+3
/:’7];3:11 ) bi(u )f j Mk bi(u1) duy du _ ‘112#%
1- (@ + 310) ~ 2(1-Hy)

D4 +3u) =

Let

ho= H<1 G“(t)>(HD oo l)mn<nG’”(t)> )

r=1 r=1 \r=1
ri#r

Then (2.20), (2.21), and (2.23) imply that

1

L +3 )>ﬁ 1 (m Gl 1)m]_[<]_[D )l) 1

1(a; +3ui) = + (m - - > 1.
r=1 1 _Dr,r r=1 2(1 - H, ) r

ri=1
r #r

(2.22)

(2.23)

Therefore condition (2.15) with n = 1 is satisfied, so Eq. (1.1) is oscillatory. The proof is

complete.

O

The following illustrative example highlights the significance of some of our results. All

calculations are done using a Maple code.

Example 2.1 Consider the equation
2
K@)+ ) bitx(ou(®) =0, =2,
=1
where 0,(£) = t — 1 — 0.0001 sin?(200007 £), and
t-0.1, t € [4k,4k + 3],

o1(t) = 1 5001 -8)(4k +3-1)] +4k+2.9, te[4k+3,4k+3+58], keN,
LS (- 4k -3 -8) + 4k +2.8+8, te[4k+3+8,4k+4],

(2.24)

Page 14 of 19
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where 0 <8 <0.1. Also,

bi(t) =

and

by(t) =

0,

1
2es (t - Ck)’
1
2e
1 t—cx—3.0001-8
5 (1 )

0,

E(t-ch)s

B

B(1 - -a3000L8

Drs1-€x—3.0001-5

" bge1-c£-3.0001-5 7

(2023) 2023:80

t € [br el

t € [ck, ek + 8],

kGNo,
t € e + 8, ¢ +3.0001 + 5],
t € [cx + 3.0001 + 68, by,i1],
t € [br, cxl,
t e lck,cr + 6],
[cxs ek + 6] ke,

t € [cr +8,cr +3.0001 + 6],
t € [cx +3.0001 + 8, byy1],

where 8 > 0, and {bi}i=0, {ck}x=0 are sequences of positive integers such that ¢; > by + 1,
Drs1 > ¢ +3.0001 + 8, and limg_, o bx = 00. Let us assume that i(t) =0;(t),i=1,2 (see (1.2)

for definition). It is not difficult to see that 0 < b, (¢) < 5,

t-02=<01(t) <gi(t) <t-0.1,

Since

=, 0 <by(t) < B,

and - 1.0001 < o0,(f) < gy(t) <t-1. (2.25)

Ofliminf/ Zb;(u Ydu < 11m / Zb;(u

t—00

= lim

k—o00

2(0) oy

2
f > bi(u)du =0,
Ck—

1o

we conclude that

liminf /
t—00

Zbl(u )du = 0.

2(0) g

On the other hand,

t
lim inf/
t—00 1(

and

1
2 L /2 2
llgégf; /a,(:) (E b,(u)) du < 211tr3£f/

18 1y

Z bi(u)du < 11m1nf

ch)ll

/ Z bi(u) du

02(8) 4=

Z bl(u

® 5

It follows that d = liminf,_, o 212:1 f;l(t)(l_[i:l bh(u))% du=0and &y =¢=n=1=Q(y) =

Q(m)
be applied.

=0 for /,i = 1,2. Consequently, conditions (1.4), (1.5), (1.6), (1.8), and (1.11) cannot

Page 15 0f 19
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Also, since

and

2 oy g (ul)ef:l;(ul)AO(uZ)duzdu1
D) = sz(t) 1+ / 3 by, (e et e du
o1(2)

h=1
1

t t
< _[1 +/ ie(t—quO.Z)Al dS + ﬂe(t—MJrl.OOOl)Al ds]
2e 02 2€ t-0.2

t t
+ﬂ|:1 +f ie(t7u+0.2)A1 dS‘I'/ ﬂe(t7u+l'0001)A1 dS] < 8.373
£-1.0001 2€ £-1.0001 e

for all B € [0, 23], where A, = (%eo'z(%e"ﬁ) + 5e1'°001<%e+ﬁ)), we have

22 . O i
lim supl_[ 1_[] by, (u)e @ du| <0246 <1 1_[ Q) .
I=1

t—00 L1/

Consequently, condition (1.10) with £ = 1 fails for all 8 € [0, %].
Moreover, we have

2 3 5
Dy(£) =2 bit)] < 2\/j
so-2([To0) =25

and

1

2 2 t b3
1(8) = Zb[(t) |:1 + 2(1_[/ b.(u)e Gr ) Po(u1) dug du) i|
=1

=1 Y10

;}

t t 3
+ 8 |:1 + 2(/ lef;o,z Po (1) diy du/ ﬁe/Lf—l,OOOl Po(ur) duy du> :|
£-1.0001 2€ £-1.0001

7.1
<=
e

t t
L [1 ¥ 2( / ief»ifoz Po(ur)du1 g, Igeliﬁfmom Do) duy du)
~ 2e ¢

—0.2 <€ t-0.2

for all 8 € [0, %]. Consequently,

N
s [FL[ sl

t=00 PR 0]

f"’ll() 71 4, 2
& duy
[1 / by e di

=1 @it

< limsup 1_[ |:

t—00
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2
1
0249« —-|1-
< <2 EQ(M

forall 8 € [0, %]. This means that condition (1.9) with £ =1 and 8 € [0, %] is not satis-
fied. Similarly, condition (1.3) is not satisfied for all 8 € [0, %], and condition (1.7) with
i = 4 is not satisfied for all 8 € [0, %].

Next, we show that Eq. (2.24) is oscillatory for all 8 € [LZBS, %]. Indeed,

1
bi(t) = % and by(t)=pB forte [ck+6,cr+3.0001 + 8] and all k e N.
e

From this and (2.25) the parameters of Corollary 2.1 can be chosen as follows:

1
qi= - g2 =5 1 =0.1, Mo =p* =1
2e

Let

D1yDo

L) = D)0 - Da)’

where Dy, [,k = 1,2, are defined as in Corollary 2.1. Then

B(e¥B _1)(eB -1) 1.3735 1.384
L(B) = 1.09 forall B e ) )
2(6) (1 + 2Be — e%18)(1 + B — Beb) g orall§ e e
where B = 2e_10.1 + % Hence condition (2.18) is satisfied, and Corollary 2.1 implies that

. . 1.3735 1.384
Eq. (2.24) is oscillatory for all B € [=22, =],
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