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Abstract
We establish the existence of at least two solutions of the Prandtl–Batchelor like
elliptic problem driven by a power nonlinearity and a singular term. The associated
energy functional is nondifferentiable, and hence the usual variational techniques do
not work. We shall use a novel approach in tackling the associated energy functional
by a sequence of C1 functionals and a cutoff function. Our main tools are fundamental
elliptic regularity theory and the mountain pass theorem.
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1 Introduction
We consider the following class of sublinear elliptic free boundary problems:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�u = αχ{u>1}(x)f (x, (u – 1)+) + βu–γ in � \ G(u),

|∇u+|2 – |∇u–|2 = 2 on G(u),

u > 0 in �,

u = 0 on ∂�.

(1.1)

Here, � ⊂R
N is a bounded domain, N ≥ 2, 0 < γ < 1, the boundary ∂� has C2,a regularity,

G(u) = ∂{u : u > 1}, α,β > 0 are parameters, and χ is an indicator function. Furthermore,
∇u± are the limits of ∇u from the sets {u : u > 1} and {u : u ≤ 1}◦ respectively, and (u–1)+ =
max{u – 1, 0}. The nonlinear term f is a locally Hölder continuous function f : � × R →
[0,∞) that satisfies the following conditions for all x ∈ �, t > 0:

(f1) For some c0, c1 > 0,
∣
∣f (x, t)

∣
∣ ≤ c0 + c1tp–1, where 1 < p < 2.

(f2) f (x, t) > 0. (1.2)

We shall prove the existence of two distinct nontrivial solutions of (1.1) for a sufficiently
large α.

The case when f (x, t) = 1, β = 0 is the well-known Prandtl–Batchelor problem, where
the region {u : u > 1} represents the vortex patch bounded by the vortex line {u : u = 1}
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in a steady state fluid flow for N = 2 (cf. Batchelor [4, 5]). This case has been studied by
several authors, e.g., Caflisch [8], Elcrat and Miller [10], Acker [1], and Jerison and Perera
[14]. We drew our motivation for studying the present problem in this paper from perera
[18]. The problem studied by Perera [18] is the case when β = 0 in problem (1.1).

The nonlinearity f includes the sublinear case of f (x, t) = tp–1. Jerison and Perera [14]
considered problem (1.1) with β = 0 for 2 < p < ∞ if N = 2, and 2 < p ≤ 2∗ = 2N

N–2 if N ≥ 3.
This problem has its application in the study of plasma that is confined in a magnetic
field. The region there {u : u > 1} represents the plasma, and the boundary of the plasma
is modeled by the free boundary (cf. Caffarelli and Friedman [6], Friedman and Liu [11],
and Temam [19]).

Elliptic problems driven by a singular term have, of late, been of great interest. However,
we shall discuss only the seminal work of Lazer and McKenna [16] from 1991 that opened
a new door for the researchers in elliptic and parabolic PDEs. The problem considered in
[16] was as follows:

⎧
⎨

⎩

–�u = p(x)u–γ in �,

u = 0 on ∂�,
(1.3)

where p > 0 is a Ca(�̄) function, γ > 0, � is a bounded domain with a smooth boundary
∂� of C2+a regularity (0 < a < 1), and N ≥ 1. The authors in [16] proved that problem (1.3)
has a unique solution u ∈ C2,a(�) ∩ C(�̄) such that u > 0 in �. Another noteworthy work
addressing the singularity driven elliptic problem is due to Giacomoni et al. [12]. Jerison
and Perera [14] obtained a mountain pass solution of this problem for the superlinear
subcritical case. Yang and Perera [20] addressed the problem for the critical case. Recently,
Choudhuri and Repovš [9] established the existence of a solution for a semilinear elliptic
PDE with a free boundary condition on a stratified Lie group. Furthermore, those readers
looking to expand their knowledge on the techniques and trends of the topics in analysis
of elliptic PDEs may refer to Papageorgiou et al. [17].

We shall prove that a solution of problem (1.1) is Lipschitz continuous of class H1
0 (�) ∩

C2(�̄ \ G(u)) and is a classical solution on � \ G(u). This solution vanishes on ∂� contin-
uously and satisfies the free boundary condition in the following sense:

lim
ε+→0

∫

{u=1+ε+}

(
2 – |∇u|2)ψ · n̂ dS – lim

ε+→0

∫

{u=1–ε+}
|∇u|2ψ · n̂ dS = 0 (1.4)

for allψ ∈ C1
0(�,RN ) that are supported a.e. on {u : u �= 1}. Here n̂ is the outward drawn

normal to {u : 1 – ε– < u < 1 + ε+} and dS is the surface element.
The novelty of this work, which separates it from the work of Perera [18], lies in the

efficient handling of the singular term that disallows the associated energy functional to
be C1 at u = 0. This difficulty is the reason why one cannot directly apply the results from
the variational set up. To handle this situation, we shall define a cut-off function.

Remark 1.1 Note that
∫

�
|∇u|2 dx will be often denoted by ‖u‖2, where ‖ · ‖ is the norm of

an element in the Sobolev space H1
0 (�).

We begin by defining a weak solution of problem (1.1).
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Definition 1.1 A function u ∈ H1
0 (�), u > 0 a.e. in � is said to be a weak solution of prob-

lem (1.1) if it satisfies the following:

0 =
∫

�

∇u · ∇ϕ dx – α

∫

�

g
(
x, (u – 1)+

)
)ϕ dx

– β

∫

�

u–γ ϕ dx for all ϕ ∈ H1
0 (�). (1.5)

We define the associated energy functional to problem (1.1) as follows:

E(u) =
1
2
‖u‖2 +

∫

�

(
χ{u>1}(x) – αG

(
x, (u – 1)+

))
dx

–
β

1 – γ

∫

�

(
u+)1–γ dx for all u ∈ H1

0 (�), (1.6)

where F(x, t) =
∫ t

0 f (x, t) dt, t ≥ 0.
The functional E fails to be of C1 class due to the term

∫

�
(u+)1–γ dx. Moreover, it is

nondifferentiable due to the term
∫

�
χ{u>1}(x) dx. We shall first tackle the singular term by

defining a cut-off function φβ as follows:

φβ (u) =

⎧
⎨

⎩

u–γ if u > uβ ,

u–γ

β if u ≤ uβ .

Here uβ is a solution of the following problem:

– �u = βu–γ in �,

u > 0 in �,

u = 0 on ∂�.

(1.7)

The existence of uβ can be guaranteed by Lazer and McKenna [16]. Moreover, a solution
of problem (1.7) is a subsolution of (1.1) (refer to Lemma 6.1 in Sect. 6). Note that we call
(1.7) a singular problem. We denote β (u) =

∫ u
0 φβ (t) dt.

Furthermore, the functional E is nondifferentiable, and hence we approximate it by C1

functionals. This technique is adopted from the work of Jerison and Pererra [14]. Working
along similar lines, we now define a smooth function h : R → [0, 2] as follows:

h(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if t ≤ 0,

a positive function if 0 < t < 1,

0 if t ≥ 1,

and
∫ 1

0 h(t) dt = 1. We let H(t) =
∫ t

0 h(t) dt. Clearly, H is a smooth and nondecreasing func-
tion such that

H(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if t ≤ 0,

a positive function < 1 if 0 < t < 1,

1 if t ≥ 1.
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We further define for δ > 0

fδ(x, t) = H
(

t
δ

)

f (x, t), Fδ(x, t) =
∫ t

0
fδ(x, t) dt for all t ≥ 0. (1.8)

Define

Eδ(u) =
1
2
‖u‖2

+
∫

�

[

H
(

u – 1
δ

)

– αFδ

(
x, (u – 1)+

)
– ββ (u)

]

dx for all u ∈ H1
0 (�). (1.9)

The functional Eδ is of C1 class. The main result of this paper is the following theorem.

Theorem 1.1 Let conditions (f1) – (f2) hold. Then there exist �,β∗ > 0 such that for all
α > �, 0 < β < β∗ problem (1.1) has two Lipschitz continuous solutions, say u1, u2 ∈ H1

0 (�)∩
C2(�̄ \ G(u)), satisfying (1.1) classically in �̄ \ G(u). These solutions also satisfy the free
boundary condition in the generalized sense and vanish continuously on ∂�. Furthermore,

1. E(u1) < –|�| ≤ –|{u : u = 1}| < E(u2), where | · | denotes the Lebesgue measure in R
N ,

hence u1, u2 are nontrivial solutions.
2. 0 < u2 ≤ u1 and the regions {u1 : u1 < 1} ⊂ {u2 : u2 < 1} are connected where ∂� is

connected. The sets {u2 > 1} ⊂ {u1 > 1} are nonempty.
3. u1 is a minimizer of E (but u2 is not).

The paper is organized as follows. In Sect. 2 we introduce the key preliminary facts. In
Sect. 3 we prove a convergence lemma. In Sect. 4 we prove a free boundary condition.
In Sect. 5 we prove two auxiliary lemmas. In Sect. 6 we prove a result on positive Radon
measure. Finally, in Sect. 7 we prove the main theorem.

2 Preliminaries
An important result that will be used to pass to the limit in the proof of Lemma 3.1 is the
following theorem due to Caffarelli et al. [7, Theorem 5.1].

Lemma 2.1 Let u be a Lipschitz continuous function on the unit ball B1(0) ⊂R
N satisfying

the distributional inequalities

±�u ≤ A
(

1
δ
χ{|u–1|<δ}(x)H

(|∇u|) + 1
)

for constants A > 0, 0 < δ ≤ 1, H is a continuous function obeying H(t) = o(t2) as t → ∞.
Then there exists a constant C > 0 depending on N , A and

∫

B1(0) u2 dx, but not on δ, such
that

sup
x∈B 1

2
(0)

∣
∣∇u(x)

∣
∣ ≤ C.

The following are the Palais–Smale condition and the mountain pass theorem.
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Definition 2.1 (cf. Kesavan [15, Definition 5.5.1]) Let V be a Banach space and J : V →R

be a C1-functional. Then J is said to satisfy the Palais–Smale (PS) condition if the following
holds: Whenever (un) is a sequence in V such that (J(un)) is bounded and (J ′(un)) → 0
strongly in V ∗ (the dual space), then (un) has a strongly convergent subsequence in V .

Lemma 2.2 (cf. Alt and Caffarelli [3, Theorem 2.1]) Let J be a C1-functional defined on a
Banach space V . Assume that J satisfies the (PS)-condition and that there exists an open
set U ⊂ V , v0 ∈ U , and v1 ∈ X \ Ū such that

inf
v∈∂U

J(v) > max
{

J(v0), J(v1)
}

.

Then J has a critical point at the level

c = inf
ψ∈�

max
u∈ψ([0,1])

J(v) ≥ inf
u∈∂U

J(u),

where � = {ψ ∈ C([0, 1]) : ψ(0) = v0,ψ(1) = v1} is the class of paths in V joining v0 and v1.

Before we prove Lemma 3.1, we would like to give an a priori estimate of the parameter β .

3 Convergence lemma
We denote the first eigenvalue of (–�) by α1 and the first eigenvector by ϕ1 (for an exis-
tence of α1, ϕ1, refer to Kesavan [15]). Fix α to, say, α0 and let β be any positive real number.
On testing problem (1.1) with ϕ1, the following weak formulation has to hold if u is a weak
solution of problem (1.1). Thus

α1

∫

�

uϕ1 dx =
∫

�

∇u · ∇ϕ dx = α

∫

�

f
(
x, (u – 1)+

)
ϕ1 dx + β

∫

�

(
u+)–γ

ϕ dx. (3.1)

So there exists β∗ > 0, which depends on the chosen fixed α, such that β∗t–γ + αf (x, (t –
1)+) > α1t for all t > 0. This is a contradiction to (3.1). Therefore, 0 < β < β∗.

Lemma 3.1 Let conditions (f1) – (f2) hold, δj → 0 (δj > 0) as j → ∞, and let uj be a critical
point of Eδj . If (uj) is bounded in H1

0 (�) ∩ L∞(�), then there exists a Lipschitz continuous
function u on �̄ such that u ∈ H1

0 (�) ∩ C2(�̄ \ G(u)) and a subsequence such that
(i) uj → u uniformly over �̄,

(ii) uj → u locally in C1(�̄ \ {u = 1}),
(iii) uj → u strongly in H1

0 (�),
(iv) E(u) ≤ lim inf Eδj (uj) ≤ lim sup Eδj (uj) ≤ E(u) + |{u : u = 1}|, i.e., u is a nontrivial

function if lim inf Eδj (uj) < 0 or lim sup Eδj (uj) > 0.
Furthermore, u satisfies

–�u = αχ{u>1}(x)g
(
x, (u – 1)+

)
+ βu–γ

classically in � \ G(u), the free boundary condition is satisfied in the generalized sense and
u vanishes continuously on ∂�. If u is nontrivial, then u > 0 in �, the region {u : u < 1} is
connected, and the region {u : u > 1} is nonempty.
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Proof of Lemma 3.1 Let 0 < δj < 1. Consider the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�uj = – 1
δj

h( uj–1
δj

) + αfδj (x, (uj – 1)+) + βφβ (uj) in �,

uj > 0 in �,

uj = 0 on ∂�.

(3.2)

The nature of the problem being a sublinear one and driven by a singularity allows us to
conclude by an iterative technique that the sequence (uj) is bounded in L∞(�). Therefore,
there exists C0 such that 0 ≤ fδj (x, (uj – 1)+) ≤ C0. Let ϕ0 be a solution of the following
problem:

⎧
⎨

⎩

–�ϕ0 = αC0 + βu–γ

β in �,

ϕ0 = 0 on ∂�.
(3.3)

Now, since h ≥ 0, we have that –�uj ≤ αC0 + βu–γ

β = –�ϕ0 in �. Therefore by the maxi-
mum principle,

0 ≤ uj(x) ≤ ϕ0(x) for all x ∈ �. (3.4)

From the argument used in the proof of Lemma 6.1, together with β∗ > 0 and large � > 0,
we conclude that uj > uβ in � for all β ∈ (0,β∗). Since {uj : uj ≥ 1} ⊂ {ϕ0 : ϕ0 ≥ 1}, hence ϕ0

gives a uniform lower bound, say d0, on the distance from the set {uj : uj ≥ 1} to ∂�. Fur-
thermore, uj is a positive function satisfying the singular problem in a d0-neighborhood
of ∂�. Thus (uj) is bounded with respect to the C2,a norm. Therefore, it has a conver-
gent subsequence in the C2-norm in a d0

2 neighborhood of the boundary ∂�. Obviously,
0 ≤ h ≤ 2χ(–1,1) and hence

±�uj = ± 1
δj

h
(

uj – 1
δj

)

∓ αfδj

(
x, (uj – 1)+

)
+ βu–γ

j

≤ 2
δj

χ{|uj–1|<δj}(x) + αC0 + βu–γ

j

≤ 2
δj

χ{|uj–1|<δj}(x) + αC0 + βu–γ

β .

(3.5)

By Lazer and McKenna [16], for any subset K of � that is relatively compact in it, i.e.,
K � �, we have that uβ ≥ CK for some CK > 0. Therefore

±�uj ≤ 2
δj

χ{|uj–1|<δj}(x) + αC0 + βC–γ

K . (3.6)

Since (uj) is bounded in L2(�) and by Lemma 2.1, it follows that there exists A > 0 such
that

sup
x∈B r

2
(x0)

∣
∣∇uj(x)

∣
∣ ≤ A

r
(3.7)
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for suitable r > 0 such that Br(0) ⊂ �. Therefore, (uj) is uniformly Lipschitz continuous on
the compact subsets of � such that its distance from the boundary ∂� is at least d0

2 units.
Thus, by the Ascoli–Arzela theorem applied to (uj), we have a subsequence, still denoted

the same, such that it converges uniformly to a Lipschitz continuous function u in � with
zero boundary values and with strong convergence in C2 on a d0

2 -neighborhood of ∂�. By
the Eberlein–Šmulian theorem, we can conclude that uj ⇀ u in H1

0 (�).
We now prove that u satisfies the following equation:

–�u = αχ{u>1}(x)f
(
x, (u – 1)+

)
+ βu–γ

in the set {u �= 1}. This will include the cases (i) 0 < uβ < 1 < u, (ii) 1 < uβ < u, (iii) 0 < uβ <
u < 1. The cases (i)–(iii) do not pose any real mathematical obstacle. Let ϕ ∈ C∞

0 ({u > 1}).
Then u ≥ 1 + 2δ on the support of ϕ for some δ > 0. Using the convergence of uj to u
uniformly on �, we have |uj – u| < δ for any sufficiently large j, δj < δ. So uj ≥ 1 + δj on the
support of ϕ. Testing (3.1) with ϕ yields

∫

�

∇uj · ∇ϕ dx = α

∫

�

f (x, uj – 1)ϕ dx + β

∫

�

u–γ

j ϕ dx. (3.8)

On passing to the limit j → ∞, we get
∫

�

∇u · ∇ϕ dx = α

∫

�

f (x, u – 1)ϕ dx + β

∫

�

u–γ ϕ dx. (3.9)

To arrive at (3.9), we have used the weak convergence of uj to u in H1
0 (�) and the uniform

convergence of the same in �. Hence u is a weak solution of –�u = αf (x, u – 1) + βu–γ

in {u > 1}. Since f , u are continuous and Lipschitz continuous respectively, we conclude
by the Schauder estimates that it is also a classical solution of –�u = αf (x, u – 1) + βu–γ

in {u : u > 1}. Similarly, on choosing ϕ ∈ C∞
0 ({u : u < 1}), one can find a δ > 0 such that

u ≤ 1 – 2δ. Therefore, uj < 1 – δ. Using the arguments as in (3.8) and (3.9), we find that u
satisfies –�u = βu–γ in the set {u : u < 1}.

Let us now see what is the nature of u in the set {u : u ≤ 1}◦. On testing (3.1) with any
nonnegative function, passing to the the limit j → ∞, and using the fact that h ≥ 0, H ≤ 1,
we can show that u satisfies

–�u ≤ αf
(
x, (u – 1)+

)
+ βu–γ in � (3.10)

in the distributional sense. Also, we see that u satisfies –�u = βu–γ in the set {u : u < 1}.
Furthermore, μ = �u + βu–γ is a positive Radon measure supported on � ∩ ∂{u : u < 1}
(refer to Lemma 6.2 in Sect. 6). From (3.10), the positivity of the Radon measure μ and the
usage of Section 9.4 in Gilbarg and Trudinger [13], we conclude that u ∈ W 2,p

loc ({u : u ≤ 1}◦),
1 < p < ∞. Thus μ is supported on �∩∂{u : u < 1}∩∂{u : u > 1} and u satisfies –�u = βu–γ

in the set {u : u ≤ 1}◦.
To prove (ii), we show that uj → u locally in C1(�\{u : u = 1}). Note that we have already

proved that uj → u in the C2 norm in a neighborhood of ∂� of �̄. Suppose that M ⊂⊂
{u : u > 1}. In this set M we have u ≥ 1 + 2δ for some δ > 0. Thus, for sufficiently large j
with δj < δ, we have |uj – u| < δ in �, and hence uj ≥ 1 + δj in M. From (3.2) we derive that

–�u = αf (x, u – 1) + βu–γ in M.
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Clearly, f (x, uj – 1) → f (x, u – 1) in Lp(�) for 1 < p < ∞ because f is a locally Hölder
continuous function and uj → u uniformly in �. Our analysis says something stronger.
Since –�u = αf (x, u – 1) in M, we have that uj → u in W 2,p(M). By the embedding
W 2,p(M) ↪→ C1(M) for p > 2, we have that uj → u in C1(M). This shows that uj → u in
C1({u > 1}). Working along similar lines we can also show that uj → u in C1({u : u < 1}).

We shall now prove (iii). Since uj ⇀ u in H1
0 (�), we know that by the weak lower semi-

continuity of the norm ‖ · ‖,

‖u‖ ≤ lim inf‖uj‖.

It suffices to prove that lim sup‖uj‖ ≤ ‖u‖. To achieve this, we multiply (3.2) with uj –
1 and then integrate by parts. We shall also use the fact that th( t

δj
) ≥ 0 for any t. This

gives

∫

�

|∇uj|2 dx ≤ α

∫

�

f
(
x, (uj – 1)+

)
(uj – 1)+ dx

–
∫

∂�

∂uj

∂n̂
dS + β

∫

�

u–γ

j (uj – 1)+ dx

→ α

∫

�

f
(
x, (u – 1)+

)
(u – 1)+ dx

–
∫

∂�

∂u
∂n̂

dS + β

∫

�

u–γ (u – 1)+ dx

(3.11)

as j → ∞. Here, n̂ is the outward drawn normal to ∂�. We saw earlier that u is a weak
solution to –�u = αf (x, u – 1) + βu–γ in {u : u > 1}. Let 0 < δ < 1. We test this equation
with the function ϕ = (u – 1 – δ)+ and get

∫

{u>1+δ}
|∇u|2 dx = α

∫

�

f
(
x, (u – 1)+

)
(u – 1 – δ) dx + β

∫

�

u–γ (u – 1 – δ)+ dx. (3.12)

Integrating (u – 1 – δ)–�u = βu–γ (u – 1 – δ)– over � yields

∫

u<1–δ

|∇u|2 dx = –(1 – δ)
∫

∂�

∂u
∂n̂

dS + β

∫

�

u–γ (u – 1 – δ)– dx. (3.13)

On adding (3.12) and (3.13) and passing to the limit δ → 0, we get

∫

�

|∇u|2 dx =α

∫

�

f
(
x, (u – 1)+

)
(u – 1)+ dx

–
∫

∂�

∂u
∂n̂

dS + β

∫

�

u–γ (u – 1)+ dx. (3.14)

Note that we have used
∫

{u:u=1} |∇u|2 dx = 0. Invoking (3.14) and (3.11), we get

lim sup
∫

�

|∇uj|2 dx ≤
∫

�

|∇u|2 dx. (3.15)

This proves (iii).
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We shall now prove (iv). Consider

Eδj (uj) =
∫

�

(
1
2
|∇uj|2 + H

(
uj – 1

δj

)

χ{u�=1} – αFδj

(
x, (uj – 1)+

)
– βu–γ

j (uj – 1)+

)

dx

+
∫

{u=1}
H

(
uj – 1

δj

)

dx. (3.16)

Since uj → u in H1
0 (�) and H( uj–1

δj
)χ{u�=1}, Fδj (x, (uj – 1)+) are bounded and converge point-

wise to χ{u:u>1} and F(x, (u – 1)+), respectively, it follows that the first integral in (3.16)
converges to E(u). Moreover,

0 ≤
∫

{u:u=1}
H

(
uj – 1

δj

)

dx ≤ ∣
∣{u : u = 1}∣∣.

This proves (iv). �

4 Free boundary condition
We shall now show that u satisfies the free boundary condition in the generalized sense
(refer to condition (1.4)). We choose �ϕ ∈ C1

0(�,RN ) such that u �= 1 a.e. on the support
of �ϕ. Multiplying ∇uj · �ϕ to (3.2) and integrating over the set {u : 1 – ε– < u < 1 + ε+} gives

∫

{u:1–ε–<u<1+ε+}

[

–�uj +
1
δj

h
(

uj – 1
δj

)]

∇uj · �ϕ dx

=
∫

{u:1–ε–<u<1+ε+}

(
αfδj

(
x, (uj – 1)+

)
+ βu–γ

j
)∇uj · �ϕ dx.

(4.1)

The term on the left-hand side of (4.1) can be expressed as follows:

∇ ·
(

1
2
|∇uj|2 �ϕ – (∇uj · �ϕ)∇uj

)

+ ∇uj · (∇ �ϕ · ∇uj)

–
1
2
|∇uj|2∇ · �ϕ + ∇H

(
uj – 1

δj

)

· �ϕ. (4.2)

Using this, we integrate by parts to obtain

∫

{u:u=1+ε+}∪{u=1–ε–}

[
1
2
|∇uj|2 �ϕ – (∇uj · �ϕ)∇uj + H

(
uj – 1

δj
�ϕ
)]

· n̂ dx

=
∫

{u:1–ε–<u<1+ε+}

(
1
2
|∇uj|2 �ϕ – (∇uj · �ϕ)∇uj

)

dx

+
∫

{u:1–ε–<u<1+ε+}

[

H
(

uj – 1
δj

)

∇ · �ϕ + αfδj

(
x, (uj – 1)+

)∇uj · �ϕ

+ βu–γ

j ∇uj · �ϕ
]

dx.

(4.3)

By using (ii), the integral on the left of equation (4.3) converges to

∫

{u:u=1+ε+}∪{u=1–ε–}

(
1
2
|∇u|2ϕ – (∇u · �ϕ)∇u

)

· n̂ dS +
∫

{u:u=1+ε+}
�ϕ · n̂ dS. (4.4)
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Equation (4.4) is further equal to

∫

{u:u=1+ε+}

(

1 –
1
2
|∇u|2

)

�ϕ · n̂ dS –
∫

{u:u=1–ε–}
1
2
|∇u|2 �ϕ · n̂ dS. (4.5)

This is because n̂ = ± ∇u
|∇u| on the set {u : u = 1 + ε±} ∪ {u : u = 1 – ε±}. By using (iii), the

first integral on the right-hand side of (4.3) converges to

∫

{u:1–ε–<u<1+ε+}

(
1
2
|∇u|2∇ · �ϕ – ∇uD �ϕ · ∇u

)

dx, (4.6)

whereas the second integral of (4.3) is bounded by

∫

{u:1–ε–<u<1+ε+}

(|∇ · �ϕ| + C| �ϕ|)dx (4.7)

for some constant C > 0. The last two integrals (4.6)–(4.7) vanish as ε± → 0 since
|supp( �ϕ) ∩ {u : u = 1}| = 0. Therefore we first let j → ∞ and then we let ε± → 0 in (4.3) to
prove that u satisfies the free boundary condition.

Using (f1),

Eδ(u) ≥
∫

�

{
1
2
|∇u|2 – α

(

c0(u – 1)+ +
c1

p
(u – 1)p

+

)

–
β

1 – γ
u1–γ

}

dx. (4.8)

Clearly, since 1 < p < 2, we have that Eδ is bounded from below and coercive. Thus Eδ sat-
isfies the (PS) condition (see Definition 2.1). It is easy to see that every (PS) sequence
is bounded by coercivity and hence contains a convergent subsequence by a standard
argument—we extract weakly convergent subsequence and show that this weak limit is
the strong limit of, possibly, a different subsequence. Let us show that Eδ has a minimizer,
say, uδ

1. By (f2), we have F(x, t) > 0 for all x ∈ � and t > 0. Thus, for any u ∈ H1
0 (�) with

u > 1 on a set of positive measure, we have

∫

�

F
(
x, (u – 1)+

)
dx > 0. (4.9)

Therefore, E(u) → –∞ as α → ∞. Thus, there exists � > 0 such that for all α > � we have

m1(α) = inf
u∈H1

0 (�)

{
E(u)

}
< –|�|. (4.10)

Set

δ0(α) = min

{ |m1(α)|
2αc0|�| ,

(
pc0

c1

) 1
p–1

}

.

5 Auxiliary lemmas
We shall now establish the existence of the first solution of problem (1.1), which also is a
minimizer for the functional E. Let us begin with the following lemma.
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Lemma 5.1 For all α > �, 0 < β < β∗, δ < δ0(α), the functional Eδ has a minimizer uδ
1 > 0

that satisfies

Eδ

(
uδ

1
) ≤ m1(α) + 2αδc0|�| < 0. (5.1)

Proof Since Eδ is bounded below and satisfies the (PS) condition, it possesses a minimizer
uδ

1. Also, since H( t–1
δ

) ≤ χ(1,∞)(t) for all t, we have

Eδ(u) – E(u) ≤ α

∫

�

[
F
(
x, (u – 1)+

)
– Fδ

(
x, (u – 1)+

)]
dx

= α

∫

�

∫ (u–1)+

0

[

1 – H
(

t
δ

f (x, t)
)]

dt dx

≤ α

∫

�

∫ δ

0
f (x, t) dt dx

≤ α

(

c0δ +
c1

p
δp

)

|�| by (f1).

(5.2)

Further, for δ < δ0(α) we obtain (5.1). Since Eδ(uδ
1) < 0 = Eδ(0), this implies that uδ

1 is a
nontrivial solution of problem (3.2). This solution is positive since it is a minimizer. �

We shall now prove that the functional Eδ has a second nontrivial critical point, say uδ
2.

Lemma 5.2 For any α > � and 0 < β < β∗, there exists a constant c3(α) such that for all
δ < δ0(α) the functional Eδ has a second critical point 0 < uδ

2 ≤ uδ
1 that obeys

c3(α) ≤ Eδ

(
uδ

2
) ≤ 1

2
∥
∥uδ

1
∥
∥2 + |�|.

Furthermore, ∅ �= {uδ
2 : uδ

2 > 1} ⊂ {uδ
1 : uδ

1 > 1}.

Proof Choose some δ < δ0(α). Consider

hδ(x, t) =
1
δ

h
(

min{t, uδ
1(x)} – 1
δ

)

, Hδ(x, t) =
∫ t

0
hδ(x, t) dt,

f̃δ(x, t) = fδ
(
x,

(
min

{
t, uδ

1(x)
}

– 1
)

+

)
, F̃δ(x, t) =

∫ t

0
f̃δ(x, t) dt.

Further, we set

Ẽδ(u) =
∫

�

[
1
2
|∇u|2 + Hδ(x, u) – αF̃δ(x, u) – βφβ (u)

]

dx, u ∈ H1
0 (�).

The functional Ẽδ is of C1 class and its critical points coincide with the weak solutions of
the following problem:

⎧
⎨

⎩

–�u = –hδ(x, u) + α f̃δ(x, u) + βφβ (u) in �,

u = 0 on ∂�.
(5.3)
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By the elliptic (Schauder) regularity, a weak solution of (5.3) is also a classical solution.
Also, by the maximum principle, we have that u ≤ uδ

1. Thus u is a weak solution of problem
(3.3) and hence is a critical point of Ẽδ with Ẽδ(u) = Eδ(u). We shall now show that Ẽδ has
a critical point, say uδ

2, that satisfies

m2(α) ≤ Ẽδ

(
uδ

2
) ≤ 1

2
∥
∥uδ

1
∥
∥2 + |�| for some m2(α) > 0. (5.4)

This enables us to conclude that Eδ(uδ
2) = Ẽδ(uδ

2) > 0 > Eδ(uδ
1), which in turn will imply that

uδ
2 > 0 and different from uδ

1.
By the mountain pass theorem (see Lemma 2.2), the functional Ẽδ that is coercive (owing

to its sublinear nature) satisfies the (PS) condition. Clearly, for any t ≤ 1, we have

f̃δ(x, t) = fδ(x, 0)

and

f̃δ(x, t) ≤ c0 + c1
(
min

{
t, uδ

1(x)
}

– 1
)p–1

+ ≤ c0 + c1(t – 1)p–1 for t > 1.

By (f1), we get

F̃δ(x, t) ≤ c0(t – 1)+ +
c1

p
(t – 1)p

+ ≤
(

c0 +
c1

p

)

|t|q

for all t with q > 2 if N = 2 and 2 < q ≤ 2N
N–2 if N ≥ 3. We observe that

Ẽδ(u) ≥
∫

�

[
1
2
|∇u|2 – α

(

c0 +
c1

p

)

|u|q – β|u|1–γ

]

dx (5.5)

≥ 1
2
‖u‖2 – λc4

(

c0 +
c1

p

)

‖u‖q – βc5‖u‖1–γ . (5.6)

By the embedding result H1
0 (�) ↪→ Lq(�) for q > 2, the integral in (5.5) is positive if ‖u‖ =

r, i.e., when u ∈ ∂Br(0) for sufficiently small r > 0, where Br(0) = {u ∈ H1
0 (�) : ‖u‖ < r}.

Furthermore, since Ẽδ(uδ
1) = Eδ(uδ

1) < 0 = Ẽδ(0), we choose r < ‖uδ
1‖, and then applying the

mountain pass theorem (Lemma 2.2), we get a critical point uδ
2 of Ẽδ with

Ẽδ

(
uδ

2
)

= inf
ψ∈�

max
u∈ψ([0,1])

Ẽδ(u) ≥ m2(α),

where � = {ψ ∈ C([0, 1], H1
0 (�)) : ψ(0) = 0,ψ(1) = uδ

1} is the class of paths joining 0 and uδ
1.

For the path ψ0(t) = tuδ
1, t ∈ [0, 1], we have

Ẽδ

(
ψ0(t)

) ≤
∫

�

(
1
2
∣
∣∇uδ

1
∣
∣2 + Hδ

(
x, uδ

1
)
)

dx (5.7)

since Hδ(x, t) is nondecreasing in t and F̃δ(x, t) ≥ 0 for all t by condition (f2). Since

Hδ

(
x, uδ

1(x)
)

=
∫ uδ

1

0

1
δ

h
(

t – 1
δ

)

dt = H
(

uδ
1(x) – 1

δ

)

≤ 1, (5.8)
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it follows by (5.7) and (5.8) that

Ẽδ

(
uδ

2
) ≤ max

u∈ψ0([0,1])
Ẽδ(u) ≤

∫

�

(
1
2
∣
∣∇uδ

1
∣
∣2 + 1

)

dx

=
1
2
∥
∥uδ

1
∥
∥2 + |�|.

(5.9)
�

6 Positive Radon measure
We shall now prove two more results that will be needed in the last section.

Lemma 6.1 Let 0 < β < β∗. Then a solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

–�v = βv–γ in �,

v > 0 in �,

v = 0 on ∂�,

(6.1)

say uβ , satisfies uβ < u a.e. in �, where u is a solution of problem (1.1).

Proof Let u ∈ H1
0 (�) be a positive solution of problem (1.1) and uβ > 0 be a solution of

problem (6.1). For any 0 < β < β∗, define a weak solution uβ of problem (6.1) as follows:

0 =
∫

�

∇uβ · ∇ϕ dx – β

∫

�

u–γ

β ϕ dx for all ϕ ∈ H1
0 (�). (6.2)

By the Schauder estimates, we have u ∈ C2,a(�), and by Lazer and McKenna [16] we have
uβ ∈ C2,a(�)∩C(�̄). We shall show that u ≥ uβ a.e. in �. We let �̃ = {x ∈ � : u(x) < uβ (x)}.
Thus, from the weak formulations satisfied by u, uβ and testing with the function ϕ =
(uβ – u)+, we have

0 ≤
∫

�

∇(uβ – u) · ∇(uβ – u)+ dx

= – α

∫

�

χ{u>1}g
(
x, (u – 1)+

)
(uβ – u)+ dx

+ β

∫

�

(
u–γ

β – u–γ
)
(uβ – u)+ dx ≤ 0.

(6.3)

Thus, ‖(uβ –u)+‖ = 0 and hence |�̃| = 0. However, since the functions u, uβ are continuous,
it follows that �̃ = ∅. Hence, by (6.3), we obtain u ≥ uβ in �.

Let W = {x ∈ � : u(x) = uβ (x)}. Since W is a measurable set, it follows that for any η > 0
there exists a closed subset V of W such that |W \ V | < η. Further assume that |W | > 0.
We now define a test function ϕ ∈ C1

c (RN ) such that

ϕ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x ∈ V ,

0 < ϕ < 1 if x ∈ W \ V ,

0 if x ∈ � \ W .

(6.4)
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Since u is a weak solution to (1.1), we have

0 =
∫

�

–�uϕ dx – β

∫

V
u–γ dx – β

∫

W\V
u–γ ϕ dx

–
∫

V
f
(
x, (u – 1)+

)
dx –

∫

W\V
f
(
x, (u – 1)+

)
ϕ dx

= –
∫

V
f
(
x, (u – 1)+

)
dx –

∫

W\V
f
(
x, (u – 1)+

)
ϕ dx < 0.

(6.5)

This is a contradiction. Therefore, |W | = 0, which implies that W = ∅. Hence, u > uβ

in �. �

Lemma 6.2 Function u is in H1,2
loc (�) and the Radon measure μ = �u+βu–γ is nonnegative

and supported on � ∩ {u : u < 1} for β ∈ (0,β∗).

Proof We follow the proof due to Alt and Caffarelli [2]. Choose δ > 0, β ∈ (0,β∗), and a
test function ϕ2χ{u:u<1–δ}, where ϕ ∈ C∞

0 (�). Therefore,

0 = –
∫

�

∇u · ∇(
ϕ2 min{u – 1 + δ, 0})dx

+ β

∫

�

u–γ ϕ2 min{u – 1 + δ, 0}dx

=
∫

�∩{u:u<1–δ}
∇u · ∇(

ϕ2(u – 1 + δ)
)

dx

+ β

∫

�∩{u:u<1–δ}
u–γ

(
ϕ2(u – 1 + δ)

)
dx

=
∫

�∩{u:u<1–δ}
|∇u|2ϕ2 dx + 2

∫

�∩{u:u<1–δ}
ϕ∇u · ∇ϕ(u – 1 + δ) dx

+ β

∫

�∩{u:u<1–δ}
u–γ

(
ϕ2(u – 1 + δ)

)
dx.

(6.6)

By an application of integration by parts to the second term of (6.6), we get

∫

�∩{u:u<1–δ}
|∇u|2ϕ2 dx

= –2
∫

�∩{u:u<1–δ}
ϕ∇u · ∇ϕ(u – 1 + δ) dx

+ β

∫

�∩{u:u<1–δ}
u–γ

(
ϕ2(u – 1 + δ)

)
dx

≤ 4
∫

�

u2|∇ϕ|2 dx – β

∫

�

u1–γ ϕ2 dx

≤ 4
∫

�

u2|∇ϕ|2 dx.

(6.7)

On passing to the limit δ → 0, we conclude that u ∈ H1,2
loc (�).
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Furthermore, for nonnegative ζ ∈ C∞
0 (�), we have

–
∫

�

∇ζ · ∇u dx + β

∫

�

u–γ ζ dx

=
(∫

�∩{u:0<u<1–2δ}
+

∫

�∩{u:1–2δ<u<1–ε}
+

∫

�∩{u:1–δ<u<1}

+
∫

�∩{u:u>1}

)

×
[

∇
(

ζ max

{

min

{

2 –
1 – u

δ
, 1

}

, 0
})

· ∇u

+ βu–γ ζ

]

dx

≥
∫

�∩{u:1–2δ<u<1–δ}

[(

2 –
1 – u

δ

)

∇ζ · ∇u +
ζ

δ
|∇u|2

+ βu–γ ζ

]

dx.

(6.8)

On passing to the limit δ → 0, we obtain �(u – 1)– ≥ 0 in the distributional sense, and
hence there exists a Radon measure μ (say) such that μ = �(u – 1)– ≥ 0. �

7 Proof of the main theorem
Finally, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Choose α > λ and a sequence δj → 0 such that δj < δ0(α). For each j,
Lemma 5.1 gives a minimizer uδ

1 > 0 of Eδj that obeys

Eδj

(
uδj

1
) ≤ m1(α) + 2αδjc0|�| < 0. (7.1)

Further, by Lemma 5.2, we can guarantee the existence of the second critical point 0 <
uδ

2 ≤ uδj
1 such that

m2(α) ≤ Eδj

(
uδj

2
) ≤ 1

2
∥
∥uδj

1
∥
∥2 + |�|. (7.2)

The next step is to show that (uδj
1 ), (uδj

2 ) are bounded in H1
0 (�) ∩ L∞(�). We shall then

apply Lemma 3.1.
Since H ≥ 0 and

Hδ

(
x, (t – 1)+

) ≤ c0(t – 1)+ +
c1

p
(t – 1)p

+ ≤
(

c0 +
c1

p

)

|t|p

for all t by (f1), it follows that

1
2
∥
∥uδ

1
∥
∥2 ≤ Eδ

(
uδ

1
)

+ α

(

c0 +
c1

p

)∫

�

(
uδ

1
)p dx + β

∫

�

(
uδ

1
)1–γ dx. (7.3)

Since Eδj (uδ
1) < 0 by (7.1) and p < 2, we have that (uδj

1 ) is bounded in H1
0 (�).
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Since fδ(x, (t – 1)+) = fδ(x, 0) = 0 for any t ≤ 1 and

fδ
(
x, (t – 1)+

) ≤ c0 + c1(t – 1)p–1 ≤ (c0 + c1)tp–1

whenever t > 1 by (f1), we get

–�uδj
1 = –

1
δj

h
(

uδj
1 – 1
δj

)

+ αfδj

(
x,

(
uδj

1 – 1
)

+

)
+ β

(
uδj

1
)–γ

≤ α(c0 + c1)
(
uδj

1
)p–1 + β

(
uδj

1
)–γ . (7.4)

However, when uδj
1 < 1,

–�uδj
1 = β

(
uδj

1
)–γ , (7.5)

in which case uδj
1 = uβ |{uδj

1 <1}. �

The sublinearity of (7.5) together with the boundedness of (uδj
1 ) in H1

0 (�) implies by the
Moser iteration method that (uδj

1 ) in L∞(�). By a similar argument, (uδj
2 ) is also bounded in

L∞(�) since 0 < uδj
1 ≤ uδj

2 in �. On renaming the subsequence of (δj), the sequences (uδj
1 ),

(uδj
2 ) converge uniformly to a Lipschitz continuous functions, say u1, u2 ∈ H1

0 (�) ∩ C2(�̄ \
G(u)) respectively, of problem (1.1) that satisfies

–�u = αχ{u>1}f
(
x, (u – 1)+

)
+ βu–γ

classically in the region �\G(u), the free boundary condition in the generalized sense and
furthermore continuously vanishes on ∂�. We also have that

E(u1) ≤ lim inf Eδj

(
uδj

1
) ≤ lim sup Eδj

(
uδj

1
) ≤ E(u1) +

∣
∣{u1 : u1 = 1}∣∣ (7.6)

and

E(u2) ≤ lim inf Eδj

(
uδj

2
) ≤ lim sup Eδj

(
uδj

2
) ≤ E(u2) +

∣
∣{u2 : u2 = 1}∣∣. (7.7)

Using (7.6) in combination with (7.1) and (4.10) yields

E(u1) ≤ lim sup Eδj

(
uδj

1
) ≤ m1(α) ≤ E(u1).

Therefore,

E(u1) = m1(α) < –|�|. (7.8)

Similarly, combining (7.7) with (7.2) yields

0 < m2(α) ≤ lim inf Eδj

(
uδj

2
) ≤ E(u2) +

∣
∣{u2 : u2 = 1}∣∣.



Choudhuri and Repovš Boundary Value Problems         (2023) 2023:63 Page 17 of 18

Thus,

E(u2) > –
∣
∣{u2 : u2 = 1}∣∣ ≥ –|�|. (7.9)

So, from (7.8) and (7.9) we can conclude that u1, u2 are distinct and nontrivial solutions
of problem (1.1). Here u1 is a minimizer, whereas u2 is not. Also, since uδj

2 ≤ uδj
1 for each

j, we have u2 ≤ u1. Since u2 is a nontrivial solution, it follows that 0 < u2 ≤ u1 and the sets
{u1 : u1 < 1} ⊂ {u2 : u2 < 1} are connected if ∂� is connected. Moreover, the sets {u2 : u2 >
1} ⊂ {u1 : u1 > 1} are nonempty.
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