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Abstract
In this paper, by applying a nonlinear alternative principle of Leray–Schauder and
Guo–Krasnosel’skii fixed point theorem on compression and expansion of cones,
together with truncation technique, we study the existence of multiplicity
noncollision periodic solutions to third-order singular dynamical systems. By
combining the analysis of the sign of Green’s function for a linear equation, we
consider the systems where the potential has a repulsive singularity at origin. The
so-called strong force condition is not needed, and the nonlinearity may have sign
changing behavior. Recent results in the literature, even in the scalar case, are
generalized and improved.
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1 Introduction
The purpose of this work is to study the existence of noncollision periodic solutions to the
third-order singular dynamical systems

x′′′ + a(t)x = f (t, x) + e(t), (1.1)

where a ∈ C(R/TZ,R), e = (e1, . . . , en)T ∈ C((R/TZ),Rn), the nonlinearity f = (f1, . . . , fn)T ∈
C((R/TZ) ×R

n\{0},Rn) is a continuous vector-valued function with repulsive singularity
at x = 0.

Let R+ = [0,∞) and R
n
+ =

∏n
i=1 R+. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R

n, the usual
scalar product is denoted by 〈x, y〉 =

∑n
i=1 xiyi. We say that (1.1) has a repulsive singularity

at the origin if there exists a fixed vector v ∈R
n
+ such that

lim
x→0,x∈Rn

+

〈
v, f (t, x)

〉
= +∞ uniformly in t.

As usual, by a noncollision nontrivial periodic solution we mean a function x = (x1, . . . ,
xn)T ∈ C3((R/TZ),Rn) solving (1.1) such that x(t) �= 0 for all t and satisfying the periodic
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boundary conditions

x(0) = x(T), x′(0) = x′(T), x′′(0) = x′′(T). (1.2)

In the pioneering paper [15], Lazer and Solimini investigated the singular equation

x′′ =
1
xλ

+ h(t), (1.3)

where λ ≥ 1, and h is periodic function with period T ; by using the method of upper and
lower solutions they proved that a sufficient and necessary condition for the existence of
a positive T-periodic solution is

∫ T
0 h(t) dt < 0. We say that 0 < λ < 1 is the weak force

condition for equation (1.3) and λ ≥ 1 is the strong force condition for ir (the strong force
condition was first introduced by Gordon [9]). During the last few decades, the question
of existence of noncollision periodic solutions for singular scalar equations and dynamical
systems has attracted much attention [1, 5, 15, 21, 22, 25, 27, 28]. For example, in 2019,
Jiang [13] investigated a kind of second-order nonautonomous dynamical systems

x′′ + a(t)x = f (t, x). (1.4)

By a nonlinear alternative principle of Leray–Schauder and the fixed point theorem in
cones the author showed that the singular system (1.4) has at least two positive solutions
when the Green’s function is nonnegative.

Singular differential equations and singular dynamical systems have a wide range of
applications in biology, physics, and mechanics, such as the nonlinear elasticity [6] and
Brillouin focusing system [7]. Usually, the proof is based on either variational approach
[23, 29] or topological methods. In particular, degree theory [16, 17], Schauder’s fixed
point theorem [14], some fixed point theorems in cones for completely continuous oper-
ators [3, 8, 18, 26], and a nonlinear alternative principle of Leray–Schauder type [13, 20]
are the most relevant tools.

To avoid collision of the solution with singularity, the strong force condition plays an
important role and is standard in the related works. Compared with the strong singularity
case, the case of weak singularity was less studied by topological methods [5, 11, 12].

At the same time, some authors began to consider third-order singular differential equa-
tions and singular dynamical systems [2, 4, 14, 24], for example, the third-order differential
equation with constant coefficient

x′′′ + Kx = f (t, x), 0 ≤ t ≤ 2π , (1.5)

with periodic boundary conditions (1.2). Here K is a positive constant, and the nonlin-
earity f (t, x) is singular at x = 0. In [24], using the Green’s function and fixed point index
theory, the existence of multiple positive solutions is obtained. In [14], by using Schauder’s
fixed point theorem, together with perturbation technique, the existence of at least one
positive solution is established. The main result in [14] is the following.

Theorem 1.1 Let the following three assumptions hold:
(A1) f (t, u) is a nonnegative function on [0, 2π ] × (0, +∞), and f (t, u) is integrable on

[0, 2π ] for each fixed u ∈ (0, +∞);
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(A2) f (t, u) is nonincreasing in u > 0 for almost all t ∈ [0, 2π ], and

lim
u→0+

f (t, u) = +∞, lim
u→+∞ f (t, u) = 0

uniformly for t ∈ [0, 2π ];
(A3)

∫ 2π

0 f (s, τ ) ds < +∞ for all τ > 0.

Then equation (1.5) has at least one positive solution if K ∈ (0, 1
3
√

3 ).
This paper is mainly motivated by the recent papers [13, 14], but we do not require

that all components of the nonlinearity f (t, x) have a singularity. The new results cover
both strong and weak singularities. The structure of the paper is as follows. In Sect. 2, we
present a survey on some known results concerning the sign of the Green’s function of the
linear equation

x′′′ + Kx = 0, (1.6)

associated with periodic boundary conditions (1.2). In Sects. 3 and 4, by employing a non-
linear alternative principle of Leray–Schauder and Guo–Krasnosel’skii’s fixed point the-
orem, we prove the main existence results for (1.1) under the positiveness of the Green’s
function associated with (1.6)–(1.2).

In this paper, we use the following notations. The usual Euclidean norm is denoted by
|x|. More generally, for a fixed vector v = (v1, . . . , vn) ∈R

n
+, we have the well-defined norm

|x|v =
n∑

i=1

vi|xi|.

In particular, we get the l1-norm |x|v = |x|1 =
∑n

i=1 |xi| if v = (1, . . . , 1). Let ‖ · ‖ denote the
supremum norm of CT = {x : x ∈ C(R/TZ),R} and take X = CT ×· · ·×CT (n copies). Then
for x = (x1, . . . , xn) ∈ X, the natural norm becomes

‖x‖ =
n∑

i=1

vi‖xi‖ =
n∑

i=1

vi · max
t

∣
∣xi(t)

∣
∣.

Obviously, X is a Banach space.

2 Sign of Green’s function and its properties
As we know, it is very complicated to calculate the Green’s function of the third-order
scalar linear differential equation

x′′′ + a(t)x = h(t), (2.1)

with with variable coefficients and periodic boundary conditions (1.2), where h ∈ C(R,R+)
is a T-periodic function. In this section, we first discuss the Green’s function of the third-
order scalar linear differential equation with constant coefficients

⎧
⎨

⎩

x′′′ + Ax = h(t), 0 ≤ t ≤ T ,

x(0) = x(T), x′(0) = x′(T), x′′(0) = x′′(T),
(2.2)
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where A := maxt∈[0,T] a(t). We will use it to investigate the existence of a positive periodic
solution for (1.1). In the following, we introduce the Green’s functions of (2.2) and some
properties, which can be found in [24]. Let A = ρ3. Then (2.2) is transformed into

⎧
⎨

⎩

y′(t) + ρx = h(t),

y(0) = y(T),
(2.3)

and
⎧
⎨

⎩

x′′(t) – ρx′(t) + ρ2x(t) = h(t),

x(0) = x(T), x′(0) = x′(T).
(2.4)

Moreover, the solutions of (2.3) can be written as

y(t) =
∫ T

0
G1(t, s)h(s) ds,

where

G1(t, s) =

⎧
⎨

⎩

e–ρ(t–s)

1–e–ρT , 0 ≤ s ≤ t ≤ T ,
e–ρ(T+t–s)

1–e–ρT , 0 ≤ t ≤ s ≤ T .

Lemma 2.1 ([24]) The boundary value problem (2.4) is equivalent to the integral equation

x(t) =
∫ T

0
G2(t, s)y(s) ds,

where

G2(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2e
ρ(t–s)

2 [sin
√

3ρ(T–t+s)
2 +e– ρT

2 sin
√

3ρ(t–s)
2 ]

√
3ρ(e

ρT
2 +e– ρT

3 –2 cos
√

3ρT
2 )

, 0 ≤ s ≤ t ≤ T ,

2e
ρ(T+t–s)

2 [sin
√

3ρ(s–t)
2 +e– ρT

2 sin
√

3ρ(T+t–s)
2 ]

√
3ρ(e

ρT
2 +e– ρT

3 –2 cos
√

3ρT
2 )

, 0 ≤ t ≤ s ≤ T .

Moreover, for G2(t, s), if ρ ∈ (0, 2
√

3π
3T ), then we have the estimates

0 <
2 sin(

√
3ρT
2 )

√
3ρ(e

ρT
2 + 1)2

≤ G2(t, s) ≤ 2√
3 sin(

√
3ρT
2 )

.

The solution of (2.2) can be written as

x(t) =
∫ T

0
G2(t, τ )

∫ T

0
G1(τ , s)h(s) ds dτ

=
∫ T

0

∫ T

0
G2(t, τ )G1(τ , s)h(s) ds dτ

=
∫ T

0

[∫ T

0
G2(t, s)G1(s, τ ) ds

]

h(τ ) dτ
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=
∫ T

0

[∫ T

0
G2(t, τ )G1(τ , s) dτ

]

h(s) ds.

Thus letting

G(t, s) =
∫ T

0
G2(t, τ )G1(τ , s) dτ ,

we can get

x(t) =
∫ T

0
G(t, s)h(s) ds.

Let A := maxt∈[0,T] a(t). Since G1(t, s) > 0 and G2(t, s) ≥ 0, we easily get the following.

Lemma 2.2 Assume that 0 < A < 8
√

3π3

9T3 . Then the Green’s function G(t, s) associated with
the boundary value problem (2.2) is positive for all (t, s) ∈ [0, T] × [0, T].

We denote

m = min
0≤t,s≤T

G(t, s), M = max
0≤t,s≤T

G(t, s), σ = m/M, (2.5)

and thus M > m > 0 and 0 < σ < 1.

3 Existence result (I)
In this section, we state and prove the first existence result for (1.1). The proof is based
on the following nonlinear alternative of Leray–Schauder, which can be found in [19] and
has been used in [13, 18].

Lemma 3.1 Let C be a convex subset of a normed linear space E, and let U be an open
subset of C with 0 ∈ U . Then every compact continuous map F : Ū → C has at least one of
the following properties,

(i) F has a fixed point in Ū ; or
(ii) There are u ∈ ∂U and 0 < λ < 1 such that x = λFx.

Define two functions ω and γ by

ω(t) =
∫ T

0
G(t, s) ds

and

γ (t) =
∫ T

0
G(t, s)e(s) ds,

which is the unique T-periodic solution of the linear system

x′′′ + a(t)x = e(t).

Observe that u(t) = x(t) + γ (t) is a T-periodic solution of (1.1) if the system

x′′′ + a(t)x = f
(
t, x(t) + γ (t)

)
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has a T-periodic solution x(t), since

u′′′ + a(t)u = x′′′ + γ ′′′ + a(t)x + a(t)γ = f (t, x + γ ) + e(t) = f (t, u) + e(t).

Theorem 3.2 Assume that 0 < A < 8
√

3π3

9T3 . In addition, suppose that there exists a positive
constant r > 0 satisfying the following conditions.

(H1) For each constant L > 0, there exists a continuous function φL 
 0 (which means that
φ(t) ≥ 0 for all t ∈ [0, T] and it is positive for t in a subset of positive measure) such
that

〈
v, f (t, x)

〉 ≥ φL(t) for (t, x) ∈ [0, T] ×R
n
+ with 0 < |x|v ≤ L.

(H2) There exist continuous nonnegative functions g and h on (0,∞) such that

〈
v, f (t, x)

〉 ≤ g
(|x|v

)
+ h

(|x|v
)

for all t and x ∈ R
n
+ with 0 < |x|v ≤ r + γ ∗, where g > 0 is nonincreasing, and h/g is

nondecreasing.
(H3) We have the following inequality:

r
g(σ r + γ∗){1 + h(r+γ ∗)

g(r+γ ∗) }
> ‖ω‖,

where

γ∗ = min
t

〈
v,γ (t)

〉
, γ ∗ = max

t

∣
∣γ (t)

∣
∣
v.

Then system (1.1) has at least one positive T-periodic solution.

Proof Step 1. We first consider a family of systems.
Since (H3) holds, we can choose n0 ∈ {1, 2, . . .} such that 1

n0
< σ r + γ∗ and

‖ω‖g(σ r + γ∗)
{

1 +
h(r + γ ∗)
g(r + γ ∗)

}

+
1
n0

< r.

Let N0 = {n0, n0 + 1, . . .} and fix n ∈ N0. Consider the family of systems

x′′′(t) + a(t)x(t) = μfn
(
t, x(t) + γ (t)

)
+

a(t)ϑ
n

, (3.1)

where μ ∈ [0, 1], ϑ ∈R
n
+ is chosen such that (v,ϑ) = 1, with truncation functions

fn(t, x) =

⎧
⎨

⎩

f (t, x) if |x|v ≥ 1
n ,

f̃ (t, x) if |x|v < 1
n ,

(3.2)

where f̃ is chosen such that fn are continuous on [0, T] ×R
n.
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So, (3.1) is equivalent to the fixed point problem

x(t) = μ
(
T nx

)
(t) + �, (3.3)

where � = ϑ/n, T n is defined by

(
T nx

)
(t) =

∫ T

0
G(t, s)f n(s, x(s) + γ (s)

)
ds,

and we have used the fact that

∫ T

0
a(s)G(t, s) ds = 1.

We claim that any fixed point x of (3.3) for all μ ∈ [0, 1] must satisfy ‖x‖ �= r. Otherwise,
assume that x is a fixed point of (3.3) for some μ ∈ [0, 1] such that ‖x‖ = r. From Lemma 2.2
we have

〈
v, x(t)

〉
– 〈v,�〉 = μ

∫ T

0

〈
v, G(t, s)fn

(
s, x(s) + γ (s)

)〉
ds

≥ μm
∫ T

0

〈
v, fn

(
s, x(s) + γ (s)

)〉
ds

= σMμ

∫ T

0

〈
v, fn

(
s, x(s) + γ (s)

)〉
ds

≥ σ

〈

v, max
t

{

μ

∫ T

0
G(t, s)fn

(
s, x(s) + γ (s)

)
ds

}〉

= σ
∥
∥x(t) – �

∥
∥.

Therefore, for all t, we have

〈
v, x(t)

〉 ≥ σ
∥
∥x(t) – �

∥
∥ + 〈v,�〉

≥ σ
(∥
∥x(t)

∥
∥ – 〈v,�〉) + 〈v,�〉

≥ σ r.

So we have

∥
∥x(t) + γ (t)

∥
∥ ≥ 〈

v, x(t) + γ (t)
〉 ≥ σ r + γ∗ >

1
n

,

since 1
n ≤ 1

n0
< σ r + γ∗, which implies that

fn
(
t, x(t) + γ (t)

)
= f

(
t, x(t) + γ (t)

)
.

Thus from (H2) we have

〈
v, x(t)

〉
= λ

∫ T

0

〈
v, G(t, s)f

(
s, x(s) + γ (s)

)〉
ds + 〈v,�〉
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≤
∫ T

0

〈
v, G(t, s)f

(
s, x(s) + γ (s)

)〉
ds + 〈v,�〉

=
∫ T

0
G(t, s)

〈
v, f

(
s, x(s) + γ (s)

)〉
ds + 〈v,�〉

≤
∫ T

0
G(t, s)g

(∣
∣x(s) + γ (s)

∣
∣
v

)
{

1 +
h(|x(s) + γ (s)|v)
g(|x(s) + γ (s)|v)

}

ds + 〈v,�〉

≤ ‖ω‖g(σ r + γ∗)
{

1 +
h(r + γ ∗)
g(r + γ ∗)

}

+
1
n0

.

Therefore we have

r = ‖x‖v ≤ ‖ω‖g(σ r + γ∗)
{

1 +
h(r + γ ∗)
g(r + γ ∗)

}

+
1
n0

.

This is a contradiction to the choice of n0, and thus the claim is proved.
By this claim Lemma 3.1 guarantees that

x = T nx

has a fixed point, denoted by xn, i.e., the system

x′′′(t) + a(t)x(t) = fn
(
t, x(t) + γ (t)

)
+

a(t)ϑ
n

(3.4)

has a periodic solution xn with ‖xn‖ < r. Since 〈v, xn(t)〉 ≥ 〈v,�〉 > 0 for all t ∈ [0, T], xn is
in fact a positive T-periodic solution of (3.4).

Now we show that 〈v, xn(t)+γ (t)〉 have an uniform positive lower bound, i.e., there exists
a constant δ > 0, independent of n ∈ N0, such that

〈
v, xn(t) + γ (t)

〉 ≥ δ (3.5)

for all n ∈ N0. To see this, we know that by (H1) there exists a continuous function φL(t) 
 0
such that

〈
v, f (t, x)

〉 ≥ φL(t)

for all t and 0 < ‖x‖ ≤ L. Then we have

〈
v, xn(t) + γ (t)

〉
=

∫ T

0
G(t, s)

〈
v, fn

(
s, xn(s) + γ (s)

)〉
ds +

1
n

≥ m
∫ T

0

〈
v, f

(
s, xn(s) + γ (s)

)〉
ds +

1
n

≥ m
∫ T

0
φL(s) ds := δ.

So we have 〈v, xn(t) + γ (t)〉 ≥ δ for all n.
Step 2. To pass the solutions xn of the truncation systems (3.4) to that of the original

system (1.1), we need to show that {xn}n∈N0 is compact.
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Firstm we claim that

∥
∥x′

n
∥
∥ ≤ H (3.6)

for some constant H > 0 and all n ≥ n0.
Here we denote by xni and ϑi the ith components of xn and ϑ . Since xni are T-periodic

solutions of (3.4), we have

x′′′
ni(t) + a(t)xni(t) = fn

(
t, xni(t) + γ (t)

)
+

a(t)ϑi

n
(3.7)

for each i = 1, 2, . . . , n.
Multiplying both sides of (3.7) by x′

ni(t) and integrating from 0 to T , we have

∫ T

0
x′′′

ni(t)x′
ni(t) dt +

∫ T

0
a(t)xni(t)x′

ni(t) dt =
∫ T

0
fn

(
t, xni(t) + γ (t)

)
x′

ni(t) dt (3.8)

+
∫ T

0

a(t)ϑi

n
x′

ni(t) dt.

Substituting
∫ T

0 x′′′
ni(t)x′

ni(t) dt = –
∫ T

0 |x′′
ni(t)|2 dt into (3.8), we have

∫ T

0

∣
∣x′′

ni(t)
∣
∣2 dt =

∫ T

0
a(t)xni(t)x′

ni(t) dt –
∫ T

0
fn

(
t, xni(t) + γ (t)

)
x′

ni(t) dt

–
∫ T

0

a(t)ϑi

n
x′

ni(t) dt

≤ A
∫ T

0

∣
∣xni(t)

∣
∣
∣
∣x′

ni(t)
∣
∣dt +

∫ T

0

∣
∣fn

(
t, xni(t) + γ (t)

)∣
∣
∣
∣x′

ni(t)
∣
∣dt

+
Aϑi

n

∫ T

0

∣
∣x′

ni(t)
∣
∣dt

≤ Ar
√

T
(∫ T

0

∣
∣x′

ni(t)
∣
∣2 dt

) 1
2

+
(∫ T

0

∣
∣fn

(
t, xni(t) + γ (t)

)∣
∣2 dt

) 1
2
(∫ T

0

∣
∣x′

ni(t)
∣
∣2 dt

) 1
2

+
Aϑi

n0

√
T

(∫ T

0

∣
∣x′

ni(t)
∣
∣2 dt

) 1
2

= C
(∫ T

0

∣
∣x′

ni(t)
∣
∣2 dt

) 1
2

,

where

C = Ar
√

T + max
δ≤xni≤r

(∫ T

0

∣
∣fn

(
t, xni(t) + γ (t)

)∣
∣2 dt

) 1
2

+
Aϑi

n0

√
T .

Using the Writinger inequality, we have

∫ T

0

∣
∣x′′

ni(t)
∣
∣2 dt ≤ CT

2π

(∫ T

0

∣
∣x′′

ni(t)
∣
∣2 dt

) 1
2

.
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It is easy to see that there is constant D > 0 such that

∫ T

0

∣
∣x′′

ni(t)
∣
∣2 dt ≤ D.

For each i = 1, . . . , n, by the periodic boundary conditions xni(0) = xni(T) we know that
there exists a point t0 ∈ [0, T] such that x′

ni(t0) = 0. Therefore we have

∥
∥x′

ni
∥
∥ = max

t

∣
∣
∣
∣

∫ t

ti

x′′
ni(s) ds

∣
∣
∣
∣

≤
∫ T

0

∣
∣x′′

ni(s)
∣
∣ds

≤ T
1
2

(∫ T

0

∣
∣x′′

ni(s)
∣
∣2 ds

) 1
2 ≤ √

TD.

Therefore

∥
∥x′

n
∥
∥ =

〈
v,

∥
∥x′

ni
∥
∥
〉 ≤

n∑

i=1

vi
√

TD := H .

Step 3. The facts (3.6) and (3.5) show that {xn}n∈N0 is a bounded and equicontinuous family.
Now the Arzelà–Ascoli theorem guarantees that {xn}n∈N0 has a subsequence {xnk }k∈N

converging uniformly on [0, T] to a function x ∈ X. Moreover, we have

δ ≤ 〈
v, x(t) + γ (t)

〉 ≤ r + γ ∗ for all t.

Furthermore, xnk satisfies the integral equation

xnk (t) =
∫ T

0
G(t, s)f

(
s, xnk (s) + γ (s)

)
ds +

�

nk
.

Letting k → ∞, we arrive at

x(t) =
∫ T

0
G(t, s)f

(
s, x(s) + γ (t)

)
ds.

Therefore x is a positive T-periodic solution of (1.1) and satisfies 0 < ‖x‖ ≤ r. �

Corollary 3.3 Assume that 0 < A < 8
√

3π3

9T3 , b, c ∈ C[0, T] are positive functions, e1, e2 ∈
C(R/TZ,R), α,β > 0, and μ ∈R is a given positive parameter. Consider the following two-
dimensional third-order nonlinear systems:

⎧
⎨

⎩

x′′′
1 + a(t)x1 = b(t)(x1 + x2)–α + e1(t),

x′′′
2 + a(t)x2 = λc(t)(x1 + x2)β + e2(t).

(3.9)

(i) if β < 1, then (3.9) has at least one positive periodic solution for each λ > 0;
(ii) if β ≥ 1, then (3.9) has at least one positive periodic solution for each 0 < λ < λ1,

where λ1 is some positive constant;
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Proof We will apply Theorem 3.2. For a fixed vector v = (1, 1), (H1) is fulfilled by φL =
b(t)L–α . For s ∈R, s > 0, to verify (H2), we may take

g(s) = b∗s–α , h(s) = μc∗sβ ,

where

b∗ = max
t

b(t), c∗ = max
t

c(t).

Condition (H3) becomes

λ <
r(σ r + γ∗)α – b∗MT

c∗(r + γ ∗)α+βMT

for some r > 0. So (3.9) has at least one positive periodic solution for

0 < λ < λ1 := sup
r>0

r(σ r + γ∗)α – b∗MT
c∗(r + γ ∗)α+βMT

.

Note that λ1 = ∞ if β < 1 and λ1 < ∞ if β ≥ 1. So we have (i) and (ii). �

4 Existence result (II)
In this section, by using Guo-Krasnosel’skii’s fixed point theorem on compression and
expansion of cones, we establish the second existence results for (1.1).

Lemma 4.1 ([10]) Let X be a Banach space, and let K(⊂ X) be a cone. Assume that �1,
�2 are open subsets of X with 0 ∈ �1, �̄1 ⊂ �2, and let

A : K ∩ (�̄2 \ �1) → K

be a completely continuous operator such that either
(i) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂�1, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂�2; or

(ii) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂�1, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂�2.
Then A has a fixed point in K ∩ (�̄2 \ �1).

Let X = CT × · · · × CT (n copies) and define

K =
{

x ∈ X : min
t

〈
v, x(t)

〉 ≥ σ‖x‖
}

, (4.1)

where σ is as in (2.5).
We can readily verify that K is a cone in the Banach space X. Define the operator

(�x)(t) =
∫ T

0
G(t, s)f

(
s, x(s)

)
ds

for x ∈ X and t ∈ [0, T]. Then � is well defined and maps X into K .
Indeed, for t ∈R and x ∈ X, we have

‖�x‖ = max
t

〈
v, (�x)(t)

〉
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= max
t

∫ T

0
G(t, s)

〈
v, f

(
s, x(s)

)〉
ds

≤ M
∫ T

0

〈
v, f

(
s, x(s)

)〉
ds.

On the other hand,

〈
v, (�x)(t)

〉
=

∫ T

0
G(t, s)

〈
v, f

(
s, x(s)

)〉
ds

≥ m
∫ T

0

〈
v, f

(
s, x(s)

)〉
ds.

Thus

min
t

〈
v, (�x)(t)

〉 ≥ m
∫ T

0

〈
v, f

(
s, x(s)

)〉
ds ≥ σ‖�x‖.

This implies that �(X) ⊂ K . It is easy to prove � : X → K is completely continuous.

Theorem 4.2 Assume that 0 < A < 8
√

3π3

9T3 and (H1)–(H3) hold. In addition, we assume that
the following two conditions are satisfied:

(H4) There exist continuous nonnegative functions g and h1 such that

〈
v, f (t, x)

〉 ≥ g1
(|x|v

)
+ h1

(|x|v
)

for all (t, x) ∈ [0, T] ×R
n
+\{0},

where g1 > 0 is nonincreasing, and h1/g1 is nondecreasing.
(H5) There exists R > r such that

‖ω‖g1
(
R + γ ∗)

{

1 +
h1(σR + γ∗)
g1(σR + γ∗)

}

≥ R.

Then, besides the solution x constructed in Theorem 3.2, problem (1.1)–(1.2) has another
positive T-periodic solution x̃ with r < ‖x̃ – γ ‖ ≤ R.

Proof Let K be a cone in X defined by (4.1). Define

�1 =
{

x ∈ X : ‖x‖ < r
}

, �2 =
{

x ∈ X : ‖x‖ < R
}

.

First, we claim that ‖�x‖ ≤ ‖x‖ for x ∈ K ∩ ∂�1. Indeed, if x ∈ K ∩ ∂�1, then ‖x‖ = r, and
we have

σ r ≤ ∣
∣x(t)

∣
∣
v ≤ r.

Thus

‖�x‖ = max
t

|�x|v

= max
t

〈

v,
∫ T

0
G(t, s)f

(
s, x(s) + γ (s)

)
ds

〉
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= max
t

∫ T

0
G(t, s)

〈
v, f (s, x(s) + γ (s)

〉
ds

≤ max
t

∫ T

0
G(t, s)g

(∣
∣x(t) + +γ (s)

∣
∣
v

)
{

1 +
h(|x(t) + γ (s)|v)
g(|x(t) + γ (s)|v)

}

ds

≤ g(σ r + γ∗)
{

1 +
h(r + γ ∗)
g(r + γ ∗)

}

max
t

∫ T

0
G(t, s) ds

≤ ‖ω‖g(σ r + γ∗)
{

1 +
h(r + γ ∗)
g(r + γ ∗)

}

≤ r = ‖x‖.

Next, we prove that ‖�x‖ ≥ ‖x‖ for x ∈ K ∩ ∂�2. Indeed, if x ∈ K ∩ ∂�2, then ‖x‖ = R,
and we have

σR + γ∗ ≤ ∣
∣x(t) + γ (t)

∣
∣
v ≤ R + γ ∗.

Thus

‖�x‖ = max
t

∫ T

0
G(t, s)

〈
v, f

(
s, x(s) + γ (s)

)
ds

〉

≥ max
t

∫ T

0
G(t, s)g1

(∣
∣x(t) + γ (s)

∣
∣
v

)
{

1 +
h1(|x(t) + γ (s)|v)
g1(|x(t) + γ (s)|v)

}

ds

≥ g1
(
R + γ ∗)

{

1 +
h1(σR + γ∗)
g1(σR + γ∗)

}

max
t

∫ T

0
G(t, s) ds

≥ ‖ω‖g1
(
R + γ ∗)

{

1 +
h1(σR + γ∗)
g1(σR + γ∗)

}

≥ R = ‖x‖.

Now Lemma 4.1 guarantees that � has at least one fixed point x̃ ∈ K ∩ (�̄2\�1) with
r ≤ ‖x̃‖ ≤ R. �

Let us consider again example (3.9) in Corollary 3.3.

Corollary 4.3 Assume in (3.9) that 0 < A < 8
√

3π3

9T3 , b(t) > 0 and c(t) > 0 for all t ∈ [0, T],
and β > 1. Then, for each μ with 0 < λ < λ1, where λ1 is given as in Corollary 3.3, problem
(3.9) has at least two different positive solutions.

To verify (H4), for s ∈R, s > 0, we may take

v = (1, 1), g1(s) = b∗s–α , h1(s) = μc∗sβ ,

where

c∗ = min
t

c(t), d∗ = min
t

d(t).

If β > 1, then condition (H5) becomes

λ ≥ R(R + γ ∗)α – MTb∗
c∗(σR + γ∗)α+β

. (4.2)
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Since β > 1, the right-hand side goes to 0 as R → +∞. Thus, for any given 0 < λ < λ1, it
is always possible to find R � r such that (4.2) is satisfied. Thus (3.9) has an additional
positive periodic solution x̃.
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