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Abstract
In this article, we study the quasilinear Schrödinger equation

–�(u) + V(x)u –�(u2)u = g(x,u), x ∈R
N ,

where the potential V(x) and the primitive of g(x,u) are allowed to be sign-changing.
Under more general superlinear conditions on g, we obtain the existence of infinitely
many nontrivial solutions by using the mountain pass theorem. Recent results in the
literature are significantly improved.
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1 Introduction
In this paper, we study the following quasilinear Schrödinger equation:

–�u + V (x)u – �(
u2)u = g(x, u), x ∈R

N , (1.1)

where V ∈ C(RN ,R), g ∈ C(RN ×R,R). Its solutions are related to the existence of standing
wave solutions of the following quasilinear Schrödinger equation:

i
∂�

∂t
= –�� + W (x)� – k�(

θ
(|�|2))θ ′(|�|2)� – g(x,�), ∀x ∈R

N . (1.2)

In recent years, many scholars studied the standing wave solutions of quasilinear
Schrödinger equation via variational methods, such as [1–6]. At that time, the classical
semilinear elliptic equation was widely studied under certain conditions of V and g , see
[7–9]. In many works, problem (1.1) cannot be solved directly by the variational method,
but a change of variables can solve this problem. The main difficulty in solving problem
(1.2) is that there is no suitable space to define the energy functional corresponding to
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equation (1.1), see for example [10]. Liu, Wang, and Wang [11], He and Qian [12] stud-
ied the existence of solutions for quasilinear Schrödinger equation. They transformed the
quasilinear equation into the semilinear equation in a common Sobolev space framework
by using a change of variables. Colin, Jeanjean [13], and Willem [14] also used the same
method in Orlicz space framework. From [15], we know that a change of variables has
some shortcomings. The existence and multiplicity of nontrivial solutions are proved by
the minimax method, the Nehari method, a change of variables, and the perturbation
method in [16]. By using the perturbation method, Wu and Wu [17] obtained the existence
of positive solutions, negative solutions, and a sequence of high energy solutions; Liu, Liu,
and Wang [15] obtained the existence of ground state positive solution for a quasilinear
elliptic equation. But the perturbation method is not as simple as a change of variables. It is
more suitable to solve the problem of the existence of a single solution, but has some lim-
itations in dealing with the problem of multiple solutions. A change of variables is simple
and effective in solving problems, but it depends on the specific expression of an equation
to a great extent and cannot transform a more general quasilinear equation into a semilin-
ear equation. Liu, Liu, and Wang [18], Liu and Chen [19], Wang and Chen [20] considered
the quasilinear Schrödinger equation with critical growth. Wang [21] used the perturba-
tion method to consider the quasilinear elliptic equations with critical growth. Liu, Liu,
and Wang [15] used the perturbation method to consider the more general quasilinear
critical problem. The more general quasilinear critical problem was also considered by
Dong Fang and Szulkin [22], Chen, Tang, and Cheng [23], Xue and Tang [24].

Many authors always assumed that the potential V is positive. If the potential is sign-
changing, then the existence of the negative part of the potential function increases the
difficulty of proving the boundedness of (PS) sequence and improves the energy level of
the corresponding functional. �(u) will donate an energy functional of solution u.

More precisely, Zhang, Tang, and Zhang [25] studied problem (1.1) with sign-changing
potential and obtained the existence of infinitely many solutions under superlinear as-
sumptions. They obtained the following theorem.

Theorem 1.1 Assume that V and g satisfy the following conditions:
(V1) V ∈ C(RN ,R) and infx∈RN V (x) > –∞;
(V2) There exists a constant r > 0 such that

lim|y|→+∞ meas
({

x ∈R
N : |x – y| ≤ r, V (x) ≤ M

})
= 0, ∀M > 0;

(G0) g ∈ C(RN ×R,R), and there exist constants c1, c2 > 0 and 4 < p < 22∗ such that

∣
∣g(x, u)

∣
∣ ≤ c1|u| + c2|u|p–1, ∀(x, u) ∈ R

N ×R;

(G1) lim|u|→∞ G(x,u)
u4 = ∞ uniformly in x, and there exists r0 ≥ 0 such that G(x, u) ≥ 0 for

any (x, u) ∈R
N ×R and |u| ≥ r0, where G(x, u) =

∫ u
0 g(x, s) ds;

(G2) G̃(x, u) := 1
4 g(x, u)u – G(x, u) ≥ 0, and there exist c0 > 0 and σ > max{1, 2N

N+2 } such
that

∣
∣G(x, u)

∣
∣σ ≤ c0|u|2σ G̃(x, u)

for all (x, u) ∈R
N ×R with u large enough;
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(G3) g(x, –u) = –g(x, u) for all (x, u) ∈R
N ×R.

Then problem (1.1) has infinitely many nontrivial solutions {un} such that ‖un‖ → ∞
and �(un) → ∞.

In this paper, inspired by [11, 25–27], we study the sign-changing potential case for prob-
lem (1.1) by the mountain pass theorem and establish the existence of infinitely many so-
lutions under more general superlinear assumptions.

Now, we are ready to state the main results of this paper.

Theorem 1.2 Assume that (V1)–(V2), (G0)–(G1), and (G3) are satisfied. Furthermore, as-
sume that V and g satisfy the following conditions:

(G4) There exist μ > 4, r1 > 0, and ς > 0 such that

μG(x, u) ≤ ug(x, u) + ςu2, ∀(x, u) ∈R
N ×R, |u| ≥ r1;

(G5) There exists r2 > r0 such that

g(x, u)u ≥ 0, ∀(x, u) ∈R
N ×R, |u| ≥ r2.

Then problem (1.1) has infinitely many nontrivial solutions {un} such that ‖un‖ → ∞ and
�(un) → ∞.

Example 1.1 Let g(x, u) = a(x)[ 1
5 u5 – 1

2 u2 sin u + u cos u], where a ∈ C(RN,R) and 0 <
inf

RN a ≤ sup
RN a < ∞. It is easy to check that the superlinear function g does not satisfy

Theorem 1.1, but it satisfies Theorem 1.2.

2 Variational setting and preliminaries
From (V1), we can see that there exists a constant V0 > 0 such that Ṽ (x) := V (x) + V0 > 0
for any x ∈R

N . Let g̃(x, u) := g(x, u) + V0u and study the following new equation:

–�u + Ṽ (x)u – �(
u2)u = g̃(x, u), x ∈R

N . (2.1)

So we can study the equivalent problem (2.1) of problem (1.1). Assume that V and G
satisfy conditions (V1)–(V2), (G0)–(G1), and (G4); it is easy to get that Ṽ and g̃ still satisfy
conditions (V1)–(V2), (G0)–(G1), and (G4). Hence, we make the following assumption:

(Ṽ1) V ∈ C(RN ,R) and infx∈RN V (x) > 0.
As usual, for 1 ≤ s < +∞, we let

‖u‖s =
(∫

RN

∣
∣u(x)

∣
∣s dx

)1/s

, u ∈ Ls(
R

N)
,

H1(
R

N)
=

{
u ∈ L2(

R
N)

: ∇u ∈ L2(
R

N)}

and the norm

‖u‖H1 =
(∫

RN

(|∇u|2 + u2)dx
)1/2

.
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Under assumption (Ṽ1), we consider the following working space:

E :=
{

u ∈ H1(
R

N)
:
∫

RN
V (x)u2 dx < ∞

}

with the inner product

(u, v)E =
∫

RN

(∇u · ∇v + V (x)uv
)

dx

and the norm

‖u‖E = (u, u)
1
2
E .

As we all know, under assumption (Ṽ1), the embedding E ↪→ Ls(RN ) is continuous for
s ∈ [2, 2∗], and the embedding E ↪→ Ls

loc(RN ) is compact for s ∈ [2, 2∗), i.e., there exist con-
stants as > 0 such that

‖u‖s ≤ as‖u‖E , ∀u ∈ E, s ∈ [
2, 2∗].

Lemma 2.1 ([17]) Under assumptions (Ṽ1) and (V2), the embedding E ↪→ Ls(RN ) is com-
pact for s ∈ [2, 2∗).

To solve problem (1.1), define the natural energy functional � : E →R given by

�(u) =
1
2

∫

RN

(|∇u|2 + V (x)u2)dx +
1
4

∫

RN

(∣∣∇(
u2)∣∣2)dx –

∫

RN
G(x, u) dx.

Clearly,

1
4

∫

RN

(∣∣∇(
u2)∣∣2)dx =

∫

RN
|u|2|∇u|2 dx.

Therefore

�(u) =
1
2

∫

RN

((
1 + 2|u|2)|∇u|2)dx +

1
2

∫

RN
V (x)u2 dx –

∫

RN
G(x, u) dx.

As we all know, � cannot be well defined in E generally. To overcome this difficulty, we
make the change of variables by Liu et al. [11] and Colin, Jean [13] as

v = f –1(u),

where f is defined by

f ′(t) =
1

√
1 + 2|f (t)|2 on [0, +∞)

and

f (–t) = –f (t) on (–∞, 0].
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Let us recall some properties of variables f : R →R, the proof of which can be found in
[11, 13, 28].

Lemma 2.2 The function f (t) and its derivative enjoy the following properties:
(f1) f is uniquely defined, C∞, and invertible;
(f2) |f ′(t)| ≤ 1 for all t ∈R;
(f3) |f (t)| ≤ |t| for all t ∈R;
(f4) f (t)/t → 1 as t → 0;
(f5) f (t)/

√
t → 21/4 as t → +∞;

(f6) f (t)/2 ≤ tf ′(t) ≤ f (t) for all t > 0;
(f7) f 2(t)/2 ≤ tf (t)f ′(t) ≤ f 2(t) for all t ∈R;
(f8) |f (t)| ≤ 2 1

4 |t| 1
2 for all t ∈R;

(f9) There exists a positive constant C such that

∣
∣f (t)

∣
∣ ≥

⎧
⎨

⎩
C|t|, |t| ≤ 1,

C|t| 1
2 , |t| ≥ 1;

(f10) For any α > 0, there exists a positive constant C(α) such that

∣∣f (αt)
∣∣2 ≤ C(α)

∣∣f (t)
∣∣2;

(f11)

∣∣f (t)f ′(t)
∣∣ ≤ 1/

√
2.

Therefore, after the change of variables, we get the following functional:


(v) =
1
2

∫

RN
|∇v|2 dx +

1
2

∫

RN
V (x)f 2(v) dx –

∫

RN
G

(
x, f (v)

)
dx. (2.2)

It is easy to check that the functional 
 is well defined in E. Our hypotheses mean that

 ∈ C1(E,R), we have

〈

 ′(v),ω

〉
=

∫

RN
∇v∇ω dx +

∫

RN
V (x)f (v)f ′(v)ω dx –

∫

RN
g
(
x, f (v)

)
f ′(v)ω dx (2.3)

for any ω ∈ E. It is clear that the critical points of 
 are the weak solutions of the following
equation:

–�v =
1

√
1 + 2|f (v)|2

(
g
(
x, f (v)

)
– V (x)f (v)

)
in R

N .

We also observe that if v is a critical point of 
 , then u = f (v) is a critical point of �,
i.e., u = f (v) is a solution of problem (2.1). Recall that a sequence {vn} ⊂ E is called a (C)c-
sequence if 
(vn) → c and (1 + ‖vn‖E)
 ′(vn) → 0, 
 is said to satisfy the (C)c-condition if
any (C)c-sequence has a convergent subsequence.

Proposition 2.1 ([29]) Let X be an infinite dimensional Banach space, X = Y ⊕ Z, where
Y is finite dimensional. If ϕ ∈ C1(X,R) satisfies (C)c-condition for all c > 0 and
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(I1) ϕ(0) = 0, ϕ(–u) = ϕ(u) for all u ∈ X ;
(I2) There exist positive constants θ and α such that ϕ|∂Bθ ∩Z ≥ α;
(I3) For any finite dimensional subspace X̃ ⊂ X , there is R = R(X̃) > 0 such that ϕ(u) ≤ 0

on X̃\BR.
Then ϕ possesses an unbounded sequence of critical values.

Lemma 2.3 Suppose that (Ṽ1), (V2), (G0)–(G1), and (G4) are satisfied. Then any (C)c-
sequence of 
 is bounded in E.

Proof Let {vn} ⊂ E be such that


(vn) → c,
(
1 + ‖vn‖E

)

 ′(vn) → 0. (2.4)

Then there is a constant C1 > 0 such that


(vn) –
2
μ


 ′(vn)vn ≤ C1. (2.5)

First, we prove that there exists C2 > 0 such that
∫

RN

(|∇vn|2 + V (x)f 2(vn)
)

dx ≤ C2.

Suppose to the contrary that

‖vn‖2
0 :=

∫

RN

(|∇vn|2 + V (x)f 2(vn)
)

dx → ∞.

Let f̃ (vn) := f (vn)/‖vn‖0, then ‖f̃ (vn)‖E ≤ 1. Passing to a subsequence, we may assume that
f̃ (vn) ⇀ ω in E, f̃ (vn) → ω in Ls(RN ) for any s ∈ [2, 2∗), and f̃ (vn) → ω a.e. on R

N .
Case one ω = 0, according to the definition of f and (f1) (see Lemma 2.2), we have

f (–t) = –f (t), f ′(–t) = f ′(t), ∀t ∈R. (2.6)

If vn ≥ 0 and |f (vn)| ≥ r2, according to (G5) and the definition of f , we have

g
(
x, f (vn)

) ≥ 0. (2.7)

Since (f6) and (2.7), one sees that
∫

RN
g
(
x, f (vn)

)
f ′(vn)vn dx ≥ 1

2

∫

RN
g
(
x, f (vn)

)
f (vn) dx. (2.8)

If vn < 0 and |f (vn)| ≥ r2, according to (G3), (G5), (f6), (2.6), (2.8), and the definition of f ,
we have

∫

RN
g
(
x, f (vn)

)
f ′(vn)vn dx =

∫

RN
g
(
x, f (–vn)

)
f ′(–vn)(–vn) dx

≥ 1
2

∫

RN
g
(
x, f (–vn)

)
f (–vn) dx (2.9)

=
1
2

∫

RN
g
(
x, f (vn)

)
f (vn) dx.
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Let r = max{r0, r1, r2}. Because vn is a Cerami sequence of 
 , from (G0), (G4), (f7), (2.5),
(2.8), and (2.9), we obtain

C3 ≥ 
(vn) –
2
μ

〈

 ′(vn), vn

〉

=
1
2

∫

RN
|∇vn|2 dx +

1
2

∫

RN
V (x)f 2(vn) dx –

∫

RN
G

(
x, f (vn)

)
dx

–
2
μ

∫

RN
|∇vn|2 dx

–
2
μ

∫

RN
V (x)f (vn)f ′(vn)vn dx +

2
μ

∫

RN
g
(
x, f (vn)

)
f ′(vn)vn dx

≥ 1
2

∫

RN
|∇vn|2 dx +

1
2

∫

RN
V (x)f 2(vn) dx –

∫

RN
G

(
x, f (vn)

)
dx

–
2
μ

∫

RN
|∇vn|2 dx

–
2
μ

∫

RN
V (x)f 2(vn) dx +

2
μ

∫

RN
g
(
x, f (vn)

)
f ′(vn)vn dx

=
μ – 4

2μ

∫

RN
|∇vn|2 dx +

μ – 4
2μ

∫

RN
V (x)f 2(vn) dx –

∫

RN
G

(
x, f (vn)

)
dx

+
2
μ

∫

RN
g
(
x, f (vn)

)
f ′(vn)vn dx

=
μ – 4

2μ
‖vn‖2

0 –
∫

RN
G

(
x, f (vn)

)
dx +

2
μ

∫

RN
g
(
x, f (vn)

)
f ′(vn)vn dx

≥ μ – 4
2μ

‖vn‖2
0 –

∫

RN
G

(
x, f (vn)

)
dx +

1
μ

∫

RN
g
(
x, f (vn)

)
f (vn) dx

≥ μ – 4
2μ

‖vn‖2
0 +

∫

{x||f (vn)|≥r,x∈RN }

(
1
μ

g
(
x, f (vn)

)
f (vn) – G

(
x, f (vn)

))
dx

–
∫

{x||f (vn)|<r,x∈RN }

(
1
μ

g
(
x, f (vn)

)
f (vn) – G

(
x, f (vn)

))
dx

≥ μ – 4
2μ

‖vn‖2
0 +

∫

{x||f (vn)|≥r,x∈RN }

(
1
μ

g
(
x, f (vn)

)
f (vn) – G

(
x, f (vn)

))
dx

–
∫

{x||f (vn)|<r,x∈RN }

(∣∣
∣∣

1
μ

g
(
x, f (vn)

)
f (vn)

∣∣
∣∣ +

∣
∣G

(
x, f (vn)

)∣∣
)

dx

≥ μ – 4
2μ

‖vn‖2
0 –

ς

μ

∫

{x||f (vn)|≥r,x∈RN }
f 2(vn) dx

–
∫

{x||f (vn)|<r,x∈RN }

[
1
μ

(
c1

∣∣f (vn)
∣∣2 + c2

∣∣f (vn)
∣∣p) +

c1

2
∣∣f (vn)

∣∣2 +
c2

p
∣∣f (vn)

∣∣p
]

dx

≥ μ – 4
2μ

‖vn‖2
0 –

ς

μ

∥∥f (vn)
∥∥2

2

–
∫

{x||f (vn)|<r,x∈RN }

[
c1(2 + μ)

2μ

∣
∣f (vn)

∣
∣2 +

c2(p + μ)
pμ

∣
∣f (vn)

∣
∣p

]
dx

=
μ – 4

2μ
‖vn‖2

0 –
ς

μ

∥∥f (vn)
∥∥2

2

–
∫

{x||f (vn)|<r,x∈RN }

[
c1(2 + μ)

2μ
+

c2(p + μ)
pμ

∣
∣f (vn)

∣
∣p–2

]∣
∣f (vn)

∣
∣2 dx
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≥ μ – 4
2μ

‖vn‖2
0 –

ς

μ

∥∥f (vn)
∥∥2

2

–
[

c1(2 + μ)
2μ

+
c2(p + μ)

pμ
rp–2

]∫

{x||f (vn)|<r,x∈RN }

∣
∣f (vn)

∣
∣2 dx

≥ μ – 4
2μ

‖vn‖2
0 –

ς

μ

∥
∥f (vn)

∥
∥2

2 –
[

c1(2 + μ)
2μ

+
c2(p + μ)

pμ
rp–2

]∥
∥f (vn)

∥
∥2

2

=
μ – 4

2μ
‖vn‖2

0 –
[

ς

μ
+

c1(2 + μ)
2μ

+
c2(p + μ)

pμ
rp–2

]∥∥f (vn)
∥∥2

2,

where C3 > 0. Thus,

1 ≤ 2(ς + c1(2+μ)
2 + c2(p+μ)

p rp–2)
μ – 4

lim sup
n→∞

∥
∥f̃ (vn)

∥
∥2

2 = 0, (2.10)

which is a contradiction.
Set

�n(a, b) =
{

x ∈R
N : a ≤ ∣

∣f
(
vn(x)

)∣∣ < b
}

, 0 ≤ a < b.

The second case ω �= 0, then meas(�) > 0, where � := {x ∈ R
N : ω �= 0}. For any x ∈ �,

we have |f (vn)| → ∞ as n → ∞. Therefore, we have � ⊂ �n(r0,∞) for large n ∈N, where
r0 is defined in (G1). By (G1), we know that

G(x, f (vn))
|f (vn)|4 → +∞ as n → ∞.

Using Fatou’s lemma, we have

∫

�

G(x, f (vn))
|f (vn)|4 dx → +∞ as n → ∞. (2.11)

Since (2.4) and (2.11), we have

0 = lim
n→∞

c + o(1)
‖vn‖2

0

= lim
n→∞


(vn)
‖vn‖2

0

= lim
n→∞

1
‖vn‖2

0

(
1
2

∫

RN

(|∇vn|2 + V (x)f 2(vn)
)

dx –
∫

RN
G

(
x, f (vn)

)
dx

)

= lim
n→∞

(
1
2

–
∫

�n(0,r0)

G(x, f (vn))
|f (vn)|2

∣∣f̃ (vn)
∣∣2 dx –

∫

�n(r0,∞)

G(x, f (vn))
|f (vn)|2

∣∣f̃ (vn)
∣∣2 dx

)

≤ 1
2

+ lim sup
n→∞

(
(
c1 + c2rp–2

0
)∫

RN

∣∣f̃ (vn)
∣∣2 dx –

∫

�n(r0,∞)

G(x, f (vn))
|f (vn)|2

∣∣f̃ (vn)
∣∣2 dx

)

≤ C4 – lim inf
n→∞

∫

�

G(x, f (vn))
|f (vn)|4

∣
∣f (vn)f̃ (vn)

∣
∣2 dx

= –∞,
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where C4 > 0, which is a contradiction. Therefore, there exists C2 > 0 such that

∫

RN

(|∇vn|2 + V (x)f 2(vn)
)

dx ≤ C2.

Next, to prove {vn} is bounded in E, we just need to show that there exists C5 > 0 such
that

‖vn‖2
0 :=

∫

RN

(|∇vn|2 + V (x)f 2(vn)
)

dx ≥ C5‖vn‖2
E . (2.12)

We can assume that vn �= 0 (if not, the result is obvious). If this conclusion is not true, for
a subsequence, we have ‖vn‖2

0
‖vn‖2

E
→ 0. Let ωn = vn

‖vn‖E
and jn = f 2(vn)

‖vn‖2
E

, then

∫

RN

(|∇ωn|2 + V (x)jn(x)
)

dx → 0.

Hence
∫

RN
|∇ωn|2 dx → 0,

∫

RN
V (x)jn(x) dx → 0,

∫

RN
V (x)ω2

n dx → 1.

Similar to the idea of [27], we support that for any ε > 0, meas(�n) < ε, where �n := {x ∈
R

N : |vn(x)| ≥ C6}, C6 > 0 is independent of n. If not, there exist ε0 > 0 and {vnk } ⊂ {vn}
such that

meas
({

x ∈R
N :

∣∣vnk (x)
∣∣ ≥ k

}) ≥ ε0 > 0,

where k > 0 is an integer. Set �nk := {x ∈R
N : |vnk (x)| ≥ k}. From (f9) and (Ṽ1), there exists

M′ > 0 such that

‖vnk ‖2
0 ≥

∫

RN
V (x)f 2(vnk ) dx ≥

∫

�nk

V (x)f 2(vnk ) dx ≥ M′kε0 → +∞ as k → ∞,

which is a contradiction. Hence our conclusion is true. Notice that as |vn(x)| ≤ C6, from
(f9) and (f10), we have

C
C2

6
v2

n ≤ f 2
(

1
C6

vn

)
≤ C7f 2(vn),

where C7 > 0 is a constant. Therefore

∫

RN \�n

V (x)ω2
n dx ≤ C8

∫

RN \�n

V (x)
f 2(vn)
‖vn‖2

E
dx

≤ C8

∫

RN
V (x)jn(x) dx → 0,

(2.13)
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where C8 > 0 is a constant. On the other hand, by absolute continuity of integral, there
exists ε > 0 such that

∫

�′
V (x)ω2

n dx ≤ 1
2

, (2.14)

where �′ ⊂R
N and meas(�′) < ε. Combining (2.13) and (2.14), we obtain

∫

RN
V (x)ω2

n dx =
∫

RN \�n

V (x)ω2
n dx +

∫

�n

V (x)ω2
n dx ≤ 1

2
+ o(1),

which means that 1 ≤ 1
2 , a contradiction. Then (2.12) holds. This completes the proof. �

Lemma 2.4 Assume that (Ṽ1), (V2), (G0)–(G1), and (G4) hold, then 
 satisfies (C)c-
condition.

Proof According to Lemma 2.3, we know that {vn} is bounded in E. For a subsequence,
we may assume that vn ⇀ v in E. From Lemma 2.1, we have vn → v in Ls(RN ) for any
s ∈ [2, 2∗), and vn → v a.e. on R

N . We claim that there exists C9 > 0 such that
∫

RN

(∣∣∇(vn – v)
∣∣2 + V (x)

(
f (vn)f ′(vn) – f (v)f ′(v)

)
(vn – v)

)
dx ≥ C9‖vn – v‖2

E . (2.15)

We may assume that vn �= v (otherwise the conclusion is trivial). Set

ω̃n =
vn – v

‖vn – v‖E
, j̃n =

f (vn)f ′(vn) – f (v)f ′(v)
vn – v

.

Argue by contradiction and assume that
∫

RN

(|∇ω̃n|2 + V (x)̃jn(x)ω̃2
n
)

dx → 0.

Since

d
dt

(
f (t)f ′(t)

)
= f (t)f ′′(t) +

(
f ′(t)

)2 =
1

(1 + 2f 2(t))2 > 0

f (t)f ′(t) is strictly increasing, for any C10 > 0, there exists δ1 > 0 such that

d
dt

(
f (t)f ′(t)

) ≥ δ1

as |t| ≤ C10. Hence, we know that j̃n(x) > 0. Therefore
∫

RN
|∇ω̃n|2 dx → 0,

∫

RN
V (x)̃jn(x)ω̃2

n dx → 0,
∫

RN
V (x)ω̃2

n dx → 1.

By a similar argument as (2.13) and (2.14), we can conclude a contradiction.
On the other hand, it follows from (f2), (f3), (f8), (f11), and (G0) that there is C11 > 0 such

that
∣∣
∣∣

∫

RN

(
g
(
x, f (vn)

)
f ′(vn) – g

(
x, f (v)

)
f ′(v)

)
(vn – v) dx

∣∣
∣∣
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≤
∫

RN
C11

(|vn| + |vn| p
2 –1 + |v| + |v| p

2 –1)|vn – v|dx

≤ C11
((‖vn‖2 + ‖v‖2

)‖vn – v‖2 +
(‖vn‖

p–2
2

p
2

+ ‖v‖
p–2

2
p
2

)‖vn – v‖ p
2

)

= o(1). (2.16)

Then, by (2.15) and (2.16), we get

o(1) =
〈

 ′(vn) – 
 ′(v), vn – v

〉

=
∫

RN

(∣∣∇(vn – v)
∣∣2 + V (x)

(
f (vn)f ′(vn) – f (v)f ′(v)

)
(vn – v)

)
dx

–
∫

RN

(
g
(
x, f (vn)

)
f ′(vn) – g

(
x, f (v)

)
f ′(v)

)
(vn – v) dx

≥ C9‖vn – v‖2
E + o(1).

Therefore, we obtain ‖vn – v‖E → 0 as n → ∞. This completes the proof. �

3 Proof of the main results
Let {ej} be a total orthonormal basis of E, define

Xj = Rej, Yk =
k⊕

j=1

Xj, Zk =
∞⊕

j=k+1

Xj,

where k ∈ Z and Yk is finite dimensional.

Lemma 3.1 ([25]) Under assumptions (Ṽ1), (V2), for s ∈ [2, 2∗),

βk(s) := sup
v∈Zk ,‖v‖=1

‖v‖s → 0, k → ∞.

We need to prove that there exists C12 > 0 such that

∫

RN

(|∇v|2 + V (x)f 2(v)
)

dx ≥ C12‖v‖2
E , ∀v ∈ Sθ , (3.1)

where Sθ := {v ∈ E : ‖v‖ = θ}. Similar to the proof of (2.12), we can get that (3.1) is true.
And according to Lemma 3.1, we can choose an integer m ≥ 1 such that

‖v‖2
2 ≤ C12

4c1
‖v‖2

E, ‖v‖
p
2
p
2

≤ C12

4c2
‖v‖

p
2
E , ∀v ∈ Zm. (3.2)

Lemma 3.2 Assume that (Ṽ1), (V2), and (G0) hold, then there exist positive constants θ

and α such that


|Sθ ∩Zm ≥ α.
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Proof For every v ∈ Zm and ‖v‖E = θ < 1, from (f3), (f8), (3.1), and (3.2), we obtain


(v) =
1
2

∫

RN

(|∇v|2 + V (x)f 2(v)
)

dx –
∫

RN
G

(
x, f (v)

)
dx

≥ C12

2
‖v‖2

E –
∫

RN

(
c1

∣∣f (v)
∣∣2 + c2

∣∣f (v)
∣∣p)dx

≥ C12

2
‖v‖2

E –
∫

RN

(
c1|v|2 + c2|v| p

2
)

dx

≥ C12

2
‖v‖2

E –
C12

4
‖v‖2

E –
C12

4
‖v‖

p
2
E

=
C12

4
‖v‖2

E
(
1 – ‖v‖

p–4
2

E
)

> 0,

where p ∈ (4, 22∗). This completes the proof.

Lemma 3.3 Assume that (Ṽ1), (V2), (G0), and (G1) hold, then for any finite dimensional
subspace Ẽ ⊂ E, there exists R = R(̃E) > 0 such that


(v) ≤ 0, ∀v ∈ Ẽ \ BR.

Proof For any finite dimensional subspace Ẽ ⊂ E, there exists an integer m > 0 such that
Ẽ ⊂ Em. To the contrary, there is a sequence {vn} ⊂ Ẽ such that ‖vn‖E → ∞ and 
(vn) > 0.

Hence

1
2

∫

RN

(|∇vn|2 + V (x)f 2(vn)
)

dx >
∫

RN
G

(
x, f (vn)

)
dx. (3.3)

Let ωn = vn
‖vn‖E

, for a subsequence, we can assume that ωn ⇀ ω in E, ωn → ω in Ls(RN )
for any s ∈ [2, 2∗), and ωn → ω a.e. on R

N . Let �1 := {x ∈R
N : ω(x) �= 0} and �2 := {x ∈R

N :
ω(x) = 0}. If meas(�1) > 0, according to (G1), (f5), and Fatou’s lemma, we obtain

∫

�1

G(x, f (vn))
‖vn‖2

E
dx =

∫

�1

G(x, f (vn))
(f (vn))4

(f (vn))4

v2
n

ω2
n dx → +∞.

By (G0) and (G1), there exists C13 > 0 such that

G(x, t) ≥ –C13t2, ∀(x, t) ∈R
N ×R.

Hence
∫

�2

G(x, f (vn))
‖vn‖2

E
dx ≥ –C13

∫

�2

f 2(vn)
‖vn‖2

E
dx ≥ –C13

∫

�2

ω2
n dx.

Because ωn → ω in L2(RN ), then

lim inf
n→∞

∫

�2

G(x, f (vn))
‖vn‖2

E
dx ≥ 0.

Therefore

lim
n→∞

∫

RN

G(x, f (vn))
‖vn‖2

E
dx = +∞.
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By (3.3), we get 1
2 > +∞, which is a contradiction. So meas(�1) = 0, i.e., ω(x) = 0 a.e. on

R
N . According to the equivalency of all norms in Ẽ, there exists ι > 0 such that

‖v‖2
2 ≥ ι‖v‖2

E , ∀v ∈ Ẽ.

Hence

0 = lim
n→∞‖ωn‖2

2 ≥ lim
n→∞ ι‖ωn‖2

E = ι,

a contradiction. This completes the proof. �

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2 Set X = E, Y = Ym and Z = Zm. Clearly, by 
(0) = 0 and (G3), we
get 
 is even. According to Lemma 2.4, Lemma 3.2, and Lemma 3.3, we know that all the
conditions of Proposition 2.1 are satisfied. Therefore, problem (2.1) possesses infinitely
many nontrivial solutions sequence {vn} such that 
(vn) → ∞ as n → ∞, then problem
(1.1) also possesses infinitely many nontrivial solutions sequence {un} such that �(un) →
∞ as n → ∞. �
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