
Niu and Wang Boundary Value Problems         (2023) 2023:66 
https://doi.org/10.1186/s13661-023-01756-9

R E S E A R C H Open Access

Solutions for planar
Kirchhoff-Schrödinger-Poisson systems with
general nonlinearities
Rui Niu1 and Hefan Wang2*

*Correspondence:
wanghefan0058@163.com
2College of Civil and Architectural
Engineering, Heilongjiang Institute
of Technology, Harbin, 150050, P.R.
China
Full list of author information is
available at the end of the article

Abstract
In this paper, we study the following Kirchhoff-type Schrödinger-Poisson systems in
R

2:

{
–(a + b

∫
R2 |∇u|2 dx)�u + V(x)u +μφu = f (u), x ∈ R

2,

�φ = u2, x ∈ R
2,

where a,b > 0, V ∈ C(R2,R) and f ∈ C(R,R). By using variational methods combined
with some inequality techniques, we obtain the existence of the least energy solution,
the mountain pass solution, and the ground state solutions for the above systems
under some general conditions for the nonlinearities. Our results extend and improve
the main results in [Chen, Shi, Tang, Discrete Contin. Dyn. Syst. 39 (2019) 5867–5889].
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1 Introduction and main results
In this paper, we consider existence results for solutions of the following 2-D Schrödinger-
Poisson systems of Kirchhoff type:

⎧⎨
⎩–(a + b

∫
R2 |∇u|2 dx)�u + V (x)u + μφu = f (u), x ∈R

2,

�φ = u2, x ∈R
2,

(1.1)

where a, b > 0, μ > 0, V : R2 → R and f : R → R are continuous functions. Furthermore,
we impose the following assumptions for V and f :

(V ) V ∈ C1(R2, [0,∞)) and V (x) ≥ infx∈R2 V (x) > 0;
(V1) 6V (x) + (∇V (x), x) ≥ 0;
(V2) 2(1 + t4)V (x) – 4t2V (t–1x) + (1 – t4)(∇V (x), x) ≥ 0, for every t ≥ 0, x ∈R

2\{0};
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(F1) f ∈ C(R,R), and there exist constants C > 0, p ∈ (5,∞) such that

∣∣f (u)
∣∣ ≤ C

(
1 + |u|p–1), ∀u ∈R;

(F2) f (u) = o(|u|) as u → 0;
(F3) lim|u|→∞ F(u)

|u|5 = ∞;
(F4) there exist constants α, C > 0 and q > 1 such that

f (u)u ≥ 5F(u), ∀u ∈R,

and
∣∣∣∣ f (u)

u

∣∣∣∣ ≥ α ⇒
∣∣∣∣ f (u)

u

∣∣∣∣
q

≤ C
[
f (u)u – 5F(u)

]
;

(F5) the function f (u)u–F(u)
u3 is nondecreasing on (–∞, 0) ∪ (0,∞).

It is easy to verify that there are simple examples of functions V and f satisfying the above
hypotheses:

V (x) ≡ Const, f (u) = |u|p–2u, p ∈ (5,∞).

The direct motivation for our work was inspired by [3]. More precisely, Chen et al. [3]
concerned the following Schrödinger-Poisson system:

⎧⎨
⎩–�u + u + φu = f (u), x ∈ R

2,

�φ = u2, x ∈ R
2.

(1.2)

The authors showed that problem (1.2) admits a nontrivial mountain pass solution and
a Nehari-Pohozaev type ground state solution. Based on the work of [3], we consider the
problem (1.2) with the Kirchhoff term in the present paper. On one hand, this consider-
ation is mainly from an interest in mathematics itself. Actually, if a = 1, b = 0, V (x) ≡ 1,
problem (1.1) is equivalent to (1.2). When b �= 0, there are two nonlocal terms ‖∇u‖4

2 and∫
R2 φuu2 dx in this problem, and we have to compare these two nonlocal terms when we

prove the boundedness of the Cerami sequence. In addition, the existence of the nonlocal
term ‖∇u‖4

2 makes it difficult to prove that the corresponding functional of problem (1.1)
satisfies the mountain pass geometry.

On the other hand, Kirchhoff-type problems have intrigued many researchers since they
have many applications, for example, in physics and biological systems. More specifically,
Kirchhoff established a model given by

ρ
∂2u
∂t2 –

(
p0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx
)

∂2u
∂x2 = 0, (1.3)

where ρ , p0, h, E, L are constants, which contain some physical meanings. In fact, (1.3)
extends the classical D’Alembert wave equation by considering the effects of the changes
in the length of the strings during the vibrations. Note that the presence of the nonlocal
Kirchhoff term makes (1.3) no longer a pointwise identity. Moreover, Schrödinger-Poisson



Niu and Wang Boundary Value Problems         (2023) 2023:66 Page 3 of 22

system was introduced by Benci and Fortunato in [1] as a physical model describing soli-
tary waves for nonlinear Schrödinger type equations coupled with a Poisson equation. The
nonlocal term φu represents the interaction with the electric field. For more details on the
physical background and existence results related to Kirchhoff-Schrödinger-Poisson sys-
tems, we refer to [2, 4, 9–11, 14–20, 22, 23] and the references therein.

In the present paper, we study the existence of solutions for system (1.1). For this, by
applying the reduction argument introduced in [6], we first simplify the system (1.1) to
the following equation

–
(

a + b
∫
R2

|∇u|2 dx
)

�u + V (x)u + φuu = f (u) in R
2, (1.4)

where

φu(x) =
(
�2 ∗ u2)(x) =

1
2π

∫
R2

log |x – y|u2(y) dy,

�N is given by

�N (z) =

⎧⎨
⎩

1
2π

log |z|, N = 2,
1

N(2–N)ωN
|z|2–N , N ≥ 3,

where ωN is the volume of the unit N-ball. That is, the solution of (1.4) is also a solution
of (1.1). One can easily get the corresponding functional as follows:

I(u) =
a
2

∫
R2

|∇u|2 dx +
b
4

(∫
R2

|∇u|2 dx
)2

+
1
2

∫
R2

V (x)u2 dx

+
μ

4

∫
R2

φuu2 dx –
∫
R2

F(u) dx. (1.5)

Let H1(R2) denote the Sobolev space endowed with the standard scalar product and norm

(u, v) =
∫
R2

(∇u∇v + uv) dx, ‖u‖H1 :=
(∫

R2

(|∇u|2 + u2)dx
) 1

2
.

Define

‖u‖2 :=
∫
R2

(|∇u|2 + V (x)u2)dx, |u‖2
∗ :=

∫
R2

log
(
1 + |x|)u2(x) dx.

Denote by E = {u ∈ H1(R2) : ‖u‖∗ < +∞,
∫
R2 V (x)u2 dx < +∞} the Hilbert space endowed

with the norm

‖u‖E :=
(‖u‖2 + ‖u‖2

∗
) 1

2 .

It is obvious that ‖u‖ is equivalent to the standard norm ‖u‖H1 under the assumption
(V ). It is standard to verify that I ∈ C1(E,R) and the critical points of I correspond to the
weak solutions of problem (1.1). It is worth pointing out that the methods for the three-
dimensional situation is not often easily adapted to the two-dimensional one, because the
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kernel �2(x) is sign-changing and is bounded neither from above nor from below, and the
corresponding functional I is not well defined on H1(R2).

Analogously to [7, Lemma 2.4], the Pohozaev funtional of (1.4) can be defined as follows:

P(u) =
1
2

∫
R2

[
2V (x) +

(∇V (x), x
)]

u2 dx + μ

∫
R2

φuu2 dx +
μ

8π
‖u‖4

2

– 2
∫
R2

F(u) dx. (1.6)

It is well-known that P(u) = 0 when u is the solution of (1.1). Now, we define

J(u) = 2
〈
I ′(u), u

〉
– P(u)

= 2a
∫
R2

|∇u|2 dx + 2b
(∫

R2
|∇u|2 dx

)2

+
1
2

∫
R2

[
2V (x) –

(∇V (x), x
)]

u2 dx + μ

∫
R2

φuu2 dx

–
μ

8π
‖u‖4

2 – 2
∫
R2

[
f (u)u – F(u)

]
dx. (1.7)

And we define the following Nehari-Pohozaev manifold of the functional I :

M :=
{

u ∈ E\{0} : J(u) = 0
}

. (1.8)

It is clear that M contains any nontrivial solution of (1.1). Specially, if the solution û of
(1.1) satisfies I(û) = infu∈M I(u), û is a ground state solution. Meanwhile, we call a solution
û of (1.1) to be a least energy solution if I(u) is the smallest among all nontrivial solutions
of (1.1). In addition, we call a solution û is a mountain pass type solution when I(û) = β ,
here

β = inf
η∈�

max
t∈[0,1]

I
(
η(t)

)
, � =

{
η ∈ C

(
[0, 1], E

)
: η(0) = 0, I

(
η(1)

)
< 0

}
.

Now, we can demonstrate the first main result as follows.

Theorem 1.1 Assume that (V ), (V1) and (F1)–(F4) hold. There exists μ∗ > 0 such that for
0 < μ ≤ μ∗, problem (1.1) has a nontrivial least energy solution in E, and problem (1.1) has
a solution of mountain pass type in E with positive energy.

Here is the second main result.

Theorem 1.2 Suppose that V satisfies (V ), (V2) and f satisfies (F1)–(F3), (F5). There exists
μ∗∗ > 0 such that for μ ≥ μ∗∗, problem (1.1) has a ground state solution in E.

Remark 1.1 If V (x) ≡ 1 and b = 0 in (1.1), Theorems 1.1–1.2 reduces to the main results
of [3]. In this sense, we extend and improve the related results of [3].

Here we sketch the main approaches in this paper. In detail, we first establish a Cerami
sequence for the corresponding functional by using the minimax principle. And then, with
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the help of the Gagliardo-Nirenberg inequality, the Hardy-Littlewood-Sobolev inequal-
ity, we verify the boundedness of the Cerami sequence. Finally, motivated by [5], we get
the existence of the lowest energy solution and the mountain pass solution. Moreover, by
constructing some key inequalities, we prove the existence of ground state solutions for
problem (1.1).

This paper is organized as follows. Section 2 gives the preliminaries and variational
framework. Section 3 and Sect. 4 present the proofs of Theorem 1.1 and 1.2, exactly, Sect. 3
illustrates the existence of mountain pass type solutions and the lowest energy solutions
for problem (1.1), Sect. 4 explains the existence of ground state solutions for problem (1.1).

Finally, we state some notations used in this paper: Lq(R2) denotes the Lebesgue space
equipped with the norm ‖u‖q = (

∫
R2 |u|q dx)1/q, 2 ≤ q < +∞; Br(z) denotes the open ball

centered at z with radius r > 0; C, C̄ and Ĉ denote possibly different positive constants in
different places.

2 Preliminaries and variational framework
Firstly, we define the symmetric bilinear forms as follows:

(w, z) �→A1(w, z) =
1

2π

∫
R2

∫
R2

log
(
1 + |x – y|)w(x)z(y) dx dy,

(w, z) �→A2(w, z) =
1

2π

∫
R2

∫
R2

log

(
1 +

1
|x – y|

)
w(x)z(y) dx dy,

(w, z) �→A0(w, z) =
1

2π

∫
R2

∫
R2

log
(|x – y|)w(x)z(y) dx dy,

one can easily get that A0(w, z) = A1(w, z) – A2(w, z). Actually, the definition aforemen-
tioned is restricted to measurable functions w, z : R2 → R such that the corresponding
double integral is well defined in Lebesgue sense. It follows from the Hardy-Littlewood-
Sobolev inequality [12] that

∣∣A2(w, z)
∣∣ ≤ 1

2π

∫
R2

∫
R2

1
|x – y|

∣∣w(x)z(y)
∣∣dx dy ≤ C‖w‖4/3‖z‖4/3, (2.1)

where C > 0 is a constant. Based on the aforementioned functionals, we define the func-
tionals I0, I1, I2 as follows:

I1 : H1(
R

2) → [0,∞], I1(u) = A1
(
u2, u2),

I2 : L
8
3
(
R

2) → [0,∞], I2(u) = A2
(
u2, u2),

I0 : H1(
R

2) →R∪ {∞}, I0(u) = A1
(
u2, u2).

Here I2 only takes finite values on L 8
3 (R2). In fact, from (2.1), we have

∣∣I2(u)
∣∣ ≤ C‖u‖4

8/3, ∀u ∈ L
8
3
(
R

2). (2.2)

By the definition of E, one can get that E is compactly embedded in Ls(R2) for s ∈ [2,∞).
Note that

log
(
1 + |x – y|) ≤ log

(
1 + |x| + |y|) ≤ log

(
1 + |x|) + log

(
1 + |y|),
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one has

∣∣A1(wz, uv)
∣∣ ≤ 1

2π

∫
R2

∫
R2

[
log

(
1 + |x|) + log

(
1 + |y|)]∣∣w(x)z(x)

∣∣∣∣u(y)v(y)
∣∣dx dy

≤ ‖w‖∗‖z‖∗‖u‖2‖v‖2 + ‖w‖2‖z‖2‖u‖∗‖v‖∗, ∀w, z, u, v ∈ E. (2.3)

Similar to [5, Lemma 2.2], for i = 0, 1, 2, we conclude that Ii is of class C1 on E, and

〈
I ′

i (u), v
〉

= 4Ai
(
u2, v

)
, ∀u, v ∈ E. (2.4)

From (F1), (F2) and (2.4), we deduce that I ∈ C1(E,R), and

I(u) =
a
2

∫
R2

|∇u|2 dx +
b
4

(∫
R2

|∇u|2 dx
)2

+
1
2

∫
R2

V (x)u2 dx

+
μ

4
[
I1(u) – I2(u)

]
–

∫
R2

F(u) dx, (2.5)

〈
I ′(u), v

〉
= a

∫
R2

∇u∇v dx + b
∫
R2

|∇u|2 dx
∫
R2

∇u∇v dx +
∫
R2

V (x)uv dx

+ μ
[
A1

(
u2, uv

)
– A2

(
u2, uv

)]
–

∫
R2

f (u)u dx, (2.6)

J(u) = 2a
∫
R2

|∇u|2 dx + 2b
(∫

R2
|∇u|2 dx

)2

+
1
2

∫
R2

[
2V (x) –

(∇V (x), x
)]

u2 dx + μ
[
I1(u) – I2(u)

]

–
μ

8π
‖u‖4

2 – 2
∫
R2

[
f (u)u – F(u)

]
dx. (2.7)

Now, we introduce the general minimax principle, which will be used later.

Lemma 2.1 ([8, Proposition 2.8]) Let X be a Banach space, and G0 be the closed subspace
of the metric space G, �0 ⊂ C(G0, X). Now define

�̄ :=
{
γ ∈ C(G, X) : γ |G0 ∈ �0

}
.

If 
 ∈ C1(X,R) satisfies

c̄ := sup
γ0∈�0

sup
u∈G0



(
γ0(u)

)
< c := inf

γ∈�
sup
u∈G



(
γ (u)

)
< ∞,

then, for ε ∈ (0, (c – c̄)/2), ξ > 0 and γ ∈ �̄ such that

sup
G


 ◦ γ ≤ c + ε,

there is u ∈ X such that
(i) c – 2ε ≤ 
(u) ≤ c + 2ε;

(ii) dist(u,γ (G)) ≤ 2ξ ;
(iii) ‖
′(u)‖ ≤ 8ε

ξ
.
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Motivated by [7, Lemma 3.2], we illustrate that the functional I has a Cerami sequence
here.

Lemma 2.2 Assume that (V ) and (F1) – (F3) hold. Then there is a sequence {un} ⊂ E sat-
isfying

I(un) → c > 0,
∥∥I ′(un)

∥∥
E∗

(
1 + ‖un‖E

) → 0, J(un) → 0, (2.8)

where

c := inf
γ∈�

max
t∈[0,1]

I
(
γ (t)

)
, � :=

{
γ ∈ C

(
[0, 1], E

)
: γ (0) = 0, I

(
γ (1)

)
< 0

}
.

Proof We verify that 0 < c < ∞ firstly. Define ut := u(tx) for t > 0 here and in the sequel.
One can deduce that

I0
(
t2ut

)
=

t4

2π

∫
R2

∫
R2

(
log |tx – ty| – log t

)
u2(tx)u2(ty) d(tx) d(ty)

=
t4

2π

∫
R2

∫
R2

(
log |x – y| – log t

)
u2(x)u2(y) dx dy

= t4I0(u) –
t4 log t

2π
‖u‖4

2, ∀t > 0.

Then,

I
(
t2ut

)
=

a
2

t4‖∇u‖2
2 +

b
4

t8‖∇u‖4
2 +

t2

2

∫
R2

V
(
t–1x

)
u2 dx +

μt4

4
I0(u)

–
μt4 log t

8π
‖u‖4

2 –
1
t2

∫
R2

F
(
t2u

)
dx, ∀t > 0. (2.9)

By (F1)–(F3) and (2.9), we have

lim
t→0

I
(
t2ut

)
= 0, sup

t>0
I
(
t2ut

)
< ∞, I

(
t2ut

)
= –∞ as t → +∞.

Thus, choosing T > 0 large such that I(T2uT ) < 0. For t ∈ [0, 1], set γT (t) = (tT)2utT , then,
γT ∈ C([0, 1], E) satisfies γT (0) = 0, I(γT (1)) < 0 and maxt∈[0,1] I(γT (t)) < ∞. Hence, � �= 0,
c < ∞.

From (F1) and (F2), for every ε > 0, there is C(ε) > 0 satisfying

f (u)u ≤ εu2 + C(ε)|u|p, F(u) ≤ εu2 + C(ε)|u|p, ∀u ∈R. (2.10)

Fix ε = a/4, by (2.2), (2.5), (2.10) and Sobolev imbedding inequality, one has

I(u) ≥ a
2
‖∇u‖2

2 +
b
4
‖∇u‖4

2 +
1
2

∫
R2

V (x)u2 dx –
Cμ

4
‖u‖4

8
3

–
a
4
‖u‖2

2 – C‖u‖p
p

≥ min{a, 1}1
4
‖u‖2 – Cμ‖u‖4 – C‖u‖p,∀u ∈ E.
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One can easily get that there exist constants ρ̂ > 0 and d > 0 satisfying

I(u) ≥ 0, ∀‖u‖ ≤ ρ̂ and I(u) ≥ d, ∀‖u‖ = ρ̂. (2.11)

For γ ∈ �, note that γ (0) = 0, I(γ (1)) < 0, by (2.11), one has ‖γ (1)‖ > ρ̂ . Noticing that γ (t)
is a continuous function, using the intermediate value theorem, there is t̂ ∈ (0, 1) such that
‖γ (t̂)‖ = ρ̂ . Consequently,

sup
t∈[0,1]

I
(
γ (t)

) ≥ I
(
γ (t̂)

) ≥ d > 0, ∀γ ∈ �,

which implies

0 < d ≤ inf
γ∈�

max
t∈[0,1]

I
(
γ (t)

)
= c < ∞. (2.12)

Let Ê be a Banach space endowed with the product norm

∥∥(s, v)
∥∥

Ê :=
(|s|2 + ‖v‖2

E
) 1

2 .

Now, define the map

g : Ê := R× E → E, g(s, v)(x) := e2sv
(
esx

)
for s ∈R, v ∈ E, x ∈ R

2,

Here we consider the functional

ψ(s, v) = I
(
g(s, v)

)
=

a
2

∫
R2

∣∣∇g(s, v)
∣∣2 dx +

b
4

(∫
R2

∣∣∇g(s, v)
∣∣2 dx

)2

+
1
2

∫
R2

V (x)
∣∣g(s, v)

∣∣2 dx

+
μ

4
[
I1

(
g(s, v)

)
– I2

(
g(s, v)

)]
–

∫
R2

F
(
g(s, v)

)
dx

=
a
2

e4s
∫
R2

|∇v|2 dx +
b
4

e8s
(∫

R2
|∇v|2 dx

)2

+
e2s

2

∫
R2

V
(
e–sx

)
v2 dx +

μe4s

4
[
I1(v) – I2(v)

]

–
μse4s

8π

(∫
R2

v2 d
)2

–
1

e2s

∫
R2

F
(
e2sv

)
dx.

Then,

∂sψ(s, v) = 2ae4s
∫
R2

|∇v|2 dx + 2be8s
(∫

R2
|∇v|2 dx

)2

+ e2s
∫
R2

V
(
e–sx

)
v2 dx

–
e2s

2

∫
R2

(∇V
(
e–sx

)
,
(
e–sx

))
v2 dx + μe4s[I1(v) – I2(v)

]

– μ

(
se4s

2π
+

e4s

8π

)(∫
R2

v2 dx
)2
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+
2

e2s

∫
R2

F
(
e2sv

)
dx –

2
e2s

∫
R2

f
(
e2sv

)
e2sv dx

= 2a
∥∥∇g(s, v)

∥∥2
2 + 2b

∥∥∇g(s, v)
∥∥4

2 +
∫
R2

V (x)
∣∣g(s, v)

∣∣2 dx

–
1
2

∫
R2

(∇V (x), x
)∣∣g(s, v)

∣∣2 dx

+ μ
[
I1

(
g(s, v)

)
– I2

(
g(s, v)

)]
–

μ

8π

(∫
R2

∣∣g(s, v)
∣∣2 dx

)2

– 2
∫
R2

[
f
(
g(s, v)

)
g(s, v) – F

(
g(s, v)

)]
dx

= J
(
g(s, v)

)
, ∀s ∈R, v ∈ E. (2.13)

This shows that ψ is of class C1 on Ê. Furthermore, for s ∈R, v, w ∈ E, we have

∂vψ(s, v)w = I ′(g(s, v)
)
g(s, v), (2.14)

since for every s ∈R, the map v �→ g(s, v) is linear. Next, we define

ĉ = inf
γ̂∈�̂

max
t∈[0,1]

I
(
γ̂ (t)

)
,

where

�̂ =
{
γ̂ ∈ C

(
[0, 1], Ê

)
: γ̂ (0) = (0, 0), I

(
γ̂ (1)

)
< 0

}
.

Note that � = {g ◦ γ̂ : γ̂ ∈ �̂}, one has c = ĉ. For n ∈ N, from the definition of c, one can
choose γn ∈ � satisfying

max
t∈[0,1]

ψ
(
0,γn(t)

)
= max

[0,1]
I
(
γn(t)

) ≤ c +
1
n2 .

By Lemma 2.1, set G = [0, 1], G0 = {0, 1} and Ê, �̂ in place of X, �. Set γ̂n(t) = (0,γn(t)),
εn = 1

n2 , ξn = 1
n . From (2.12), one has εn = 1

n2 ∈ (0, c
2 ) for n ∈N large. And then, Lemma 2.1

implies that that there exists (sn, vn) ∈ Ê such that, as n → ∞,

ψ(sn, vn) → c, (2.15)∥∥ψ ′(sn, vn)
∥∥

Ê∗
(
1 +

∥∥(sn, vn)
∥∥

Ê

) → 0, (2.16)

dist
(
(sn, vn), {0} × γn

(
[0, 1]

)) → 0. (2.17)

It follows from (2.17) that

sn → 0. (2.18)

Since

〈
ψ ′(sn, vn), (w, z)

〉
=

〈
I ′(g(sn, vn)

)
, g(sn, vn)

〉
+ J

(
g(sn, vn)

)
w, ∀(w, z) ∈ Ê. (2.19)
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Combining (2.13) with (2.14), let w = 1 and z = 0 in (2.19), one has

J
(
g(sn, vn)

) → 0, as n → ∞. (2.20)

Let un := g(sn, vn), by (2.15) and (2.20), we have

I(un) → c, J(un) → 0 as n → ∞.

For v ∈ E, define wn = e–2sn v(e–sn x) ∈ E, it follows from (2.16) and (2.19) that

(
1 + ‖un‖E

)∣∣I ′(un)v
∣∣ =

(
1 + ‖un‖E

)∣∣I ′(un)g(sn, wn)
∣∣ = o(1)‖wn‖E , as n → ∞.

On the other hand, we deduce from (2.18) that

‖wn‖2
E = ‖wn‖2 + ‖wn‖2

∗

= e–4sn‖∇v‖2
2 + e–2sn

∫
R2

V
(
esn x

)
v2 dx + e–2sn

∫
R2

[
log

(
1 + esn |x|)]v2 dx

=
[
1 + o(1)

]‖∇v‖2
2 +

[
1 + o(1)

] ∫
R2

V (x)v2 dx

+
[
1 + o(1)

] ∫
R2

[
log

(
1 + |x|)]v2 dx

=
[
1 + o(1)

]‖v‖2
E , as n → ∞,

where o(1) → 0 uniformly in v ∈ E. Consequently,

(
1 + ‖un‖E

)∥∥I ′(un)
∥∥

E∗ → 0, as n → ∞.

The proof is now finished. �

Now, we illustrate the boundedness of the Cerami sequence.

Lemma 2.3 Suppose that (V ), (V1) and (F1)–(F4) hold. Let {un} ⊂ E satisfying (2.8). Then
there exists μ∗ > 0 such that {un} is bounded in H1(R2) with μ ≤ μ∗.

Proof We choose μ∗ > 0 small enough to satisfy

a
4
‖∇un‖2

2 – Cμ‖un‖3
2‖∇un‖2 ≥ 0, for μ ≤ μ∗. (2.21)

By applying (F4), (V1), (2.8), (2.21), the Gagliardo-Nirenberg inequality [13, Theorem 1.3.7]
and the Hardy-Littlewood-Sobolev inequality [8], one has

c + o(1) = I(un) –
1
8

J(un)

=
a
4
‖∇un‖2

2 +
3
8

∫
R2

V (x)u2
n dx +

1
16

∫
R2

(∇V (x), x
)
u2

n dx +
μ

8

∫
R2

φun u2
n dx

+
μ

64π
‖un‖4

2 +
1
4

∫
R2

[
f (un)un – 5F(un)

]
dx
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≥ a
4
‖∇un‖2

2 +
3
8

∫
R2

V (x)u2
n dx +

1
16

∫
R2

(∇V (x), x
)
u2

n dx – Cμ‖un‖4
8
3

+
μ

16π

∫
R2

∫
R2

log
(
1 + |x – y|)u2

n(x)u2
n(y) dx dy +

μ

64π
‖un‖4

2 (2.22)

+
1
4

∫
R2

[
f (un)un – 5F(un)

]
dx

≥ a
4
‖∇un‖2

2 – Cμ‖un‖3
2‖∇un‖2 +

3
8

∫
R2

V (x)u2
n dx +

1
16

∫
R2

(∇V (x), x
)
u2

n dx

+
μ

64π
‖un‖4

2 +
1
4

∫
R2

[
f (un)un – 5F(un)

]
dx (2.23)

≥ μ

64π
‖un‖4

2,

which means

‖un‖2 ≤ C,
∫
R2

[
f (un)un – 5F(un)

]
dx ≤ C. (2.24)

Next, we show the boundedness of {‖un‖}. With reduction to absurdity, we suppose
‖un‖ → ∞. Set vn := un/‖un‖, from (2.24), we have ‖vn‖ = 1, ‖vn‖2 → 0. Let q′ = q

q–1 , it
follows from the Gagliardo-Nirenberg inequality that

‖vn‖2q′
2q′ ≤ C‖vn‖2

2‖∇vn‖2q′–2
2 = o(1). (2.25)

Define

Gn :=
{

x ∈R
2 :

∣∣∣∣ f (un)
un

∣∣∣∣ ≤ α

}
.

Then,
∫

Gn

∣∣∣∣ f (un)
un

∣∣∣∣v2
n dx ≤ α‖vn‖2

2 = o(1). (2.26)

Furthermore, from (F4), (2.24), (2.25) and the Hölder inequality, one has

∫
R2\Gn

∣∣∣∣ f (un)
un

∣∣∣∣v2
n dx

≤
(∫

R2\Gn

∣∣∣∣ f (un)
un

∣∣∣∣
q

dx
) 1

q
(∫

R2\Gn

|vn|2q′
dx

) 1
q′

≤ C
1
q

(∫
R2\Gn

[
f (un)un – 5F(un)

]
dx

) 1
q
‖vn‖2

2q′ = o(1). (2.27)

It follows from (2.2), (2.24) and the Gagliardo-Nirenberg inequality that

I2(un) ≤ C‖un‖4
8/3 ≤ C‖un‖3

2‖∇un‖2 ≤ C‖∇un‖2. (2.28)

Then, from (2.5), (2.8), (2.26), (2.27) and (2.28) follows that

min{a, 1} + o(1) =
min{a, 1}‖un‖2 – 〈I ′(un), un〉

‖un‖2
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≤ –μI1(un) + μI2(un) +
∫
R2 f (un)un dx

‖un‖2

≤ Cμ

‖un‖ +
∫

Gn

∣∣∣∣ f (un)
un

∣∣∣∣v2
n dx +

∫
R2\Gn

∣∣∣∣ f (un)
un

∣∣∣∣v2
n dx

= o(1),

which is a contradiction. Consequently, {un} is bounded in H1(R2). �

To obtain the nontrivial solutions, we also need the following important lemma.

Lemma 2.4 ([5, Lemma 2.1]) Let {un} be the sequence in L2(R2) such that un → u ∈
L2(R2)\{0} a.e., on R

2. If {vn} is a bounded sequence in L2(R2) such that supn∈NA1(u2
n, v2

n) <
∞, then {‖vn‖∗} is bounded. If, moreover, A1(u2

n, v2
n) → 0, ‖vn‖2 → 0 as n → ∞, then

‖vn‖∗ → 0 as n → ∞.

3 Lowest energy solutions

Proof of Theorem 1.1 In terms of Lemma 2.2 and Lemma 2.3, there is a sequence {un} ⊂ E
such that ‖un‖2 ≤ K1 for some constant K1 > 0 and (2.8) hold. If

δ := lim sup
n→∞

sup
y∈R2

∫
B2(y)

|un|2 dx = 0,

by applying Lions’ concentration compactness principle [21, Lemma 1.21], we have un → 0
as n → ∞ in Ls(R2), s ∈ (2,∞). And then, by (2.2), we deduce that I2(un) → 0 as n → ∞.
From (2.10), let ε = c

3K1
, there is a constant C(ε) > 0 satisfying

∫
R2

∣∣∣∣1
2

f (un)un – F(un)
∣∣∣∣dx ≤ 3

2
ε‖un‖2

2 + C(ε)‖un‖p
p ≤ c

2
+ o(1). (3.1)

Then, by (2.5), (2.6), (2.8) and (3.1), one has

c + o(1) = I(un) –
1
2
〈
I ′(un), un

〉
= –

b
4
‖∇un‖4

2 –
μ

4
I1(un) +

μ

4
I2(un) +

∫
R2

[
1
2

f (un)un – F(un)
]

dx

≤ c
2

+ o(1),

which is absurd, thus, δ > 0.
Up to a subsequence if necessary, we suppose that there is yn ∈R

2 such that

∫
B1(yn)

|un|2 dx >
δ

2
.

Set ûn(x) = un(x + yn), then

∫
B1(0)

|ûn|2 dx >
δ

2
. (3.2)
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Since

‖ûn‖2
∗ =

∫
R2

log
(
1 + |x – yn|

)
u2

n dx ≤ ‖un‖2
∗ + log

(
1 + |yn|

)‖un‖2
2.

Then, for any n ∈ N, ûn ∈ E. Note that ‖ûn‖ = ‖un‖, Ii(ûn) = Ii(un), here i = 0, 1, 2, by (2.8),
we have

I(ûn) → c > 0,
〈
I ′(ûn), ûn

〉 → 0, as n → ∞. (3.3)

Going if necessary to a subsequence, one has ûn ⇀ û in H1(R2), ûn → û in Ls
loc(R2) for

s ≥ 2, ûn → û a.e. on R
2 as n → ∞. Then, from (3.2), we have û �= 0. It follows from (2.2),

(2.6), (2.10), (3.3) and Sobolev embedding inequality that

a‖∇ûn‖2
2 + b‖∇ûn‖4

2 +
∫
R2

V (x)û2
n dx + μI1(ûn) + o(1) = μI2(ûn) +

∫
R2

f (ûn)ûn dx

≤ C‖ûn‖4
8
3

+ ‖ûn‖2
2 + C‖ûn‖p

p

≤ C‖ûn‖4 + C‖ûn‖2 + C‖ûn‖p.

Note that {‖ûn‖} is bounded, one can conclude that supn∈N I1(ûn) = supn∈NA1(û2
n, û2

n) < ∞.
By Lemma 2.4, we obtain the boundedness of {‖ûn‖∗}. Thus, {ûn} is bounded in E. Passing
to a subsequence if necessary, we have

ûn ⇀ û in E, ûn → û in Ls(
R

2) for s ≥ 2,

ûn → û a.e. on R
2 as n → ∞.

(3.4)

Next, we show that I ′(û) = 0. We claim

〈
I ′(û), w

〉
= lim

n→∞
〈
I ′(ûn), w

〉
= lim

n→∞
〈
I ′(un), w(x – yn)

〉
= 0, ∀w ∈ E. (3.5)

Indeed, we have

∥∥w(x – yn)
∥∥2

E = ‖w‖2 +
∫
R2

log
(
1 + |x + yn|

)
w2 dx

≤ ‖w‖2
E + log

(
1 + |yn|

)‖w‖2
2, ∀w ∈ E. (3.6)

And, from (3.2), one has

‖un‖2
∗ =

∫
R2

log
(
1 + |x + yn|

)
û2

n dx

≥
∫

B1(0)
log

(
1 + |x + yn|

)
û2

n dx

≥ δ

2
log |yn|

≥ δ

4
log

(
1 + |yn|

)
, ∀|yn| ≥ 2. (3.7)
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Combining (3.6) with (3.7), we have

∥∥w(x – yn)
∥∥2

E ≤ ‖w‖2
E +

(
4
δ
‖un‖2

∗ + log 3
)

‖w‖2
2, ∀w ∈ E. (3.8)

Hence, by (2.6), (2.8) and (3.8), we deduce

|〈I ′(ûn), w
〉| =

∣∣〈I ′(un), w(x – yn)
〉∣∣

≤ ∥∥I ′(un)
∥∥

E∗

[
‖w‖2

E +
(

4
δ
‖un‖2

∗ + log 3
)

‖w‖2
2

] 1
2

= o(1), ∀w ∈ E. (3.9)

Then,

〈
I ′(ûn), û

〉
= o(1). (3.10)

Moreover, from (2.2) and (3.4), we have

∣∣A2
(
û2

n, ûn(ûn – û)
)∣∣ ≤ C‖ûn‖3

8/3‖ûn – û‖8/3 = o(1). (3.11)

By applying (F1), (F2), (3.4) and the Lebesgue’s dominated convergence theorem, we de-
duce that

∫
R2

f (ûn)(ûn – û) dx = o(1). (3.12)

Similar to [5, Lemma 2.6], one has

A1
(
û2

n, (ûn – û)w
)

= o(1), ∀w ∈ E. (3.13)

Let w = ûn – û, one has

A1
(
û2

n, (ûn – û)2) = o(1). (3.14)

Then, by (3.3), (3.4), (3.10)–(3.12) and (3.14), we have

o(1) =
〈
I ′(ûn), ûn – û

〉
= a‖∇ûn‖2

2 – a‖∇û‖2
2 + b‖∇ûn‖4

2 – b‖∇û‖4
2 +

∫
R2

V (x)û2
n dx

–
∫
R2

V (x)û2 dx + μA1
(
û2

n, (ûn – û)2) + μA1
(
û2

n, (ûn – û)û
)

– μA2
(
û2

n, ûn(ûn – û)
)

–
∫
R2

f (ûn)(ûn – û) dx

= a‖∇ûn‖2
2 – a‖∇û‖2

2 + b‖∇ûn‖4
2 – b‖∇û‖4

2

+ μA1
(
û2

n, (ûn – û)2) + o(1),
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which, together with ûn ⇀ û in H1(R2), implies

‖ûn – û‖ → 0.

Using Lemma 2.4, one has ‖ûn – û‖∗ → 0. Thus, ‖ûn – û‖E → 0. By (2.3), one has

∣∣A1
(
û2

n – û2, ûw
)∣∣ ≤ ‖ûn – û‖∗‖ûn + û‖∗‖û‖2‖w‖2 + ‖ûn – û‖2‖ûn + û‖2‖û‖∗‖w‖∗

= o(1), ∀w ∈ E. (3.15)

Analogously to (3.11) and (3.12), we deduce

A2
(
û2

n, (ûn – û)w
)

= o(1), A2
(
û2

n – û2, ûw
)

= o(1) (3.16)

and
∫
R2

[
f (ûn) – f (û)

]
w dx = o(1), ∀w ∈ E. (3.17)

Thus, by (2.6), (3.4), (3.13), (3.15), (3.16) and (3.17), one has

〈
I ′(ûn) – I ′(û), w

〉
(3.18)

= a(∇ûn – ∇û,∇w) + b‖∇ûn‖2
2(∇ûn,∇w) – b‖∇û‖2

2(∇û,∇w)

+
∫
R2

V (x)ûnw dx –
∫
R2

V (x)ûw dx + μA1
(
û2

n, (ûn – û)w
)

+ μA1
(
û2

n – û2, ûw
)

– μA2
(
û2

n, (ûn – û)w
)

– μA2
(
û2

n – û2, ûw
)

–
∫
R2

[
f (ûn) – f (û)

]
w dx

= o(1), ∀w ∈ E. (3.19)

Hence, it follows from (3.9) and (3.19) that (3.5) holds. Therefore, û ∈ E is a nontrivial
solution of (1.1), and I(û) = c > 0.

Define

N :=
{

u ∈ E\{0} : I ′(u) = 0
}

.

Note that û ∈N , one has N �= ∅. Using (F1) and (F2), we have

∣∣f (u)u
∣∣ ≤ 1

2
min{a, 1}u2 + C|u|p, ∀u ∈R. (3.20)

Due to 〈I ′(u), u〉 = 0 for u ∈N , by (2.6), (3.20) and Sobolev embedding inequality, one has

min{a, 1}‖u‖2 ≤ a‖∇u‖2
2 + b‖∇u‖4

2 +
∫
R2

V (x)u2 dx + μI1(u)

= μI2(u) +
∫
R2

f (u)u dx
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≤ Ĉ‖u‖4 +
1
2

min{a, 1}‖u‖2 + C̄‖u‖p, ∀u ∈N , (3.21)

which yields

‖u‖ ≥ δ0 := min

{
1,

(
1
2

min{a, 1}
) 1

2
(Ĉ + C̄)– 1

2

}
> 0, ∀u ∈N . (3.22)

One can easily deduce that infN I > –∞. Now, we choose {un} ⊂ N satisfying I(un) →
infN I . It is easy to see that {un} satisfies (2.8). Using Lemma 2.3, we obtain the bounded-
ness of {un} in H1(R2). Next, we claim that {un} does not vanish. In fact, if not, applying
Lions’ concentration compactness principle [12], one has un → 0 in Ls(R2) for s ∈ (2,∞).
Then, by (2.2) and (2.10), we have

I2(un) = o(1),
∫
R2

f (un)un dx = o(1),

which, together with (3.21) and (3.22), we obtain a contradiction. Therefore, using the
same argument as above, there is u0 ∈ N such that I(u0) = infN I > –∞. Then, u0 ∈ E is a
lowest energy solution of problem (1.1). �

4 Existence of ground state solutions
Now, we consider the existence of ground state solutions for problem (1.1). Here we give
some key lemmas.

Lemma 4.1 Assume that (F1), (F2) and (F5) hold. Then

h(s, u) :=
1 – s4

2
f (u)u +

s4 – 3
2

F(u) +
1
s2 F

(
s2u

) ≥ 0, ∀s > 0, u ∈R. (4.1)

Proof It follows from (F1) and (F2) that, for u = 0, (4.1) holds. In case u �= 0, from (F5), one
has

d(h(s, u))
ds

= 2s3|u|3
[

f (s2u)s2u – F(s2u)
s6|u|3 –

f (u)u – F(u)
|u|3

]
⎧⎨
⎩≥ 0, s ≥ 1,

≤ 0, 0 < s < 1,

then, h(s, u) ≥ h(1, u) = 0 for s > 0. �

Lemma 4.2 Assume that (V ), (V2), (F1), (F2) and (F5) hold. Then there is μ∗∗ > 0 such that,
for μ ≥ μ∗∗,

I(u) ≥ I
(
s2us

)
+

1 – s4

4
J(u), ∀u ∈ E, s > 0, (4.2)

I(u) ≥ 1
4

J(u) +
μ

64π
‖u‖4

2, ∀u ∈ E. (4.3)

Proof By direct calculation, we have

1 – s4 + 4s4 log s > 0, ∀s > 0. (4.4)
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So we can choose μ∗∗ > 0 sufficiently large to satisfy

μ(1 – s4)
32π

‖u‖4
2 +

μs4 log s
8π

‖u‖4
2 –

(1 – s4)2

4
b‖∇u‖4

2 ≥ 0, (4.5)

for μ ≥ μ∗∗. Then, it follows from (V2), (2.7), (2.9), (4.1) and (4.5) that

I(u) – I
(
s2us

)
=

a
2

∫
R2

(
1 – s4)|∇u|2 dx +

b‖∇u‖2
2

4

∫
R2

(
1 – s8)|∇u|2 dx

+
1
2

∫
R2

[
V (x) – s2V

(
s–1x

)]
u2 dx

+
μ

4
(
1 – s4)I0(u) +

μs4 log s
8π

‖u‖4
2

+
∫
R2

[
1
s2 F

(
s2u

)
– F(u)

]
dx

=
1 – s4

4
J(u) –

(1 – s4)2

4
b‖∇u‖4

2

+
1
2

∫
R2

V (x)u2 dx –
1
2

s2
∫
R2

V
(
s–1x

)
u2 dx

–
1 – s4

4

∫
R2

V (x)u2 dx +
1 – s4

8

∫
R2

(∇V (x), x
)
u2 dx +

μs4 log s
8π

‖u‖4
2

+
μ(1 – s4)

32π
‖u‖4

2 +
∫
R2

[
1
s2 F

(
s2u

)
+

1 – s4

2
f (u)u +

s4 – 3
2

F(u)
]

dx

≥ 1 – s4

4
J(u), ∀u ∈ E, s > 0,

which implies that (4.2) holds. Moreover, by (F1), (F2) and (4.1), one has

lim
s→0

h(s, u) =
1
2

f (u)u –
3
2

F(u) ≥ 0, u ∈R. (4.6)

Then, from (V2), (2.5), (2.7) and (4.6), we know

I(u) –
1
4

J(u) = –
b
4
‖∇u‖4

2 +
1
4

∫
R2

V (x)u2 dx +
1
8

∫
R2

(∇V (x), x
)
u2 dx

+
μ

32π
‖u‖4

2 +
1
2

∫
R2

[
f (u)u – 3F(u)

]
dx

≥ μ

64π
‖u‖4

2, ∀u ∈ E.

Then, (4.3) holds. �

Using Lemma 4.2, we obtain the corollary as follows.

Corollary 4.1 Assume that (V ), (V2), (F1), (F2) and (F5) hold. Then there is μ∗∗ > 0 such
that, for μ ≥ μ∗∗,

I(u) = max
s>0

I
(
s2us

)
, ∀u ∈M. (4.7)
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Lemma 4.3 Assume that (V ), (F1)–(F3) and (F5) hold. Then, for u ∈ E\{0}, there is a con-
stant s(u) > 0 such that [s(u)]2us(u) ∈M.

Proof Fix u ∈ E\{0}, now we define the function η(s) := I(s2us) for s ∈ (0,∞). Then,

η′(s) = 0 ⇔ 2as3‖∇u‖2
2 + 2bs7‖∇u‖4

2 + s
∫
R2

V
(
s–1x

)
u2 dx

–
1
2

∫
R2

(∇V
(
s–1x

)
, x

)
u2 dx

+ s3μI0(u) –
4s3 log s + s3

8π
μ‖u‖4

2 +
2
s3

∫
R2

F
(
s2u

)
dx

–
2
s

∫
R2

f
(
s2u

)
u dx = 0

⇔ J
(
s2us

)
= 0

⇔ s2us ∈M, ∀s > 0.

From (F1)–(F3), one can clearly know that lims→0 η(s) = 0, η(s) > 0 for s small and η(s) < 0
for s large. Then, there is s(u) > 0 such that η(s(u)) = maxs>0 η(s). Thus, η′(s(u)) = 0,
s(u)2us(u) ∈M. �

Using Corollary 4.1 and Lemma 4.3, we get the following lemma immediately.

Lemma 4.4 Assume that (V ), (V2), (F1)–(F3) and (F5) hold. Then

inf
u∈M

I(u) := m = inf
u∈E\{0} max

s>0
I
(
s2us

)
.

Lemma 4.5 Assume that (V2), (F1)–(F3) and (F5) hold. Then
(i) there is δ > 0 such that ‖u‖ ≥ δ, ∀u ∈M;

(ii) m = infu∈M I(u) > 0.

Proof (i) From (F1) and (F2), we have

∣∣f (u)u
∣∣ +

∣∣F(u)
∣∣ ≤ min{2a, 1}

4
u2 + C|u|p, ∀u ∈R. (4.8)

Note that J(u) = 0 for every u ∈ M, by (V2), (2.7), (4.8), Hardy-Littlewood-Sobolev in-
equality and Sobolev embedding inequality, one has

min{2a, 1}‖u‖2 ≤ 2a‖∇u‖2
2 + 2b‖∇u‖4

2 + 6
∫
R2

V (x)u2 dx

–
1
2

∫
R2

(∇V (x), x
)
u2 dx + μI1(u)

= μI2(u) +
μ

8π
‖u‖4

2 + 2
∫
R2

[
f (u)u – F(u)

]
dx

≤ Ĉ0‖u‖4 +
1
2

min{2a, 1}‖u‖2 + C̄0‖u‖p, ∀u ∈M,
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which yields

‖u‖ ≥ δ := min

{
1,

(
1
2

min{2a, 1}
) 1

2
(Ĉ0 + C̄0)– 1

2

}
, ∀u ∈M. (4.9)

(ii) Choosing {un} ⊂ M such that I(un) → m. Now, we distinguish two cases:
infn∈N ‖un‖2 > 0 and infn∈N ‖un‖2 = 0. If infn∈N ‖un‖2 := δ1 > 0, by (4.3), we have

m + o(1) = I(un) ≥ μ

64π
‖un‖4

2 ≥ μ

64π
δ4

1 .

If infn∈N ‖un‖2 = 0, in terms of (4.9), up to a subsequence, one has

‖un‖2 → 0, ‖∇un‖2 ≥ δ. (4.10)

Furthermore, in view of (4.10), one has

| log(‖∇un‖2)|
‖∇un‖2

2
≤ C. (4.11)

Fix tn = ‖∇un‖– 1
2

2 . Due to J(un) = 0, by (2.2), (2.9), (2.10), (4.7), (4.10), (4.11) and the
Gagliardo-Nirenberg inequality, we have

m + o(1) = I(un)

≥ I
(
t2
n(un)tn

)
=

a
2

t4
n‖∇un‖2

2 +
b
4

t8
n‖∇un‖4

2 +
t2
n
2

∫
R2

V
(
t–1
n x

)
u2

n dx +
μt4

n
4

[
I1(un) – I2(un)

]

–
μt4

n log tn

8π
‖un‖4

2 –
1
t2
n

∫
R2

F
(
t2
nun

)
dx

≥ a
2

t4
n‖∇un‖2

2 –
μt4

n
4

I2(un) –
μt4

n log tn

8π
‖un‖4

2 – t2
n‖un‖2

2 –
C
t2
n

∫
R2

∣∣t2
nun

∣∣p dx

≥ a
2

t4
n‖∇un‖2

2 – Ct4
nμ‖un‖3

2‖∇un‖2 –
μt4

n log tn

8π
‖un‖4

2 – t2
n‖un‖2

2

– Ct2p–2
n ‖un‖2

2‖∇un‖p–2
2

=
a
2

– Cμ
‖un‖3

2
‖∇un‖2

+
μ log(‖∇un‖2)

16π‖∇un‖2
2

‖un‖4
2 –

‖un‖2
2

‖∇un‖2
– C

‖un‖2
2

‖∇un‖2

=
a
2

+ o(1).

Both cases imply that m = infu∈M I(u) > 0. �

Similar to [3, Lemma 4.7], now we prove that the Cerami sequence obtained in
Lemma 2.2 is a minimizing sequence.

Lemma 4.6 Assume that (F1)–(F3) and (F5) hold. Then there is a sequence {un} ⊂ E such
that

I(un) → c ∈ (0, m],
∥∥I ′(un)

∥∥
E∗

(
1 + ‖un‖E

) → 0, J(un) → 0. (4.12)
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Proof In terms of Lemma 4.4 and Lemma 4.5, we may choose vn ∈M satisfying

0 < m ≤ I(vn) < m +
1
n

, ∀n ∈N. (4.13)

By Lemma 2.2, for n ∈ N, there is a sequence {un} ⊂ E satisfying (2.8). Next, choosing
Tn > 0 satisfying I(T2

n (vn)Tn ) < 0. Define γn(t) = (tTn)2(vn)tTn , t ∈ [0, 1]. One can easily get
that γn ∈ �. In addition, from (2.11), we have

c ∈
[
d, sup

t>0
I
(
t2(vn)t

)]
.

Applying Corollary 4.1, we deduce

I(vn) = sup
t>0

I
(
t2(vn)t

)
.

Thus, it follows from (4.13) that

c ≤ sup
t>0

I
(
t2(vn)t

)
< m +

1
n

, ∀n ∈N.

Then, let n → ∞ in above inequality, by virtue of Lemma 2.2, we get the desired conclu-
sion. �

Proof of Theorem 1.2 From Lemma 4.6, there is a sequence {un} ⊂ E satisfying (4.12). By
(4.3) and (4.12), we have

c + o(1) = I(un) –
1
4

J(un) ≥ μ

64π
‖un‖4

2, (4.14)

which implies that {‖un‖2} is bounded. Next, we verify the boundedness of {‖∇un‖2}. With
reduction to absurdity, we may assume that ‖∇un‖2 → ∞. Fix tn = ( 2

√
m√

a‖∇un‖2
) 1

2 . Note
that tn → 0, then t4

n log tn → 0. Hence, by (2.2), (2.9), (2.10), (4.2), (4.12), (4.14) and the
Gagliardo-Nirenberg inequality, we have

m + o(1) ≥ c + o(1) = I(un)

≥ I
(
t2
n(un)tn

)
+

1 – t4
n

4
J(un)

=
a
2

t4
n‖∇un‖2

2 +
b
4

t8
n‖∇un‖4

2 +
t2
n
2

∫
R2

V
(
t–1
n x

)
u2

n dx +
μt4

n
4

[
I1(un) – I2(un)

]

–
μt4

n log tn

8π
‖un‖4

2 –
1
t2

∫
R2

F
(
t2
nun

)
dx

≥ a
2

t4
n‖∇un‖2

2 –
μt4

n
4

I2(un) – t2
n‖un‖2

2 – Ct2p–2
n ‖un‖p

p + o(1)

≥ a
2

t4
n‖∇un‖2

2 – Ct4
n‖un‖3

2‖∇un‖2 – t2
n‖un‖2

2 – Ct2p–2
n ‖un‖2

2‖∇un‖p–2
2 + o(1)

= 2m –
Cm

a‖∇un‖2
‖un‖3

2 –
2
√

m√
a‖∇un‖2

‖un‖2
2 –

C(
√

m)p–1

(
√

a)p–1‖∇un‖2
‖un‖2

2 + o(1)

= 2m + o(1),
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which is a contradiction, then, {‖∇un‖2} is bounded. Thus, {un} is bounded in H1(R2).
Using the same arguments as the proof of Theorem 1.1, we deduce that there is ũ ∈ E\{0}
satisfying

I ′(ũ) = 0, I(ũ) = c ∈ (0, m].

Furthermore, note that ũ ∈ M, we obtain I(ũ) ≥ m. Therefore, ũ ∈ E is a ground state
solution of (1.1). This completes the proof. �
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