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Abstract
This work studies the three space dimensional focusing inhomogeneous Schrödinger
equation with inverse square potential

i∂tu –
(
–� +

λ

|x|2
)
u + |x|–2τ |u|2(q–1)u = 0, u(t, x) :R×R

3 → C.

The purpose is to investigate the energy scattering of global inter-critical solutions
below the ground state threshold. The scattering is obtained by using the new
approach of Dodson-Murphy, based on Tao’s scattering criteria and Morawetz
estimates. This work naturally extends the recent paper by J. An et al. (Discrete Contin.
Dyn. Syst., Ser. B 28(2): 1046–1067 2023). The threshold is expressed in terms the
non-conserved potential energy. As a consequence, it can be given with a classical
way with the conserved mass and energy. The inhomogeneous term |x|–2τ for τ > 0
guarantees the existence of ground states for λ ≥ 0, contrarily to the homogeneous
case τ = 0. Moreover, the decay of the inhomogeneous term enables to avoid any
radial assumption on the datum. Since there is no dispersive estimate of L1 → L∞ for
the free Schrödinger equation with inverse square potential for λ < 0, one restricts
this work to the case λ ≥ 0.
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1 Introduction
This paper is concerned with the Cauchy problem for a focusing inhomogeneous Schrö-
dinger equation with inverse square potential

⎧⎨
⎩

i∂tu – Kλu + |x|–2τ |u|2(q–1)u = 0,

u|t=0 = u0.
(1.1)
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Here and hereafter, the space dimension is equal to three and the wave function is
denoted by u := u(t, x) : R × R

3 → C. The linear Schrödinger operator is denoted by
Kλ := –� + λ

|x|2 , where � :=
∑3

k=1
∂2

∂x2
k

is the classical Laplacian operator. The inhomoge-

neous singular decaying term is | · |–2τ for some τ > 0. Motivated by the next sharp Hardy
inequality [5],

1
4

∫

R3

|f (x)|2
|x|2 dx ≤

∫

R3

∣∣∇f (x)
∣∣2 dx, (1.2)

one assumes that λ > – 1
4 , which guarantees that extension of –� + λ

|x|2 , denoted by Kλ, is a
self-adjoint positive operator. In the range – 1

4 < λ < 3
4 , the extension is not unique [18, 27].

In such a case, one picks the Friedrichs extension [18, 24].
Note that by [20, Theorem 1.2], the assumption λ > – 1

4 implies that

‖
√
Kλ · ‖ =

(
‖∇ · ‖2 + λ

∥∥∥∥
·

|x|
∥∥∥∥

2) 1
2 � ‖ · ‖Ḣ1 . (1.3)

The problem (1.1) models many physical phenomena. Indeed, they are used in nonlinear
optical systems with spatially dependent interactions [6]. In particular, when λ = 0, they
can be considered as modeling inhomogeneities in the medium in which the wave propa-
gates [1, 2, 19]. When τ = 0, they model a quantum field equations or black hole solutions
of the Einstein’s equations [12, 18]. See also [3, 22]. In statistical mechanics, the inverse
square potential represents the borderline case for phase transition for the long-range 1-
D Ising model [17]. The quantum mechanics of the inverse square potential is relevant
to phenomena as diverse as the Efimov effect for short range interacting bosons [21], the
interaction between an electron and a polar neutral molecule [8] and the near-horizon
problem for certain black holes [9].

Let us recall some literature dealing with (1.1). Using the energy method, [25] inves-
tigated the local well-posedness in the energy space. Moreover, the local solution ex-
tends globally in time, either in the defocusing case or in the focusing, mass-subcritical
case. Later on, [10] revisits the same problem, where the authors studied the local well-
posedness and small data global well-posedness in the energy-sub-critical case by using
the standard Strichartz estimates combined with the fixed point argument. See also [4, 11]
for the ground state threshold of global existence versus blow-up dichotomy in the inter-
critical regime. Furthermore, [10] showed a scattering criterion and constructed a wave
operator for the inter-critical case. The well-posedness and blow-up in the energy critical
regime were investigated in [16].

The purpose of this paper is to investigate the scattering of energy global solutions of the
Schrödinger problem (1.1) in the inter-critical regime and below the ground state thresh-
old. This naturally extends the recent paper [4], where the global existence versus finite
time blow-up below the ground state threshold was proved, but the scattering was not
treated. The scattering is obtained by using the new approach of Dodson-Murphy [13].
This method is based on Tao’s scattering criteria [26] and Morawetz estimates. The in-
homogeneous term |x|–2τ for τ > 0 guarantees the existence of ground states for λ ≥ 0,
contrarily to the homogeneous case τ = 0. Moreover, the decay of the inhomogeneous
term enables to avoid any radial assumption on the datum. Because for λ < 0 there is no
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dispersive estimate of L1 → L∞ for the free Schrödinger equation with inverse square po-
tential [23], one restricts this work to the case λ ≥ 0.

The rest of this paper is organized as follows. The next section contains the main re-
sult and some useful estimates. Section 3 proves the main result. A non-linear estimate is
proved in the appendix.

2 Background and main result
This section contains the main results and some useful estimates.

2.1 Preliminary
Here and hereafter, one denotes for simplicity some standard Lebesgue and Sobolev spaces
Lr := Lr(R3), W 1,r := W 1,r(R3) and H1 := W 1,2 and the norms ‖ · ‖r := ‖ · ‖Lr , ‖ · ‖ := ‖ · ‖2.
Similarly, one defines Sobolev spaces in terms of the operator Kλ, as the completion of
C∞

0 (R3) with respect to the norms

‖ · ‖Ẇ 1,r
λ

:= ‖
√
Kλ · ‖r , ‖ · ‖W 1,r

λ
:=

∥∥〈
√
Kλ〉·

∥∥
r ,

where 〈·〉 := (1 + | · |2) 1
2 . Take also for short Ḣ1

λ := Ẇ 1,2
λ and H1

λ := W 1,2
λ . Note that by the

definition of the operator Kλ and Hardy estimate (1.2), one has

‖ · ‖Ḣ1
λ

:= ‖
√
Kλ · ‖ =

(
‖∇ · ‖2 + λ

∥∥∥∥
·

|x|
∥∥∥∥

2) 1
2 � ‖ · ‖Ḣ1 .

Let us also define the real numbers

γ := 3q – 3 + 2τ , ρ := 2q – γ .

If u ∈ H1
λ , one defines the quantities related to energy solutions of (1.1),

Q[u] :=
∫

R3
|x|–2τ |u|2q dx, (2.1)

I[u] := ‖
√
Kλu‖2 –

γ

2q
Q[u],

M[u] :=
∫

R3

∣∣u(x)
∣∣2 dx, (2.2)

E[u] := ‖
√
Kλu‖2 –

1
q
Q[u]. (2.3)

The equation (1.1) enjoys the scaling invariance

uκ := κ
1–τ
q–1 u

(
κ2·,κ·), κ > 0. (2.4)

The critical exponent sc keeps invariant the following homogeneous Sobolev norm

∥∥uκ (t)
∥∥

Ḣs = κ
s–( 3

2 – 1–τ
q–1 )∥∥u

(
κ2t

)∥∥
Ḣs := κ s–sc

∥∥u
(
κ2t

)∥∥
Ḣs .

Two cases are of particular interest in the physical context. The first one sc = 0 corresponds
to the mass-critical case, which is equivalent to q = qc := 1 + 2(1–τ )

3 . This case is related to
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the conservation of the mass (2.2). The second one is the energy-critical case sc = 1, which
corresponds to q = qc := 1 + 2(1 – τ ). This case is related to the conservation of the energy
(2.3). A particular periodic global solution of (1.1), called standing wave, takes the form
eitϕ, where ϕ satisfies

Kλϕ + ϕ = |x|–2τ |ϕ|2(q–1)ϕ, 0 �= ϕ ∈ H1
λ . (2.5)

The standing waves play an important role in the Schrödinger context. Indeed, they give
global solutions which don’t scatter. The existence of ground states is related to the next
Gagliardo-Nirenberg type inequalities [10].

Proposition 2.1 Let λ > – 1
4 , 0 < τ < 1 and 1 < q < qc. Thus,

1. There exists a sharp constant Cq,τ ,λ > 0, such that for all u ∈ H1
λ ,

∫

R3
|x|–2τ |u|2q dx ≤ Cq,τ ,λ‖u‖ρ‖

√
Kλu‖γ , (2.6)

2. Moreover, there exists ϕ, a solution to (2.5), satisfying

Cq,τ ,λ =
2q
ρ

(
ρ

γ

) γ
2 ‖ϕ‖–2(q–1), (2.7)

3. Furthermore, one has the following Pohozaev identities

Q[ϕ] =
2q
ρ
M[ϕ] =

2q
γ

‖
√
Kλϕ‖2. (2.8)

Here and hereafter, we focus on the inter-critical regime 0 < sc < 1. So, we denote the
positive real number 1

sc
– 1 := αc ∈ (0, 1), ϕ is a ground state of (2.5), and the scale invariant

quantities are

ME[u] :=
(M[u0]
M[ϕ]

)αc(E[u0]
E[ϕ]

)
,

MG[u] :=
(‖u0‖

‖ϕ‖
)αc(‖√Kλu0‖

‖√Kλϕ‖
)

,

MQ[u] :=
(M[u0]
M[ϕ]

)αc(Q[u]
Q[ϕ]

)
.

Let e–i·Kλ be the operator associated to the free Schrödinger equation (i∂t – Kλ) = 0.
Then, by Duhamel integral formula, energy solutions of the problem (1.1) are fixed points
of the function

f (u) := e–i·Kλu0 + i
∫ ·

0
e–i(·–s)Kλ

[|x|–2τ
∣∣u(s)

∣∣2(q–1)u(s)
]

ds. (2.9)

In the next sub-section, we list the contribution of this note.
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2.2 Main result
The main result of this note is the following energy scattering threshold.

Theorem 2.2 Let λ > 0 and 0 < τ < 1. Take qc < q < qc and u ∈ CT∗ (H1
λ) be a maximal

solution to (1.1). Then, u is global and scatters if one of the next assumptions holds

sup
t∈[0,T∗)

MQ
[
u(t)

]
< 1, (2.10)

max
{
ME[u0],MG[u0]

}
< 1. (2.11)

Remarks 2.3
1. The first point expresses the threshold in terms of the non-conserved potential

energy Q,
2. The scattering under the assumption (2.11) is a consequence of the scattering under

the condition (2.10),
3. The assumption λ ≥ 0 is needed only in the proof of Proposition 3.3,
4. The proof follows the method of Dodson-Murphy [13] based on Tao’s scattering

criteria [26] and Morawetz estimates,
5. The scattering means that the global solution of (1.1) is close to the solution of the

associated free equation. This means that the source term has a negligible affect for
large time. Precisely, the energy scattering reads: there exists u± ∈ H1 such that
limt→±∞ ‖u(t) – e–itKλu±‖H1 = 0,

6. This theorem extends the recent paper [4], where the global existence versus finite
time blow-up below the ground state threshold was proved, but the scattering was
not treated.

2.3 Useful estimates
In this sub-section, some standard tools needed in the sequel are given.

Definition 2.4 A couple of real numbers (q, r) is said to be μ admissible (admissible if
μ = 0) if

3
(

1
2

–
1
r

)
=

2
q

+ μ,
6

3 – 2μ
< r < 6. (2.12)

For simplicity, we denote by �μ the set of μ admissible pairs and � := �0. Let also for any
real interval I ,

�μ(I) :=
⋂

(q,r)∈�μ

Lq(I, Lr), ‖ · ‖�μ(I) := sup
(q,r)∈�μ

‖ · ‖Lq(I,Lr),

‖ · ‖�′–μ(I) := inf
(q,r)∈�–μ

‖ · ‖Lq′ (I,Lr′ ).

Take also the particular cases

�(I) := �0(I), �′(I) := �′
0(I), �μ := �μ

(
(0,∞)

)
, �′

–μ := �′
–μ

(
(0,∞)

)
.

An essential tool used in this note is Strichartz estimate [7, 15, 28].
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Proposition 2.5 Let λ > – 1
4 , μ ∈ R and 0 ∈ I be a real interval. Then, there exists C > 0

such that
1. ‖e–i·Kλu‖�μ(I) ≤ C‖u‖Ḣμ ,
2. ‖ ∫ ·

0 e–i(·–τ )Kλ f (τ ) dτ‖�(I) ≤ C‖f ‖�′(I),
3. if λ ≥ 0, so ‖ ∫ ·

0 e–i(·–τ )Kλ f (τ ) dτ‖�μ(I) ≤ C‖f ‖�′–μ(I).

The above Strichartz estimates are consequence of the next dispersive estimates [14, 23].

Proposition 2.6 There exists C > 0 such that
1. ‖e–i·Kλu‖r′ ≤ C ‖u‖r

|t|3( 1
r – 1

2 )
, whenever 1

2 ≤ 1
r < min{1, 1 – κ

3 },

2. ‖e–i·Kλu‖r′ ≤ C ‖u‖r

|t|3( 1
r – 1

2 )
, whenever r ∈ [2,∞] and λ ≥ 0.

From now on, we hide the time variable t for simplicity, spreading it out only when
necessary. Moreover, we denote the centered ball of R3 with radius R > 0 and its comple-
mentary, respectively B(R) and Bc(R). Furthermore C(R, R′) is the centered annulus of R3

with small radius R and large radius R′. Finally, the critical Sobolev embedding H1 ↪→ L2∗

gives the index 2∗ := 6. In what follows, one proves the main result of this note.

3 Proof of Theorem 2.2
3.1 Global existence
The global existence of energy solutions of (1.1) follows from the conservation laws via
the next coercivity result.

Lemma 3.1 Let u ∈ H1
λ and 0 < ν < 1 satisfying

MQ[u] < ν. (3.1)

Then, there is c(ν,ϕ) > 0 such that

‖
√
Kλu‖2 < c(ν,ϕ)E[u], (3.2)

I[u] > c(ν,ϕ)‖
√
Kλu‖2. (3.3)

Proof A direct computation gives the useful identities

2(q – 1)sc = γ – 2, (3.4)

αc(γ – 2) = ρ. (3.5)

Using the Gagliardo-Nirenberg inequality (2.6) via Pohozaev identities (2.8), the explicit
expression (2.7) and the equalities (3.4)-(3.5), are written

[
Q[u]

] γ
2 ≤ Cq,τ ,λ

(‖u‖2αcQ[u]
) γ

2 –1‖
√
Kλu‖γ

≤ 2q
ρ

(
ρ

γ

) γ
2 ‖ϕ‖–2(q–1)(M[u]αcQ[u]

) γ
2 –1‖

√
Kλu‖γ

≤ 2q
ρ

(
ρ

γ

) γ
2
M[ϕ]

ρ–2(q–1)
2

[
Q[ϕ]

] γ
2 –1(MQ[u]

) γ
2 –1‖

√
Kλu‖γ
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≤
(

ρ

γ

Q[ϕ]
M[ϕ]

) γ
2 (
MQ[u]

) γ
2 –1‖

√
Kλu‖γ

≤ (
MQ[u]

) γ
2 –1

(
2q
γ

‖
√
Kλu‖2

) γ
2

. (3.6)

Thus, taking (3.6) to the exponent 2
γ

, we get

Q[u] ≤ 2q
γ

(
MQ[u]

) γ –2
γ ‖

√
Kλu‖2. (3.7)

This implies that

E[u] = ‖
√
Kλu‖2 –

1
q
Q[u]

≥
(

1 –
2
γ

(
MQ[u]

) γ –2
γ

)
‖
√
Kλu‖2.

The proof of (3.2) follows from (3.1) via the assumption sc > 0 which gives γ > 2. Moreover,
by (3.7) and (3.1), we have

I[u] = ‖
√
Kλu‖2 –

γ

2q
Q[u]

≥ ‖
√
Kλu‖2(1 –

(
MQ[u]

) γ –2
γ

)

� ‖
√
Kλu‖2.

This proves (3.3). �

3.2 Scattering criteria
Here and hereafter, we denote a smooth function ψ ∈ C∞

0 (R3) such that ψ = 1 on B(1)
and ψ = 0 on Bc(2). Take also ψR := ψ( ·

R ). In this sub-section, we prove the next scattering
criteria.

Proposition 3.2 Take the assumptions of Theorem 2.2. Let u ∈ C(R, H1
λ) be a global solu-

tion to (1.1). Assume that

0 < sup
t∈R

∥∥u(t)
∥∥

H1
λ

:= E < ∞. (3.8)

There exist R, ε > 0 depending on E, d, q, τ such that u scatters if

lim inf
t→∞

∫

B(R)

∣∣u(t, x)
∣∣2 dx < ε2. (3.9)

Proof Using an interpolation via the bound in L∞(H1
λ), it is sufficient to prove that

u ∈ L4(L2∗). (3.10)

Moreover, by Sobolev embeddings and Hölder estimate, we write

‖u‖L4
T (L2∗ ) ≤ T

1
4 ‖u‖L∞(H1

λ ).
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So, it is sufficient to prove that there is T > 0 such that

u ∈ L4((T ,∞), L2∗)
. (3.11)

By continuity argument, Strichartz estimate and Sobolev embedding, the key of the proof
of the scattering criterion is the next result.

Proposition 3.3 Take the assumptions of Proposition 3.2. Then, for any ε > 0, there exist
T ,μ > 0 satisfying

∥∥ei(·–T)Kλu(T)
∥∥

L4((T ,∞),L2∗ ) � εμ. (3.12)

Proof By the integral formula

e–i(t–T)Kλu(T) = e–itKλu0 + i
∫ T

0
e–i(t–τ )Kλ

[|x|–2τ |u|2(q–1)u
]

dτ

= e–itKλu0 + i
(∫ T–ε–β

0
+

∫ T

T–ε–β

)
e–i(t–τ )Kλ

[|x|–2τ |u|2(q–1)u
]

dτ

:= e–itKλu0 + i
(∫

J1

+
∫

J2

)
e–i(t–τ )Kλ

[|x|–2τ |u|2(q–1)u
]

dτ

:= e–itKλu0 + F1 + F2. (3.13)

Now, we estimate the three different parts in (3.13).
• The linear term. By Hölder and Strichartz estimates via Sobolev injections, we have

∥∥e–i·Kλu0
∥∥

L4((T ,∞),L2∗ ) ≤ ∥∥e–i·Kλu0
∥∥ 1

2
L∞((T ,∞),L2∗ )

∥∥e–i·Kλu0
∥∥ 1

2
L2((T ,∞),L2∗ )

≤ c
∥∥e–i·Kλu0

∥∥ 1
2
L∞((T ,∞),H1

λ)

∥∥e–i·Kλu0
∥∥ 1

2
L2((T ,∞),L2∗ )

≤ c
∥∥e–i·Kλu0

∥∥ 1
2
L2((T ,∞),L2∗ )

. (3.14)

Thus, by the Dominated convergence Theorem via Strichartz estimates and the fact that
(2, 2∗) ∈ �, one may choose T0 > ε–β > 0, where β > 0 is to choose later, such that

∥∥e–i·Kλu0
∥∥

L4((T0,∞),L2∗ ) ≤ ε2. (3.15)

• The term F1. First, the integral formula (2.9) gives

F1 = e–itKλ
(
e–i(–T+ε–β )Kλu

(
T – ε–β

)
– u0

)
. (3.16)

So, using Strichartz estimate via (3.16), the fact that (2, 2∗) ∈ � and an interpolation, we
write

‖F1‖L4((T ,∞),L2∗ ) ≤ ‖F1‖
1
2
L∞((T ,∞),L2∗ )

‖F1‖
1
2
L2((T ,∞),L2∗ )

≤ c‖F1‖
1
2
L∞((T ,∞),L2∗ )

. (3.17)
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Now, an interpolation via (3.16), (A.1) and Proposition 2.6, implies that

∥∥F1(t)
∥∥

2∗ ≤ ∥∥F1(t)
∥∥ 1

3
∥∥F1(t)

∥∥ 2
3
∞

≤ c
∥∥F1(t)

∥∥ 2
3
∞

≤ c
(∫ T–ε–β

0
|t – s|– 3

2
∥∥|x|–2τ |u|2(q–1)u

∥∥
1 ds

) 2
3

≤ c
((

t – T + ε–β
)1– 3

2 ‖u‖2q–1
H1

λ

) 2
3

≤ cε
β
3 . (3.18)

So, it follows that

‖F1‖L∞((T ,∞),L2∗ ) ≤ cεν , ν > 0. (3.19)

Finally, with an interpolation via (3.19), we get

‖F1‖2
L4((T ,∞),L2∗ ) ≤ ‖F1‖L∞((T ,∞),L2∗ )‖F1‖L2((T ,∞),L2∗ )

≤ εν , ν > 0. (3.20)

• The term F2. By the assumption (3.9), one has for T > ε–β large enough,

∫

R3
ψR(x)

∣∣u(T , x)
∣∣2 dx < ε2.

Moreover, a computation with use of (1.1) and Hölder estimate gives

∣∣∣∣
d
dt

∫

R3
ψR|u|2 dx

∣∣∣∣ =
∣∣∣∣–2�

∫

R3
ψRū�u dx

∣∣∣∣

=
∣∣∣∣2�

∫

R3
ū∇ψR · ∇u dx

∣∣∣∣

� 1
R

. (3.21)

Take the real function gR(t) :=
∫
R3 ψR(x)|u(t, x)|2 dx. By (3.21), we write

∥∥ψRu(t)
∥∥2 ≤ gR(t)

≤ gR(T) +
∫ T

t

∣∣g ′
R(s)

∣∣ds

≤
∫

R3
ψR(x)

∣∣u(T , x)
∣∣2 dx + C

T – t
R

. (3.22)

Then, for any T – ε–β ≤ t ≤ T and R > ε–(2+β), yields by (3.22),

∥∥ψRu(t)
∥∥ ≤

(∫

R3
ψR(x)

∣∣u(T , x)
∣∣2 dx + C

T – t
R

) 1
2 ≤ Cε.
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This gives

‖ψRu‖L∞([T–ε–β ,T],L2) ≤ Cε. (3.23)

Using Strichartz estimate in Proposition 2.5, we write

‖F2‖L4(L2∗ ) ≤ ‖F2‖� 1
2

≤ ∥∥|x|–2τ |u|2(q–1)u
∥∥

�′
– 1

2
(J2)

≤ ∥∥|x|–2τ |u|2(q–1)u
∥∥

L4(J2,L
6
5 )

≤ ∥∥ψR|x|–2τ |u|2(q–1)u
∥∥

L4(J2,L
6
5 )

+
∥∥(1 – ψR)|x|–2τ |u|2(q–1)u

∥∥
L4(J2,L

6
5 )

:=
∥∥(I)

∥∥
L4(J2) +

∥∥(II)
∥∥

L4(J2). (3.24)

Now, by Hölder estimate via (3.24) and (3.23), we write for certain 0 < θ ≤ 1,

(I) ≤ ‖ψRu‖b
∥∥|x|–2τ

∥∥
La(|x|<R)‖u‖2(q–1)

b

≤ c‖ψRu‖θ‖u‖2(q–1)+1–θ

H1
λ

≤ cεθ . (3.25)

Here,

⎧⎪⎪⎨
⎪⎪⎩

5
6 = 1

a + 2q–1
b ,

3
a > 2τ ,
1
6 < 1

b ≤ 1
2 .

(3.26)

This reads

⎧⎨
⎩

5
2 – 3(2q–1)

b = 3
a > 2τ ,

1
6 < 1

b ≤ 1
2 .

(3.27)

So, we get

q –
1
2

<
3(2q – 1)

b
<

5
2

– 2τ (3.28)

This is possible because q < qc and 0 < τ < 1.
Moreover, by Hölder estimate via (3.24) and the properties of ψ , we write

(II) ≤ c
∥∥|x|–2τ

∥∥
Lg (|x|>R)‖u‖2q–1

e

≤ cR–(2gτ–3)‖u‖2q–1
H1

λ

≤ cR–(2gτ–3). (3.29)
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Here,

⎧
⎪⎪⎨
⎪⎪⎩

4
6 = 1

g + 2q–1
e ,

3
g < 2τ ,
1
6 ≤ 1

e ≤ 1
2 .

(3.30)

This reads

⎧
⎨
⎩

4
2 – 3(2q–1)

e = 3
g < 2τ ,

1
6 ≤ 1

e ≤ 1
2 .

(3.31)

So,

⎧⎨
⎩

1
e > 2(1–τ )

3(2q–1) ,
1
6 ≤ 1

e ≤ 1
2 .

(3.32)

This is possible because q > qc gives

q – 1 >
1 – 4τ

6
. (3.33)

Now, by (3.24), (3.25) and (3.29), we get for 0 < β < θ and R–(2gτ–3) < εβ ,

‖F2‖L4(L2∗ ) ≤ ∥∥(I)
∥∥|L2(J2) +

∥∥(II)
∥∥

L2(J2)

≤ c|J2| 1
2
(
R–(2gτ–3) + εθ

)

≤ cε– β
2
(
R–(2gτ–3) + εθ

)

≤ cεν . (3.34)

The proof is closed via (3.15), (3.19) and (3.34). �
�

3.3 Virial/morawetz estimate
Let ζ : R3 →R be a convex smooth function. Define the variance potential

Vζ :=
∫

R3
ζ (x)

∣∣u(·, x)
∣∣2 dx, (3.35)

and the Morawetz action

Mζ = 2�
∫

R3
ū(∇ζ · ∇u) dx := 2�

∫

R3
ū(ζjuj) dx, (3.36)

where repeated indices are summed here and subsequently. Let us give a Morawetz-type
estimate for the Schrödinger equation with inverse square potential [4].
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Proposition 3.4 Take u ∈ C([0, T], H1
λ) to be a local solution of (1.1) and ζ : R3 →R be a

smooth function. Then, the following equality holds on [0, T],

V ′′
ζ [u] = M′

ζ [u] = 4
∫

R3
∂l∂kζ�(∂ku∂lū) dx –

∫

R3
�2ζ |u|2 dx + 4λ

∫

R3
∇ζ · x

|u|2
|x|4 dx

– 2
(

1 –
1
q

)∫

R3
�ζ |x|–2τ |u|2q dx +

2
q

∫

R3
∇ζ · ∇(|x|–2τ

)|u|2q dx.

The next radial identities will be useful in the sequel.

∇ =
x
r
∂r (3.37)

∂2

∂xl∂xk
:= ∂l∂k =

(
δlk

r
–

xlxk

r3

)
∂r +

xlxk

r2 ∂2
r , (3.38)

� = ∂2
r +

2
r
∂r . (3.39)

In the rest of this note, we take a smooth radial function ζ (x) := ζ (|x|) such that

ζ : r →
⎧⎨
⎩

r2, if 0 ≤ r ≤ 1
2 ,

r, if r > 1.

Now, for R > 0, take via (3.36),

ζR := R2ζ

( | · |
R

)
and MR := MζR .

Moreover, we assume that in the centered annulus C(0, R
2 , R),

∂rζ > 0, ∂2
r ζ ≥ 0 and

∣∣∂αζ
∣∣ ≤ Cα| · |1–α , ∀|α| ≥ 1. (3.40)

Note that on the centered ball of radius R
2 , we have

∂jkζR = 2δjk , �ζR = 6 and �2ζR = 0. (3.41)

Moreover, for |x| > R,

∂jkζR =
R
|x|

(
δjk –

xjxk

|x|2
)

, �ζR =
2R
|x| and �2ζR = 0. (3.42)

Now, one states a Morawetz-type estimate.

Proposition 3.5 There is tn, Rn → ∞ such that

∫ T

0

∫

R3
|x|–2τ

∣∣u(t, x)
∣∣2q dx dt � T

1
1+2τ , (3.43)

lim
n

∫

B(Rn)
|x|–2τ

∣∣u(tn, x)
∣∣2q dx = 0. (3.44)
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Proof Taking account of Proposition 3.4, we write

V ′′
R [u] := V ′′

ζR
[u]

= 4
∫

R3
∂l∂kζR�(∂ku∂lū) dx –

∫

R3
�2ζR|u|2 dx + 4λ

∫

R3
∇ζR · x

|u|2
|x|4 dx

– 2
(

1 –
1
q

)∫

R3
�ζR|x|–2τ |u|2q dx +

2
q

∫

R3
∇ζR · ∇(|x|–2τ

)|u|2q dx

:= (I) + (I) + (III), (3.45)

where one decomposes the above integrals as (
∫

B( R
2 ) +

∫
C( R

2 ,R) +
∫

Bc(R)). Let us denote for
short the source term N [u] := |x|–2τ |u|2(q–1)u. For the first term, we have

(I) := 4
∫

B( R
2 )

∂l∂kζR�(∂ku∂lū) dx –
∫

B( R
2 )

�2ζR|u|2 dx + 4λ

∫

B( R
2 )

∇ζR · x
|u|2
|x|4 dx

+ 2
(

1
q

– 1
)∫

B( R
2 )

�ζR|x|–2τ |u|2q dx +
2
q

∫

B( R
2 )

∇ζR · ∇(|x|–2τ
)|u|2q dx

= 8
∫

B( R
2 )

|∇u|2 dx + 8λ

∫

B( R
2 )

|u|2
|x|2 dx

+ 12
(

1
q

– 1
)∫

B( R
2 )

ūN [u] dx –
8τ

q

∫

B( R
2 )

ūN [u] dx

= 8
(∫

B( R
2 )

|∇u|2 dx –
γ

2q

∫

B( R
2 )

ūN [u] dx + λ

∫

B( R
2 )

|u|2
|x|2 dx

)
. (3.46)

Moreover,

(III) := 4
∫

Bc(R)
∂l∂kζR�(∂ku∂lū) dx –

∫

Bc(R)
�2ζR|u|2 dx + 4λ

∫

Bc(R)
∇ζR · x

|u|2
|x|4 dx

+ 2
(

1
q

– 1
)∫

Bc(R)
�ζR|x|–2τ |u|2q dx +

2
q

∫

Bc(R)
∇ζR · ∇(|x|–2τ

)|u|2q dx

= 4
∫

Bc(R)

R
|x|

(
δjk –

xjxk

|x|2
)

�(∂ku∂lū) dx + 4λ

∫

Bc(R)

R
|x|

|u|2
|x|2 dx

– 2
(

1 –
1
q

)∫

Bc(R)

2R
|x| |x|–2τ |u|2q dx –

4τ

q

∫

Bc(R)

R
|x| |x|–2τ |u|2q dx. (3.47)

Thus, taking � ∇ := ∇ – x·∇
|x|2 x the angular gradient, (3.47) gives

(III) = 4
∫

Bc(R)

R
|x| | � ∇u|2 dx + 4λ

∫

Bc(R)

R
|x|

|u|2
|x|2 dx

– 2
(

1 –
1
q

)∫

Bc(R)

2R
|x| |x|–2τ |u|2q dx –

4τ

q

∫

Bc(R)

R
|x| |x|–2τ |u|2q dx

� –R–2
∫

R3
|u|2 dx – R–2τ

∫

R3
|u|2q dx. (3.48)
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Furthermore, by (3.40), we have

(II) := 4
∫

C( R
2 ,R)

∂l∂kζR�(∂ku∂lū) dx –
∫

C( R
2 ,R)

�2ζR|u|2 dx + 4λ

∫

C( R
2 ,R)

∇ζR · x
|u|2
|x|4 dx

+ 2
(

1
q

– 1
)∫

C( R
2 ,R)

�ζR|x|–2τ |u|2q dx +
2
q

∫

C( R
2 ,R)

∇ζR · ∇(|x|–2τ
)|u|2q dx

� –R–3
∫

R3
|u|2 dx – R1+2τ

∫

R3
|u|2q dx. (3.49)

Now, by (3.45), (3.46), (3.48), and (3.49) via (3.2), it follows that

V ′′
R [u]

�
∫

B( R
2 )

|∇u|2 dx –
γ

2q

∫

B( R
2 )

ūN [u] dx

+ λ

∫

B( R
2 )

|u|2
|x|2 dx – R–2

∫

R3
|u|2 dx – R–2τ

∫

R3
|u|2q dx

�
∫

B( R
2 )

|∇u|2 dx –
γ

2q

∫

B( R
2 )

ūN [u] dx

+ λ

∫

B( R
2 )

|u|2
|x|2 dx – R–2

∫

R3
|u|2 dx – R–2τ‖u‖2q

H1
λ

�
∫

B( R
2 )

|∇u|2 dx –
γ

2q

∫

B( R
2 )

ūN [u] dx + λ

∫

B( R
2 )

|u|2
|x|2 dx – cR–2 – cR–2τ (3.50)

Indeed, by Sobolev embeddings via 1 < q < qc,

∫

R3
|u|2q dx � ‖u‖2q

H1 . (3.51)

Moreover, by (3.50), (3.3), (3.7)and (3.51), we get

V ′′
R [u] + cR–2 + cR–2τ � I(ψRu)

�
∥∥√

Kλ(ψRu)
∥∥2

�
∫

R3
|x|–2τ |ψRu|2q dx

�
∫

B(R)
|x|–2τ |u|2q dx

�
∫

R3
|x|–2τ |u|2q dx – R–2τ . (3.52)

Integrating in time the estimate (3.52) via the fact that 0 < τ < 1, it follows that

∫ T

0

∫

R3
|x|–2τ |u|2q dx ds � V ′

R
[
u(T)

]
– V ′

R[u0] + cTR–2 + cTR–2τ

� R + cTR–2τ . (3.53)
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So, (3.43) follows by taking R = T 1
1+2τ . Moreover, (3.43) gives

2
T

∫ T

T
2

∫

R3
|x|–2τ |u|2q dx ds � T– 2τ

1+2τ .

We conclude the proof of (3.44) by using the mean value Theorem. �

3.4 Proof of the scattering in Theorem 2.2 under (2.10)
Take R, ε > 0 given by Proposition 3.2 and tn, Rn → ∞ given by Proposition 3.5. Letting
n � 1 such that Rn > R, one gets by Hölder’s inequality

∫

|x|≤R

∣∣u(tn, x)
∣∣2 dx = R

2τ
q

∫

|x|≤R
|x|– 2τ

q
∣∣u(tn, x)

∣∣2 dx

≤ R
2τ
q
∣∣B(R)

∣∣ q–1
q

∥∥|x|– 2τ
q
∣∣u(tn, x)

∣∣2∥∥
Lq(|x|≤Rn)

≤ R
2τ+3(q–1)

q

(∫

|x|≤Rn

|x|–2τ
∣∣u(tn, x)

∣∣2q dx
) 1

q

� ε2.

Hence, the scattering of energy global solutions of the focusing problem (1.1) follows from
Proposition 3.2.

3.5 Proof of the scattering in Theorem 2.2 under (2.11)
This part follows from Theorem 2.2 with the next result.

Lemma 3.6 The assumption (2.11) implies (2.10).

Proof Take the real function g : t �→ t2 – Cq,τ ,λ
q tγ and compute using (3.5),

E[u]
[
M[u]

]αc ≥ ‖√Kλu‖2‖u‖2αc –
Cq,τ ,λ

q
‖u‖ρ+2αc‖√Kλu‖γ

= g
(‖√Kλu‖‖u‖αc

)
. (3.54)

Now, with Pohozaev identities (2.8) via (2.11) and the conservation laws, we have for some
0 < ε < 1,

g
(‖√Kλu‖‖u‖αc

) ≤ E[u]
[
M[u]

]αc

< (1 – ε)E[ϕ]
[
M[ϕ]

]αc

= (1 – ε)g
(‖√Kλϕ‖‖ϕ‖αc

)
. (3.55)

Thus, with time continuity, the assumption (2.11) is invariant under the flow of (1.1) and
T∗ = ∞. Moreover, by Pohozaev identities (2.8), we write

E[ϕ]
[
M[ϕ]

]αc =
γ – 2

γ

(‖√Kλϕ‖‖ϕ‖αc
)2 =

Cq,τ ,λ(γ – 2)
2q

(‖√Kλϕ‖‖ϕ‖αc
)γ .
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So, with (3.54) and (3.55), we get

1 – ε ≥ γ

γ – 2

( ‖√Kλu‖‖u‖αc

‖√Kλϕ‖‖ϕ‖αc

)2

–
2

γ – 2

( ‖√Kλu‖‖u‖αc

‖√Kλϕ‖‖ϕ‖αc

)γ

.

Following the variations of t �→ γ

γ –2 t2 – 2
γ –2 tγ via the assumption (2.11) and a continuity

argument, there is a real number denoted also by 0 < ε < 1, such that

∥∥√
Kλu(t)

∥∥∥∥u(t)
∥∥αc ≤ (1 – ε)‖√Kλϕ‖‖ϕ‖αc on R. (3.56)

Now, by (3.56) and Pohozaev identities (2.8) via (3.5), it follows that for some real number
denoted also by 0 < ε < 1,

Q[u]
[
M[u]

]αc ≤ Cq,τ ,λ‖
√
Kλu‖γ ‖u‖ρ+2αc

≤ Cq,τ ,λ(1 – ε)
(‖√Kλϕ‖‖ϕ‖αc

)γ

≤ (1 – ε)
2q
γ

(‖√Kλϕ‖‖ϕ‖αc
)2

≤ (1 – ε)Q[ϕ]M[ϕ]αc .

This finishes the proof. �

4 Conclusion
The key finding of this note is Theorem 2.2 about the energy scattering of inter-critical
global solutions of the inhomogeneous focusing Schrödinger problem (1.1). It is estab-
lished using the new method of Dodson-Murphy [13] based on Tao’s scattering criteria
[26] and Morawetz estimates. The scattering means that the global solution to (1.1) is
close to the solution of the associate free equation. This means that the source term has a
negligible affect for large time. Precisely, the energy scattering reads: there exists u± ∈ H1

such that

lim
t→±∞

∥∥u(t) – e–itKλu±
∥∥

H1 = 0.

This result naturally extends the recent paper [4], where the global existence versus finite
time blow-up below the ground state threshold was proved, but the scattering was not
treated.

Appendix
In this scetion, we prove a useful non-linear estimate.

Lemma A.1 Let λ > – 1
4 , qc < q < qc and 0 < τ < 3

2 . Then, for u ∈ H1
λ , one has

∫

R3
|x|–2τ |u|2q–1 dx � ‖u‖2q–1

H1
λ

. (A.1)

Proof Using Hölder estimate and Sobolev injections, we have
∫

R3
|x|–2τ |u|2q–1 dx ≤ ∥∥|x|–2τ

∥∥
La1 (B)‖u‖2q–1

r1 +
∥∥|x|–2τ

∥∥
La2 (B)‖u‖2q–1

r2 � ‖u‖2q–1
H1

λ

.
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Here,

⎧
⎪⎪⎨
⎪⎪⎩

1 = 1
ai

+ 2q–1
ri

,
3

a1
> 2τ > 3

a2
,

1
6 < 1

ri
≤ 1

2 .

(A.2)

Thus,
⎧⎨
⎩

1 – 2q–1
r1

= 1
a1

> 2
3τ > 1

a2
= 1 – 2q–1

r2
,

1
6 < 1

ri
≤ 1

2 .
(A.3)

This requires

⎧⎪⎪⎨
⎪⎪⎩

2q–1
6 < 2q–1

r1
< 1 – 2

3τ ,

1 – 2
3τ < 2q–1

r2
< 2q–1

2 ,

0 < τ < 3
2 .

(A.4)

This is possible because

1
2

–
2
3
τ < qc – 1 < q – 1 < qc – 1 <

5
2

– 2τ . �
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