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Abstract
In this paper, we present a new simple method for solving two integral equations of
Love’s type that have many applications, especially in electrostatic systems. The
approach of the solution is based on an innovative technique using matrix algebra for
the barycentric Lagrange interpolation. The unknown function is expressed through
the product of four matrices. The kernel is interpolated twice, so we get it in the
product of five matrices. Additionally, we derive an equivalent linear algebraic system
to the solution by substituting the matrix-vector barycentric interpolated unknown
function together with the double interpolated kernel into both sides of the integral
equation. Thus, there was no need to employ the collocation method. The obtained
results converge strongly with the approximate analytical solutions, in addition to
being uniformly approximated, continuous, and even, which proves the validity of the
solution by the presented method.
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1 Introduction
For many applied scientific fields, especially in the study of electrostatic systems, it is com-
monly necessary to solve Love’s integral equations. Many techniques and methods have
been published for the solution of this kind of equations [1–4]. Love’s integral equation
was numerically solved for a relatively small parameter by Barerra et al. [1]. They took into
account a new unknown function based on the unknown function of the integral equa-
tion and the exact solution; they employed the product integration approach based on
discrete spline quadratic quasi-interpolation. Fu-Rong Lin et al. [2] solved Love’s integral
equation for a minimal parameter. They applied a composite Gauss–Legendre quadra-
ture to an alternating integral equation. The coefficient matrix of a corresponding linear
system is a nonsymmetric block matrix with Toeplitz blocks. Thus, they transformed the
nonsymmetric linear system into a symmetric linear system and introduced a precondi-
tioner, which is a block matrix with circulant blocks. For Boubaker and related polynomi-
als, Gradimir et al. [3] proposed three-term recurrence relations as well as various features,
such as zero distribution. These polynomials are used to generate an approximative an-
alytical solution to Love’s integral problem. Pastore [4] described a method for solving a
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certain Love’s integral equation numerically. Using a stable and convergent technique, he
reduced the integral problem to an equivalent set of Fredholm integral equations. Most
of the methods mentioned above are tedious, make you feel bored in their calculations,
and praise the theories of functional analysis, although the solution to these equations has
been proven to be convergent, continuous, even, and stable. There are also many differ-
ent innovative methods and techniques [5–16] for solving integro-differential equations,
Volterra and Fredholm weakly singular integral equations. These methods are suitable for
solving Love’s integral equations for any parameter, but they are expensive because they
contain singularities in the kernels, and sometimes the unknown functions are also singu-
lar near the endpoints of the domain of integration. Jean-Paul Berrut et al. [17] presented
the tradition of the barycentric Lagrange interpolation. Nicholas J. Higham [18] proved
the stability of the tradition of the barycentric Lagrange interpolation. For the first time,
Shoukralla et al. [19–21] developed matrix-vector formulas of the barycentric Lagrange
interpolation versions and successfully used these versions of interpolation to solve the
second kind Volterra integral problem. In this paper, we use these new versions of inter-
polation to solve Love’s integral equations, in which the parameter is equal to one. The first
step in the solution begins with expressing the unknown function through four matrices.
The first matrix is a row matrix that expresses the monomial basis functions, the second
is the coefficient matrix of the barycentric functions, the third is a diagonal matrix whose
elements represent interpolation weights, and the fourth matrix is a column matrix for the
unknown coefficients of the unknown function. For the kernel, it is interpolated twice: the
first interpolation for the first variable and the second interpolation for the second vari-
able, but in the order of matrices opposite to the order of the first interpolation. Thus,
the kernel is represented by five matrices. One of these matrices is a square matrix whose
elements express the functional values of the kernel at the interpolation nodes. This is the
most important matrix in the solution procedure. By substituting the unknown interpola-
tion function, and with it the interpolation kernel into both sides of the integral equation,
we get an equivalent linear algebraic system to the solution of the integral equation. Thus,
we get the unknown function in the form of continuous, uniformly interpolated, and even
function. There are two solved cases with equal and opposite potential. The results were
extremely accurate. This demonstrates the method’s originality and effectiveness.

2 The barycentric matrix-vector interpolate solutions to Love’s integral
equations

Consider the following Love’s integral equation:

u(x) = 1 +
∫ 1

–1

d
π (d2 + (x – t)2)

u(t) dt, –1 < x < 1, (1)

which describes the electrostatic potential in space, generated by a condenser consisting
of two parallel equal circular plates of some radius and separated by a distance. In the
case when the potentials of the plates are equal in magnitude and sign, the corresponding
integral equation (1) becomes

ũ(x) = 1 –
∫ 1

–1

d
π (d2 + (x – t)2)

ũ(t) dt, –1 < x < 1, (2)
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which occurs in the problem of determining the capacity of circular plate condenser,
where d = 1 is the equation’s parameter, ũ(x) is the unknown function to be determined.
It is known that the approximate analytic solution of Love’s integral equation found by
Love (1912–2001) is continuous, real, and even. The kernel k(x, t) = k(x – t) = d

π (d2+(x–t)2)
is called the difference kernel. The presented procedure focuses on finding the matrix-
vector barycentric interpolated solution un of degree n to equation (1), similarly we find
for ũn to equation (2).

We assume that the unknown function u(x) is given in the form of a tabulated function
u(xi) = ui, where the (n + 1) equidistant distinct node distributions are selected with re-
gards to the variable x with a step-size h = b–a

n to be xi = a + ih, i = 0, n. Let un(x) be the
matrix-vector barycentric Lagrange interpolating polynomial of degree n that interpolates
u(x). Then un(x) takes the form [12]

un(x) = X(x)CT DU, (3)

where U = [ui]n
i=0 is the (n+1)×1 unknown coefficient column matrix such that the entries

ui satisfy the interpolation conditions un(xi) = ui for i = 0 : n, D = diag{γi}n
i=0 is a square di-

agonal matrix whose entries are the weights of the barycentric functions that is defined by
γi = (–1)i(n

i
)
, X(x) = [xi]n

i=0 is the 1 × (n + 1) monomial basis row matrix, and C = [ci]n
i=0 is

the (n + 1) × (n + 1) known barycentric Lagrange coefficients matrix with each row con-
taining the coefficients of the barycentric Lagrange function corresponding to the node xi

for i = 0 : n, that is, the coefficients of the polynomials ci = Ci(x)
ϑ(x) , where

Ci(x) =
1

x – xi
; ϑ(x) =

n∑
i=0

γiCi(x). (4)

The kernel k(x, t) is now interpolated twice with regard to the two variables x and t to get
the double matrix vector barycentric interpolated formula kn,n(xi, tj) as follows [12]:

kn,n(xi, tj) = X(x)CT KCXT (t), tj = a + jh; j = 0, n. (5)

Here, K = [γijδij]n
i,j=0 is a square known matrix whose entries γijδij are defined by

δij = k(xi, tj); γij = γi × γj, xi = a + ih, tj = a + jh; i, j = 0, n. (6)

Moreover, we get from (3) and (5)

kn,n(x, t)un(t) = X(x)CT KCX̃(t)CT DU, X̃(t) = XT (t)X(t). (7)

Hence, the matrix-vector interpolated unknown function un(t) is replaced by u(x) of (1)
to get

un(x) = 1 +
1
π

∫ 1

–1
X(x)CT KCX̃(t)CT DU dt = 1 +

1
π

X(x)CT KC ˜̃X(t)CT DU, (8)

where ˜̃X(t) =
∫ 1

–1 X̃(t) dt. Furthermore, by substituting un(x) and un(t) in both sides of equa-
tion (1) and replacing kn,n(x, t) from (5) with k(x, t) of (1), and after matrix abbreviations,
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we get

X(x)CT KC ˜̃X(t)CT DU –
1
π

X(x)CT KC�CT DU = X(x)CT KCM, (9)

where

M =
∫ 1

–1
XT (t) dt, � =

∫ 1

–1
X̃(t)CT KC ˜̃X(t) dt. (10)

Simplifying (9) gives

˜̃X(t)CT DU –
1
π

�CT DU = M. (11)

Consequently, this idea of double substitution allows us to get the following algebraic lin-
ear system without applying the collocation method:

( ˜̃X(t)CT D – �̃CT D
)
U = M, �̃ =

1
π

� . (12)

Hence, the values to the unknown coefficient column matrix U can be obtained in the
form

U =
( ˜̃X(t)CT D – �̃CT D

)–1M = D–1(CT)–1( ˜̃X(t) – �̃
)–1M. (13)

Substituting U from (13) into (3) yields the barycentric matrix-vector interpolated solu-
tion

un(x) = X(x)
( ˜̃X(t) – �̃

)–1M. (14)

The solution of equation (2) is similar to the solution of equation with some changes. The
barycentric matrix-vector interpolated solution ũn(x) can be obtained by

ũn(x) = X(x)
( ˜̃X(t) + �̃

)–1M. (15)

3 Computational results
We designed a code by applying MATLAB2019a for solving the Love’s integral equation
(1). An approximate analytic solution [3] is given by

u(x) = 1.919200 – 0.311717x2 + 0.015676x4 + 0.019682x6 – 0.000373x8. (16)

Table 1 shows the approximate analytic solution and the matrix-vector barycentric inter-
polated polynomials un(xi) for n = 2, 3, 5, 15, 20 at the set of points xi = –1 : 0.2 : 1. The
CPU total time was 8.147 sec., 9.905 sec., 10.927 sec., 29.200 sec., and 46.723 sec., re-
spectively. Table 2 shows the absolute errors Rn(xi) = |u(xi) – un(xi)|. It turns out that the
matrix-vector barycentric polynomials and the absolute errors are uniformly distributed
and symmetric. Figure 1 shows the graphs of the approximate analytic solution and the ob-
tained interpolated solution for n = 2. Table 3 shows the matrix-vector barycentric inter-
polated polynomial solutions ũn(xi) for n = 2, 3, 5, 15, 20 at xi = –1 : 0.2 : 1. Figure 2 shows
the graphs of the matrix-vector barycentric interpolated polynomial solutions ũn(xi) for
n = 2.
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Table 1 A comparison of the approximate analytic solution with the matrix-vector barycentric
polynomials un(xi) for n = 2, 3, 5, 15, 20 at xi = –1 : 0.2 : 1

xi u(xi) u2(xi) u3(xi) u5(xi) u15(xi) u20(xi)

–1 1.6425 1.6388 1.6345 1.6403 1.6397 1.6397
–0.8 1.7312 1.7731 1.7423 1.7344 1.7307 1.7307
–0.6 1.8099 1.8776 1.8262 1.8119 1.8097 1.8097
–0.4 1.8698 1.9522 1.8861 1.8696 1.8696 1.8696
–0.2 1.9068 1.997 1.922 1.9052 1.9066 1.9066
0 1.9192 2.0119 1.934 1.9172 1.919 1.919
0.2 1.9068 1.997 1.922 1.9052 1.9066 1.9066
0.4 1.8698 1.9522 1.8861 1.8696 1.8696 1.8696
0.6 1.8099 1.8776 1.8262 1.8119 1.8097 1.8097
0.8 1.7312 1.7731 1.7423 1.7344 1.7307 1.7307
1 1.642 1.6388 1.6345 1.6403 1.6397 1.6397

Table 2 The absolute errors Rn(xi) of the interpolated matrix-vector barycentric polynomials un(xi)
for n = 2, 3, 5, 15, 20 at xi = –1 : 0.2 : 1

xi R2(xi) R3(xi) R5(xi) R15(xi) R20(xi)

–1 0.0037 0.008 0.0022 0.0028 0.0028
–0.8 0.0419 0.0111 0.0032 0.0005 0.0005
–0.6 0.0677 0.0163 0.002 0.0002 0.0002
–0.4 0.0824 0.0163 0.0002 0.0002 0.0002
–0.2 0.0902 0.0152 0.0016 0.0002 0.0002
0 0.0927 0.0148 0.002 0.0002 0.0002
0.2 0.0902 0.0152 0.0016 0.0002 0.0002
0.4 0.0824 0.0163 0.0002 0.0002 0.0002
0.6 0.0677 0.0163 0.002 0.0002 0.0002
0.8 0.0419 0.0111 0.0032 0.0005 0.0005
1 0.0032 0.0075 0.0017 0.0023 0.0023

Figure 1 A comparison of the exact solution with the interpolated solution for n = 2

4 Conclusions
The interpolated solutions of two Love’s integral equations were found. The solutions were
continuous, uniformity interpolated, and even functions. The method of the solutions is
based on vector-matrix versions of the barycentric Lagrange interpolation. The unknown
function was expressed in four matrices, and the kernel in five matrices. From these five
matrices, we only need to compute the square matrix whose elements represent the func-
tional values of the kernel at the interpolation nodes. The fact that there are only a few
steps of the solution’s procedure and that only one matrix must be calculated to get the
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Table 3 The matrix-vector barycentric interpolated polynomial solutions ũn(xi) for n = 2, 3, 5, 15, 20 at
xi = –1 : 0.2 : 1

xi u2(xi) u3(xi) u5(xi) u15(xi) u20(xi)

–1 0.76732 0.76044 0.7557 0.75572 0.75572
–0.8 0.72189 0.72214 0.72101 0.72249 0.72249
–0.6 0.68656 0.69234 0.69374 0.69448 0.69448
–0.4 0.66132 0.67106 0.67412 0.67389 0.67389
–0.2 0.64617 0.6583 0.66229 0.66152 0.66152
0 0.64113 0.65404 0.65833 0.65741 0.65741
0.2 0.64617 0.6583 0.66229 0.66152 0.66152
0.4 0.66132 0.67106 0.67412 0.67389 0.67389
0.6 0.68656 0.69234 0.69374 0.69448 0.69448
0.8 0.72189 0.72214 0.72101 0.72249 0.72249
1 0.76732 0.76044 0.7557 0.75572 0.75572

Figure 2 The matrix-vector interpolated solution for n = 2

solution is an advantage of the method. The most important advantage of the presented
method is that we get a linear algebraic system without using the collocation method. This
occurs as an inevitable consequence of substituting the interpolated unknown function
into both sides of the integral equation. The obtained results are highly accurate.
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