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Abstract
In this paper, we are study the problem of affine periodicity of solutions in distribution
for some nonlinear stochastic differential equation with exponentially stable. We
prove the existence and uniqueness of stochastic affine periodic solutions in
distribution via the Banach fixed-point theorem.
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1 Introduction
In this paper, we consider the following stochastic differential equation

dX(t) = A(t)X(t) dt + f
(
t, X(t)

)
dt + g

(
t, X(t)

)
dW (t), (1.1)

where t ∈ R, A(t) is a linear operator, A(t + T) = QA(t)Q–1, whose corresponding semi-
group has exponential stability. The drift coefficient f : R×R

d → R
d and diffusion coef-

ficient g : R×R
d →R

d×m are continuous with the following (Q, T)-affine periodicity

f (t + T , x) = Qf
(
t, Q–1x

)
,

g(t + T , x) = Qg
(
t, Q–1x

)
,

for some invertible matrix Q ∈ GL(n), and positive constant T > 0, {W (t)} is a two-sided
standard m-dimensional Brownian motion.

The existence of periodic solutions for differential equations has been investigated by
many mathematicians [1, 6, 11, 12]. The theory of stochastic differential equations has
been well developed. Recently, Kolmogorov [8] studied the definition of recurrence for
stochastic processes. Liu et al. [2, 9, 10] studied the existence of almost periodic solu-
tions and almost automorphic solutions in distribution for stochastic differential equa-
tions. Chen et al. [3, 7] obtained the existence of periodic solutions in the sense of distri-
bution for stochastic differential equations. Jiang et al. [7] obtained smooth Wong–Zakai
approximations and periodic solutions in distribution of dissipative stochastic differential
equations. However, some natural phenomena such as spiral waves, rotation motions in
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the body from mechanics, and spiral lines in geometry often exhibit symmetry besides
time periodicity. Li et al. [4, 13, 14] introduced another special kind of recurrence, affine
periodicity, which contains several special cases, such as periodicity, antiperiodicity, rota-
tion periodicity, and quasiperiodicity.

Motivated by these works, in this paper, we obtain the existence and uniqueness of affine
periodic solutions for equation (1.1) in the sense of distribution via Banach’s fixed-point
theorem, exponential stability, and stochastic analysis techniques.

2 Preliminary
Throughout this paper, we assume that (�,F , P) is a probability space, the space L2(P,Rd)
stands for the space of all Rd-valued random variables X such that

E‖X‖2 =
∫

�

‖X‖2 dP < ∞.

Then, L2(P,Rd) is a Hilbert space equipped with the norm

‖X‖2 =
(∫

�

|X|2 dP
) 1

2
.

Let us recall the definitions of affine periodic functions and affine periodic solution in
distribution to be studied in this paper, see [7].

Definition 2.1 A continuous function f : R×R
d → R

d is called (Q, T)- affine periodic if
for some invertible matrix Q ∈ GL(n) and periodic T > 0,

f (t + T , x) = Qf
(
t, Q–1x

)
.

Definition 2.2 The solution X(t) of the system (1.1) is said to be a (Q, T)-affine periodic
solution in distribution if the following conditions hold:

(i) Stochastic process X(t) is (Q, T)-affine periodic in distribution, namely,

X(t + T) = QX(t).

(ii) There exists a stochastic process W1, which has the same distribution as W , such
that Q–1X(t + T) is a solution of the stochastic differential equation

dY (t) = f
(
t, Y (t)

)
dt + g

(
t, Y (t)

)
dW1(t). (2.1)

We recall the definition of exponential stability for stochastic differential equations,
see [5].

Definition 2.3 A semigroup of operators {U(t)}t≥0 is said to be exponentially stable, if
there are positive numbers K > 0, ω > 0 such that

∥∥U(t)
∥∥ ≤ Ke–ωt , (2.2)

for all t ≥ 0.
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For later use, we recall the definition of a mild solution, see [5]. We set Ft = σ {W (u) :
u ≤ t}.

Definition 2.4 An Ft-adapted stochastic process {X(t)}t∈R is said to be a mild solution of
(1.1) if it satisfies the stochastic integral equation

X(t) = U(t – a)X(a) +
∫ t

a
U(t – s)f

(
s, X(s)

)
ds +

∫ t

a
U(t – s)g

(
s, X(s)

)
dW (s),

for all t ≥ a, a ∈R.

3 Main results and proof
Now, we can state our main result, which is a result of the existence and uniqueness of
(Q, T)-affine periodic solutions in distribution for the stochastic differential equation (1.1).

Theorem 3.1 Assume that A(t), f (t, x), and g(t, x) are (Q, T)-affine periodic functions sat-
isfying the following assumptions:

(H1) The semigroup {U(t)}t≥0 generated by A(t) is exponentially stable.
(H2) The drift coefficient f and diffusion coefficient g satisfy the Lipschitz conditions in

X , that is, for all X ∈L2(P,Rd) and t ∈ R,

E
∥
∥f (t, X1) – f (t, X2)

∥
∥2 ∨ E

∥
∥g(t, X1) – g(t, X2)

∥
∥2 ≤ LE‖X1 – X2‖2, (3.1)

where L > 0 is a constant such that

2K2L
w2 +

K2L
w

< 1.

Then, there exists the unique L2-bounded (Q, T)-affine periodic solution in distribution
of (1.1).

Proof Since the semigroup {U(t)}t≤0 is exponentially stable, if X(t) is L2-bounded, the
X(t) is a mild solution of (1.1) if and only if it satisfies the integral equation

X(t) = U(t – r)X(r) +
∫ t

r
U(t – s)f

(
s, X(s)

)
ds +

∫ t

r
U(t – s)g

(
s, X(s)

)
dW (s).

We set r → ∞ in the above integral equation, by the exponentially stability of U(t), we
obtain that X(t) satisfies the stochastic integral equation

X(t) =
∫ t

–∞
U(t – s)f

(
s, X(s)

)
ds +

∫ t

–∞
U(t – s)g

(
s, X(s)

)
dW (s).

Let s = σ + T and W̃ (σ ) := W (s) – W (T). W̃ (σ ) coincides with the law of W (s). Thus,

X(t + T)

=
∫ t+T

–∞
U(t + T – s)f

(
s, X(s)

)
ds +

∫ t+T

–∞
U(t + T – s)g

(
s, X(s)

)
dW (s)
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=
∫ t

–∞
U(t – σ )f

(
σ + T , X(σ + T)

)
dσ +

∫ t

–∞
U(t – σ )g

(
σ + T , X(σ + T)

)
dW̃ (σ )

=
∫ t

–∞
U(t – σ )Qf

(
σ , Q–1QX(σ )

)
dσ +

∫ t

–∞
U(t – σ )Qg

(
σ , Q–1QX(σ )

)
dW̃ (σ )

= Q
∫ t

–∞
U(t – σ )f

(
σ , X(σ )

)
dσ + Q

∫ t

–∞
U(t – σ )g

(
σ , X(σ )

)
dW̃ (σ )

= QX(t).

Then, X(t) is (Q, T)-affine periodic in distribution. Furthermore, (Q–1X(t + T), W̃ ) is also
a solution of (2.1) with W1 = W̃ . By Definition 2.2, then X(t) is a (Q, T)-affine periodic
solution in distribution of (1.1).

Let CRP(R,L2(P,Rd)) be the space of all bounded L2-continuous affine periodic func-
tions from R → L2(P,Rd) equipped with norm ‖y(t)‖∞ = sups∈R ‖y(t)‖2. Define an oper-
ator S on CRP(R,L2(P,Rd)) by

(SY )(t) �
∫ t

–∞
U(t – s)f

(
s, Y (s)

)
ds +

∫ t

–∞
U(t – s)g

(
s, Y (s)

)
dW (s).

Now, we verify that operator S maps CRP(R,L2(P,Rd)) into itself. Let us consider the non-
linear operators S1Y and S2Y on CRP(R,L2(P,Rd)) given by

(S1Y )(t) �
∫ t

–∞
U(t – s)f

(
s, Y (s)

)
ds,

(S2Y )(t) �
∫ t

–∞
U(t – s)g

(
s, Y (s)

)
dW (s),

respectively. As f (t, x(t)) and g(t, x(t)) are (Q, T)-affine periodic, then we know that S1Y
and S2Y are (Q, T)-affine periodic. That is, the operator S maps CRP(R,L2(P,Rd)) into
itself.

Next, we prove S is a contraction mapping on CRP(R,L2(P,Rd)).
For Y1, Y2 ∈ CRP(R,L2(P,Rd)) and t ∈R, we have

E
∥∥(SY1)(t) – (S)Y2(t)

∥∥2

= E
∥
∥∥
∥

∫ t

–∞
U(t – s)

[
f
(
s, Y1(s)

)
– f

(
s, Y2(s)

)]
ds

+
∫ t

–∞
U(t – s)

[
g
(
s, Y1(s)

)
– g

(
s, Y2(s)

)]
dW (s)

∥
∥∥
∥

2

≤ 2E
∥∥
∥∥

∫ t

–∞
U(t – s)

[
f
(
s, Y1(s)

)
– f

(
s, Y2(s)

)]
ds

∥∥
∥∥

2

+ 2E
∥∥
∥∥

∫ t

–∞
U(t – s)

[
g
(
s, Y1(s)

)
– g

(
s, Y2(s)

)]
dW (s)

∥∥
∥∥

2

� 2(D1 + D2).
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By the Cauchy–Schwarz inequality, we have the following estimate

D1 = E
∥∥
∥∥

∫ t

–∞
U(t – s)

[
f
(
s, Y1(s)

)
– f

(
s, Y2(s)

)]
ds

∥∥
∥∥

2

≤ K2E
(∫ t

–∞
e–w(t–s)∥∥f

(
s, Y1(s)

)
– f

(
s, Y2(s)

)∥∥ds
)2

≤ K2
∫ t

–∞
e–w(t–s) ds

∫ t

–∞
e–w(t–s)E

∥∥f
(
s, Y1(s)

)
– f

(
s, Y2(s)

)∥∥2 ds

≤ K2L
w2 · sup

s∈R
E
∥∥Y1(s) – Y2(s)

∥∥2.

By the Itô isometry property, we have the other terms as follows

D2 = E
∥
∥∥
∥

∫ t

–∞
U(t – s)

[
g
(
s, Y1(s)

)
– g

(
s, Y2(s)

)]
dW (s)

∥
∥∥
∥

2

= E
∫ t

–∞

∥∥U(t – s)
[
g
(
s, Y1(s)

)
– g

(
s, Y2(s)

)]∥∥2 ds

≤
∫ t

–∞
K2e–2w(t–s)E

∥∥g
(
s, Y1(s)

)
– g

(
s, Y2(s)

)∥∥2 ds

≤ K2L
2w

· sup
s∈R

E
∥∥Y1(s) – Y2(s)

∥∥2.

Then, for each t ∈ R,

E
∥∥(SY1)(t) – (SY2)(t)

∥∥2 ≤
(

2K2L
w2 +

K2L
w

)
sup
s∈R

E
∥∥Y1(s) – Y2(s)

∥∥2,

that is,

∥
∥(SY1)(t) – (SY2)(t)

∥
∥2

2 ≤ η · sup
s∈R

∥
∥Y1(s) – Y2(s)

∥
∥2

2, (3.2)

with η = 2K2L
w2 + K2L

w , according to

sup
s∈R

∥∥Y1(s) – Y2(s)
∥∥2

2 ≤
(

sup
s∈R

∥∥Y1(s) – Y2(s)
∥∥

2

)2
. (3.3)

By (3.2) and (3.3), for each t ∈ R,

∥∥(SY1)(t) – (SY2)(t)
∥∥

2 ≤ √
η
∥∥Y1(s) – Y2(s)

∥∥∞.

Thus,

∥∥(SY1)(t) – (SY2)(t)
∥∥∞ = sup

s∈R

∥∥Y1(s) – Y2(s)
∥∥

2 ≤ √
η
∥∥Y1(s) – Y2(s)

∥∥∞.

By the assumption (H2)

2K2L
w2 +

K2L
w

< 1,
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it follows that S is a contraction mapping on CRP(R,L2(P,Rd)). By the Banach fixed-point
theorem, there exists a unique solution y∗ ∈ CRP(R,L2(P,Rd)) such that Sy∗ = y∗, which
is the unique (Q, T)-affine periodic solution of (1.1). �
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