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Abstract
This paper is devoted to the problem of minimax optimal control problems of an
extensible beam equation with distributed controls and initial velocity disturbances
(or noises). The existence of optimal solutions for distributed control with fixed
disturbance, namely the (Pv) problem, and the existence of minimax optimal solutions
to (P) problem without restricting the initial disturbance are proved. We derive the
necessary optimality conditions for optimal solutions of the (Pv) and (P) problems in
the form of Pontryagin’s maximum principle.
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1 Introduction
In this paper, we are concerned with the problem of minimax optimal control for the fol-
lowing nonlinear beam equation using distribution control in the presence of uncertain
velocity:

y′′ + �2y –
(

1 +
∫

�

|∇y|2 dx
)

�y + g(y) = f + u in Q := � × (0, T), (1.1)

where ′ = ∂
∂t , � is a bounded domain in R

N , N ∈ {1, 2, 3} (mainly N = 3) with smooth
boundary ∂�, � and �2 are the Laplacian and bi-Laplacian operators defined as

�y =
N∑

i=1

∂2y
∂x2

i
and �2y =

N∑
i,j=1

∂4y
∂x2

i x2
j

,

respectively, g(y) is a nonlinear term, which we will explain later, f is a forcing function,
and u is a control function. We consider either hinged boundary condition

y = �y = 0 on � := ∂� × (0, T) (1.2)
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or clamped boundary condition

y =
∂y
∂ν

= 0 on � := ∂� × (0, T), (1.3)

where ν is the unit outward normal vector tailing on ∂�. We also consider the initial
condition

y(x, 0) = y0(x), y′(x, 0) = y1(x) + v(x) in �. (1.4)

Here we assume that the initial velocity y′(x, 0) is not completely known and that v be-
longs to an admissible set Vad. For this reason, we consider an uncertain system through
incomplete velocity data. Many physical systems can be described by equations that con-
tain uncertainties such as noise or disturbances. We can find recent studies on the problem
of optimal control or identification of systems with uncertain or missing data. See, for in-
stance, [3, 7, 10, 13, 14] and references therein. We make a very natural assumption, as is
the case with many physical systems (cf. [3]), that uncertainty appears through the initial
velocity value.

Since the one-dimensional version of Eq. (1.1) was proposed by Woinowsky-Krieger
[28], there have been many researches focused on the properties of the solutions such as
stability or energy decay, including studies on attractors. To name just a few, we can cite
Ball [5], Bernstein [6], Dickey [12], and references therein. For studies of more generalized
equations, we can cite several researches: Brito [8], Medeiros [21], Oliveria and Lima [23],
Yang [30], etc.

As a contribution to control theory to the nonlinear beam equation, in [15], we studied
the optimal control problems in the framework of Lions [19] using distributed forcing con-
trol variables. Quite recently, we studied in [16] that the nonlinear solution map of Eq. (1.1)
is Fréchet differentiable and applied the result to the bilinear robust control problems us-
ing the minimax optimal control strategy (see [17, 29]), which is known to be a useful
strategy for dealing with competing control problems. To summarize the results in [16],
we showed the existence of an optimal pair and studied the necessary optimal condition
of the optimal pair given by the following saddle points:

J
(
u∗, v

) ≤ J
(
u∗, v∗) ≤ J

(
u, v∗) ∀(u, v) ∈ Uad × Vad, (1.5)

where J is a quadratic cost, u and v are the distributed control and disturbance, respec-
tively, and Uad and Vad are admissible sets.

Inspired by the research of Arada, Bergounioux, and Raymond [4], we set up our control
strategy as follows: In finding the optimal control for all admissible initial velocity distur-
bances, we pursue a control strategy that tolerates the worst disturbance, i.e., we look for a
safe optimal control value. This control strategy is different from our previous study [16]
and from Ahmed and Xiang [2]. For our study, we introduce the cost functional

J (y, u, v) =
∫

Q

(
F(x, t, y) + H(x, t, u)

)
dx dt +

∫
�

(
K

(
x, y(T)

)
+ L(x, v)

)
dx, (1.6)

where y is the solution of Eq. (1.1), (u, v) ∈ Uad ×Vad, and the properties of the integrands
are explicitly given later.
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First, we consider the following problem:

(Pv) inf
{
J (y, u, v) | u ∈ Uad

}
, (1.7)

where y is the solution of Eq. (1.1) with (1.2) or (1.3) and (1.4) corresponding to u for given
v, and Uad is a given admissible control set. We denote by Argmin(Pv) the set of controls
to (Pv) and denote J (y, u, v) by J(u, v). We set up our main control problem (P) as follows:
Find ū ∈ Uad such that ū ∈ Argmin(Pv̄) for some v̄ ∈ Vad and

J(uv, v) ≤ J(ū, v̄) for all v ∈ Vad and uv ∈ Argmin(Pv). (1.8)

As is indicated in [4], problem (P) can be expressed in the following equivalent form: Find
v̄ ∈ Vad and uv̄ ∈ Argmin(Pv̄) such that

J(uv, v) ≤ J(uv̄, v̄) for all v ∈ Vad and uv ∈ Argmin(Pv) (1.9)

or, shortly

(P) max
v∈Vad

min
u∈Uad

J(u, v). (1.10)

In this paper, we study the existence of optimal solutions for (Pv) and (P) and the neces-
sary optimal conditions they must satisfy in the form of Pontryagin’s maximal principle.
First, in the proof of the existence, appropriate assumptions are given to the integrands of
(1.6), unlike the assumption given in [16], and the weak lower and upper semicontinuity
of convex and concave functionals is used.

Next, to derive necessary conditions for optimal solutions for (Pv) and (P) in the form of
Pontryagin’s maximum or minimum principle, we need to construct appropriate adjoint
equations for (Pv) and (P). For this, the differentiability of the nonlinear solution map is
needed, as we did in [16]. As is well known from other related studies ([18, 22, 24], etc.),
since the control domain is just a metric space, the perturbation of the control has to be
of the spike (or needle-like) type. Overcoming the nonlinearity in Eq. (1.1), we successfully
derive a sort of Taylor expansion of first order for the state variable with respect to the
diffuse perturbations of the control and disturbance. This is the main novelty of this paper.

The content of the paper is organized as follows. In Sect. 2, we present notations and
preliminary results for Eq. (1.1) with (1.2) or (1.3) and (1.4). In Sect. 3, we state the main
results of this paper, including assumptions for the cost function. In Sect. 4, we prove the
existence of optimal solutions to (Pv) and (P). In Sect. 5, we show the Taylor expansion of
state and disturbance variables for the diffuse perturbation of the reference control vari-
able and the disturbance variable. In Sect. 6, we give the proof of the main results.

2 Preliminaries
Let X be a Banach space. We denote its topological dual by X ′ and the duality pairing
between X ′ and X by 〈·, ·〉X′ ,X . We also introduce the following abbreviations:

‖ · ‖p = ‖ · ‖Lp(�), H = L2(�), (2.1)
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where p ≥ 1. The scalar product and norm on H are denoted by (·, ·)2 and ‖ · ‖2, respec-
tively. The scalar product and norm on [H]N (N ≤ 3) are also denoted by (·, ·)2 and ‖ · ‖2,
respectively. As is well known, Hk(�) is the Sobolev space of order k ≥ 1 on �, and Hk

0 (�)
is the completion of C∞

0 (�) in the Hk(�) norm.
We denote

V2 =

⎧⎨
⎩

H2(�) ∩ H1
0 (�) for condition (1.2),

H2
0 (�) for condition (1.3).

(2.2)

We define the operator A : V2 → V ′
2 by

〈Aφ,ψ〉V ′
2,V2 = (�φ,�ψ)2 ∀φ,ψ ∈ V2, (2.3)

D(A) = {φ ∈ V2 | Aφ ∈ H}. (2.4)

Since A is self-adjoint from V2 into V ′
2, strictly positive on V2 due to (2.3), and the injection

of V2 in H is compact, we can use the spectral theory of self-adjoint compact operators in
a Hilbert space (see [25, Theorem 7.7]). We infer that there exists a complete orthonormal
basis {ek}∞k=1 of H , which consists of eigenvectors of A,

⎧⎨
⎩

Aek = λkek ∀k,

0 < λ1 ≤ λ2 ≤ · · · , λk → ∞ as k → ∞.

This allows us to define the powers As of A for any s ∈R such that for s ≥ 0,

D
(
As) =

{
φ ∈ H

∣∣∣
∞∑

k=1

λ2s
k (φ, ek)2

2 < ∞
}

,

and for s < 0, D(As) is the completion of H in the norm

{ ∞∑
k=1

λ2s
k (φ, ek)2

2

} 1
2

.

For s ∈R, the scalar product and norm in D(As) can be written alternatively as

(φ,ψ)D(As) =
(
Asφ, Asψ

)
2 =

∞∑
k=1

λ2s
k (φ, ek)2(ψ , ek)2, (2.5)

‖φ‖D(As) =
{

(φ,φ)D(As)
} 1

2 =

{ ∞∑
k=1

λ2s
k (φ, ek)2

2

} 1
2

. (2.6)

Hereafter, we denote Vs := D(A s
4 ). Then for s ∈ R, Vs are Hilbert spaces with the scalar

products and norms

((φ,ψ))s := (φ,ψ)Vs =
(
A

s
4 φ, A

s
4 ψ

)
2, ‖φ‖Vs =

∥∥A
s
4 φ

∥∥
2 (2.7)
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for φ,ψ ∈ Vs. Thus

‖φ‖V2 =
∥∥A

1
2 φ

∥∥
2 = ‖�φ‖2, ‖ψ‖V1 =

∥∥A
1
4 ψ

∥∥
2 = ‖∇ψ‖2 (2.8)

for all (φ,ψ) ∈ V2 × V1.
It becomes apparent that each natural topological imbedding

V2 ↪→ V1 ↪→ H ↪→ V ′
1 ↪→ V ′

2 (2.9)

is continuous and compact. According to Adams [1], when N ≤ 3, the imbedding

V2 ↪→ C0(�) (2.10)

is compact.
We give the following assumptions on g(y) in Eq. (1.1): g in Eq. (1.1) is a C1 function

such that g(0) = 0 (without loss of generality);
(H1) The function G defined by G(s) =

∫ s
0 g(r) dr satisfies the condition

lim inf|s|→∞
G(s)

s2 ≥ 0; (2.11)

(H2) There exists a constant c1 > 0 such that

∣∣g ′(s)
∣∣ ≤ c1

(
1 + |s|γ )

(0 ≤ γ < ∞). (2.12)

We infer from (2.11) that for every η > 0, there exists a constant Cη > 0 such that

G(s) + ηs2 > –Cη ∀s ∈R. (2.13)

Now we can rewrite Eq. (1.1) with the boundary condition (1.2) or (1.3), u = 0, and the
initial condition (1.4) with v = 0 as the following abstract Cauchy problem:

⎧⎨
⎩

y′′ + Ay + (1 + ‖y‖2
V1

)A 1
2 y + g(y) = f in (0, T),

y(0) = y0, y′(0) = y1.
(2.14)

Remark 2.1 By (H1), (H2), and (2.10) we can infer or rewrite (2.12) and (2.13) suitably for
the nonlinear operator g in Eq. (2.14):

(i) It follows from (2.12) and (2.10) that the nonlinear operator g in Eq. (2.14) is a C1

bounded operator from V2 into H , Fréchet differentiable with differential g ′, and
Lipschitzian from the bounded sets of V2 into H . Indeed, for every R > 0, there
exists c(R) such that

∥∥g(φ1) – g(φ2)
∥∥

2 ≤ c(R)‖φ1 – φ2‖2 ∀φi ∈ V2 (i = 1, 2), (2.15)

where ‖φi‖V2 ≤ R (i = 1, 2).
(ii) As a consequence of (H1) and (2.13), we deduce that there exists G ∈ C1(V2,R),

G(0) = 0, such that g(φ) = G′(φ) for all φ ∈ V2 and that for every η > 0, there exists a
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constant Cη > 0 such that

G(φ) + η‖φ‖2
2 > –Cη ∀φ ∈ V2. (2.16)

The Hilbert space of the weak solutions of Eq. (2.14) is defined as

W(0, T) =
{
φ | φ ∈ L2(0, T ; V2),φ′ ∈ L2(0, T ; H),φ′′ ∈ L2(0, T ; V ′

2
)}

equipped with the norm

‖φ‖W(0,T) =
(‖φ‖2

L2(0,T ;V2) +
∥∥φ′∥∥2

L2(0,T ;H) +
∥∥φ′′∥∥2

L2(0,T ;V ′
2)

) 1
2 ,

where φ′ and φ′′ denote the first- and second-order derivatives of φ in the sense of distri-
bution.

Hereafter, we use C as a generic constant and omit the integral variables in any definite
integrals without confusion.

Definition 2.1 A function y is said to be a weak solution of Eq. (2.14) if y ∈ W(0, T) and
y satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈y′′(·),φ〉V ′
2,V2 + ((y(·),φ))2 + (1 + ‖y(·)‖2

V1
)((y(·),φ))1 + (g(y(·)),φ)2

= (f (·),φ)2

for all φ ∈ V2 in the sense of D′(0, T),

y(0) = y0, y′(0) = y1.

(2.17)

By referring to Yang [30] in terms of dealing with the nonlinear terms in Eq. (2.14) we
can state the following existence theorem (see [27, pp. 212–219] to deal with the term g(y)
in Eq. (2.14)).

Theorem 2.1 Assume that (H1) and (H2) are fulfilled and that y0 ∈ V2, y1 ∈ H , and f ∈
L2(0, T ; H). Then there exists a weak solution y of Eq. (2.14) satisfying

y ∈W(0, T) ∩ L∞(0, T ; V2) ∩ W 1,∞(0, T ; H). (2.18)

Let X be a Banach space. Set

Cw
(
[0, T]; X

)
=

{
φ ∈ L∞(0, T ; X) | 〈φ(·), ξ 〉

X,X′ ∈ C
(
[0, T]

) ∀ξ ∈ X ′}.

Then, as noted in [16], we can use (2.18) together with the results in Lions and Magenes
[20, Lemma 8.2] to prove the following improved regularity for the weak solution y of
Eq. (2.14).

Corollary 2.1 Let y be a weak solution of Eq. (2.14). Then, we can assert (after possibly
a modification on a set of measure zero) that

y ∈ Cw
(
[0, T]; V2

)
, y′ ∈ Cw

(
[0, T]; H

)
. (2.19)

Proof See [16]. �
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The following lemma is not only used to verify the improved regularity of the weak
solution of Eq. (2.14), but also plays an important role in obtaining various estimates in
this paper.

Lemma 2.1 Let y be a weak solution of Eq. (2.14). Then, for each t ∈ [0, T], we have the
following energy equality:

∥∥y′(t)
∥∥2

2 +
∥∥y(t)

∥∥2
V2

+
1
2
(
1 +

∥∥y(t)
∥∥2

V1

)2 + 2G
(
y(t)

)

= 2
∫ t

0

(
f , y′)

2 ds + ‖y1‖2
2 + ‖y0‖2

V2

+
1
2
(
1 + ‖y0‖2

V1

)2 + 2G(y0). (2.20)

Proof As noted in [16], by the double regularization procedure in Lions and Magenes [20,
pp. 276–279], we deduce that the weak solution y of Eq. (2.14) satisfies

∥∥y′(t)
∥∥2

2 +
∥∥y(t)

∥∥2
V2

= ‖y1‖2
2 + ‖y0‖2

V2 + 2
∫ t

0

(
f , y′)

2 ds – 2
∫ t

0

(
1 + ‖y‖2

V1

)(
A

1
2 y, y′)

2 ds

– 2
∫ t

0

(
g(y), y′)

2 ds. (2.21)

Since

1
2

d
dt

(
1 +

∥∥y(t)
∥∥2

V1

)2 =
(
1 +

∥∥y(t)
∥∥2

V1

) d
dt

∥∥y(t)
∥∥2

V1

= 2
(
1 +

∥∥y(t)
∥∥2

V1

)(
A

1
2 y(t), y′(t)

)
2 (2.22)

and

d
dt

G
(
y(t)

)
=

(
g
(
y(t)

)
, y′(t)

)
2, (2.23)

we can combine (2.21) with (2.22) and (2.23) to obtain (2.20).
This completes the proof. �

Here we can state the following theorem.

Theorem 2.2 Let y be the weak solution of Eq. (2.14). Then (after a possible modifica-
tion on a set of measure zero), y ∈ C([0, T]; V2) ∩ C1([0, T]; H). Moreover, the solution
mapping p = (y0, y1, f ) → y(p) of P ≡ V2 × H × L2(0, T ; H) into S(0, T) ≡ W(0, T) ∩
C([0, T]; V2) ∩ C1([0, T]; H) is locally Lipschitz continuous. Letting p1 = (y1

0, y1
1, f1) ∈P and

p2 = (y2
0, y2

1, f2) ∈P , the following is satisfied:

∥∥y(p1) – y(p2)
∥∥
S(0,T)

≤ C
(∥∥y1

0 – y2
0
∥∥2

V2
+

∥∥y1
1 – y2

1
∥∥2

2 + ‖f1 – f2‖2
L2(0,T ;H)

) 1
2
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≡ C‖p1 – p2‖P , (2.24)

where C > 0 is a constant depending on the data.

Proof As explained in [16], we can make use of (2.21) to show that

y ∈ C
(
[0, T]; V2

) ∩ C1([0, T]; H
)
. (2.25)

Thus we can verify that every weak solution y of Eq. (2.14) with the data (y0, y1, f ) ∈ V2 ×
H × L2(0, T ; H) exists in S(0, T). Based on this result, we can verify (2.24): for all p1 =
(y1

0, y1
1, f1) ∈ P and p2 = (y2

0, y2
1, f2) ∈ P , we denote y1 – y2 ≡ y(p1) – y(p2) by ψ . Then from

Eq. (2.14) we know that ψ satisfies the following in weak sense:

⎧⎨
⎩

ψ ′′ + Aψ + (1 + ‖y1‖2
V1

)A 1
2 ψ + g(y1) – g(y2) = ε(ψ) + f1 – f2 in (0, T),

ψ(0) = y1
0 – y2

0, ψ ′(0) = y1
1 – y2

1,
(2.26)

where

ε(ψ) = –
(‖y1‖2

V1 – ‖y2‖2
V1

)
A

1
2 y2 = –((ψ , y1 + y2))1A

1
2 y2. (2.27)

Applying the energy equality (2.21) to Eq. (2.26), we obtain

∥∥ψ ′(t)
∥∥2

2 +
∥∥ψ(t)

∥∥2
V2

= –2
∫ t

0

(
g(y1) – g(y2),ψ ′)

2 ds + 2
∫ t

0

(
ε(ψ),ψ ′)

2 ds

– 2
∫ t

0

(
1 + ‖y1‖2

V1

)(
A

1
2 ψ ,ψ ′)

2 ds

+ 2
∫ t

0

(
f1 – f2,ψ ′)

2 ds +
∥∥ψ ′(0)

∥∥2
2 +

∥∥ψ(0)
∥∥2

V2
. (2.28)

Here we just estimate the first term on the right side of (2.28). Then we can refer to [16] to
get estimations of the other terms in (2.28). From (2.15) and the fact that S(0, T) ↪→ C(Q̄)
we have

∥∥g(y1) – g(y2)
∥∥2

2 ≤ C‖ψ‖2
2, (2.29)

where C depends only on the data of the weak solutions y1 and y2. Thanks to (2.29), we
have

∣∣∣∣2
∫ t

0

(
g(y1) – g(y2),ψ ′)

2 ds
∣∣∣∣ ≤ 2

∫ t

0

∥∥g(y1) – g(y2)
∥∥

2

∥∥ψ ′∥∥
2 ds

≤ C
∫ t

0
‖ψ‖2

∥∥ψ ′∥∥
2 ds

≤ C
∫ t

0
‖ψ‖V2

∥∥ψ ′∥∥
2 ds

≤ C
∫ t

0

(‖ψ‖2
V2 +

∥∥ψ ′∥∥2
2

)
ds. (2.30)
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Then by analogy with [16] in terms of estimating the other terms on the right hand side
of (2.28), we arrive at

‖ψ‖C([0,T];V2)∩C1([0,T];H) ≤ C‖p1 – p2‖P . (2.31)

Since A : V2 → V ′
2 is an isomorphism, we infer from (2.26) and (2.31) that

∥∥ψ ′′∥∥
L2(0,T ;V ′

2) ≤ C‖p1 – p2‖P . (2.32)

Hence we have proved (2.24).
This completes the proof. �

3 Basic assumptions and statement of the main theorem
We consider the following uncertain control system:

⎧⎨
⎩

y′′ + Ay + (1 + ‖y‖2
V1

)A 1
2 y + g(y) = f + u in (0, T),

y(0) = y0, y′(0) = y1 + v,
(3.1)

where (y0, y1, f ) ∈ V2 × H × L2(0, T ; H), u is a control function belonging to the admissible
control set Uad, and v denotes the noise or disturbance variable described by the uncer-
tainty that belongs to the admissible set Vad.

We give the following assumptions for problem (P).
(A1) The control set is defined as

Uad =
{

u ∈ L2(0, T ; H) | u(x, t) ∈ Ku(x, t) for almost all (x, t) ∈ Q
}

,

where Ku(·, ·) is a measurable multivalued mapping with nonempty, convex, and
closed values in P(R).

(A2) The set of v (noises) is given by

Vad =
{

v ∈ L∞(�) | v(x) ∈ Kv(x) ⊂ G for almost all x ∈ �
}

,

where Kv(·) is a measurable multivalued mapping with nonempty, convex, and
closed values in P(R), and G is a bounded subset of R.

(A3) F and H are Carathéodory functions from Q × R to R, and F(·, ·, 0) and H(·, ·, 0)
belong to L1(Q). For a.e. (x, t) ∈ Q, F(x, t, ·) is of class C1 and satisfies

∣∣Fy(x, t, y)
∣∣ ≤ c

(
1 + |y|σ1

)
(3.2)

for some constants c > 0 and 0 < σ1 < 1. H(x, t, ·) is convex such that

c1|u|2 ≤ H(x, t, u) ≤ h(x, t) + c2|u|2, (3.3)

where c1, c2 > 0 and h ∈ L1(Q).
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(A4) K and L are Carathéodory functions from �×R to R, and K(·, 0) belongs to L1(�).
For a.e. x ∈ �, K(x, ·) is of class C1 and satisfies

∣∣Ky(x, y)
∣∣ ≤ c

(
1 + |y|σ2

)
(3.4)

for some constants c > 0 and 0 < σ2 < 1. L(x, ·) is concave and satisfies

∣∣L(x, v)
∣∣ ≤ L1(x)η

(|v|), a.e. x ∈ �, v ∈ Vad, (3.5)

where L1 ∈ L1(�), and η is a nondecreasing function from R
+ to R

+.

Remark 3.1 From (A1) we deduce that Uad is a closed and convex subset of L2(0, T ; H).
Also, we deduce from (A2) that Vad is convex, bounded, and closed in Lp(�) for any p ≥ 1.

Thanks to Theorem 2.2, we have the well-defined solution mapping (u, v)(∈ Uad ×
Vad) �−→ y(∈ S(0, T)) given by the solution of Eq. (3.1). Thus, throughout the paper, we
employ the notation y(u, v) to denote the solution of Eq. (3.1) corresponding to (u, v) ∈
Uad × Vad.

To present our main result, we define the Hamiltonian functions for the control prob-
lems (Pv) and (P) as follows:

H1(x, t, u, p) := H(x, t, u) + pu ∀(x, t, u, p) ∈ Q ×R×R,

H2(x, v, p) := L(x, v) + pv ∀(x, v, p) ∈ � ×R×R.

We present the following necessary optimality conditions given as a Pontryagin’s principle
for optimal solutions to (Pv), where v ∈ Vad is fixed.

Theorem 3.1 Assume that conditions (A1)–(A4) are fulfilled. For any fixed v ∈ Vad, let uv

be an optimal solution of (Pv). Then there exists p ∈ S(0, T) such that

⎧⎨
⎩

p′′ + Ap + G(y(uv, v), p) + g ′(y(uv, v))p = Fy(y(uv, v)) in (0, T),

p(T) = 0, p′(T) = –Ky(y(uv, v; T)),
(3.6)

where

G
(
y(uv, v), p

)
=

(
1 +

∥∥y(uv, v)
∥∥2

V1

)
A

1
2 p + 2

((
y(uv, v), p

))
1A

1
2 y(uv, v), (3.7)

and

H1
(
x, t, uv(x, t), p(x, t)

)
= min

u∈Ku(x,t)
H1

(
x, t, u(x, t), p(x, t)

)
(3.8)

for a.e. (x, t) ∈ Q.

Next, we give necessary optimality conditions, also given as a Pontryagin’s principle for
optimal solutions to (P).
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Theorem 3.2 Assume that conditions (A1)–(A4) are fulfilled. Then (P) admits an optimal
solution v̄. Furthermore, there exists an optimal solution ū ∈ Argmin(Pv̄) and p ∈ S(0, T)
such that

⎧⎨
⎩

p′′ + Ap + G(y(ū, v̄), p) + g ′(y(ū, v̄))p = Fy(y(ū, v̄)) in (0, T),

p(T) = 0, p′(T) = –Ky(y(ū, v̄; T)),
(3.9)

where

G
(
y(ū, v̄), p

)
=

(
1 +

∥∥y(ū, v̄)
∥∥2

V1

)
A

1
2 p + 2

((
y(ū, v̄), p

))
1A

1
2 y(ū, v̄), (3.10)

and

H1
(
x, t, ū(x, t), p(x, t)

)
= min

u∈Ku(x,t)
H1

(
x, t, u(x, t), p(x, t)

)
(3.11)

for a.e. (x, t) ∈ Q,

H2
(
x, v̄(x), p(x, 0)

)
= max

v∈Kv(x)
H2

(
x, v(x), p(x, 0)

)
(3.12)

for a.e. x ∈ �.

Remark 3.2 Considering (3.7) and (3.10), we can infer for any φ ∈ S(0, T) that G(φ, ·) ∈
L(V2, H). Thus, together with (A3)–(A4), we can refer to the linear theory of Dautray and
Lions [11, pp. 570–589] to ensure that Eqs. (3.6) and (3.9), after reversing the direction of
time t → T – t, admit a unique weak solution p ∈ S(0, T).

4 Existence of minimax optimal solutions
In this section, we study the existence of minimax optimal solutions to control problems
(Pv) and (P). The following results play an important role in proving the existence.

Proposition 4.1 The solution mapping (u, v) �−→ y(u, v) from Uad × Vad, endowed with
weak-L2(0, T ; H)× weakly-star-L∞(�) topology, into C([0, T]; V1) ∩ C(Q̄) is sequentially
continuous.

Before we prove Proposition 4.1, we need the following well-known compactness re-
sults.

Lemma 4.1 Let X, B, and Y be Banach spaces with X ↪→ B ↪→ Y , where X is compactly
embedded in B. Let

W =
{
φ ∈ L∞(0, T ; X) | φ′ ∈ Lr(0, T ; Y )

}
with r > 1.

Then W is compactly embedded in C([0, T]; B).

Proof See [26]. �
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Proof of Proposition 4.1 Let (u∗, v∗) ∈ Uad ×Vad, and let (un, vn) ∈ Uad ×Vad be a sequence
such that

(un, vn) ⇀
(
u∗, v∗) weakly and weakly-star in L2(0, T ; H) and L∞(�), (4.1)

respectively, as n → ∞. From now on, we denote by yn the solution y(un, vn) of Eq. (3.1)
in which u and v are replaced by un and vn, respectively. From Theorem 2.2 we have

‖yn‖S(0,T) ≤ C
∥∥(y0, y1 + vn, f + un)

∥∥
P , (4.2)

which implies that yn and y′
n remain in bounded sets of L∞(0, T ; V2) ∩ W(0, T) and

L∞(0, T ; H), respectively. Therefore by using Rellich’s extraction theorem we can find a
subsequence of {yn}, say again {yn}, and y∗ ∈W(0, T) such that

yn ⇀ y∗ weakly in W(0, T) as n → ∞, (4.3)

yn ⇀ y∗ weakly-star in L∞(0, T ; V2) as n → ∞, (4.4)

y′
n ⇀ y∗′ weakly-star in L∞(0, T ; H) as n → ∞. (4.5)

Since V2 ↪→ V1 is compact, in view of (2.10), we can apply Lemma 4.1 to (4.4) and (4.5)
with X = V2, Y = V1 (or C(�̄)), and Z = H to verify that

{yn} is precompact in C
(
[0, T]; V1

) ∩ C(Q̄). (4.6)

Hence we can find a subsequence {ynk } ⊂ {yn}, if necessary, such that

ynk (t) → y∗(t) in V1 for all t ∈ [0, T] as k → ∞. (4.7)

Therefore (2.12), (4.3), (4.6), and (4.7) imply

‖ynk ‖2
V1 Aynk ⇀

∥∥y∗∥∥2
V1

Ay∗ weakly in L2(0, T ; H) as k → ∞, (4.8)

g(ynk ) → g
(
y∗) strongly in L2(0, T ; H) as k → ∞. (4.9)

Then by the standard arguments in Dautray and Lions [11, pp. 561–565] we conclude that
the limit y∗ is a weak solution of Eq. (3.1) with u and v replaced by u∗ and v∗, respectively.
Moreover, from the uniqueness of weak solutions we conclude that y∗ = y(u∗, v∗) inS(0, T),
which implies that y(un, vn) → y(u∗, v∗) in C([0, T]; V1) ∩ C(Q̄).

This completes the proof. �

Now, we study the existence of an optimal solution to problem (Pv).

Theorem 4.1 Let v ∈ Vad. Under (A1)–(A4), problem (Pv) admits at least one optimal
solution.



Hwang Boundary Value Problems         (2023) 2023:72 Page 13 of 26

Proof Let (u, v) be given in Uad ×Vad, and let y(u, v) be the associated solution of Eq. (3.1).
By (A3)–(A4), Theorem 2.2, and Young’s inequality it follows that

J(u, v) ≥ c1‖u‖2
L2(0,T ;H) –

∫
Q

∣∣F(
x, t, y(u, v)

)∣∣dx dt

–
∫

�

(∣∣K(
x, y(u, v)(T)

)∣∣ +
∣∣L(x, v)

∣∣)dx

≥ c1‖u‖2
L2(0,T ;H) – c

∫
Q

(
1 +

∣∣y(u, v)
∣∣σ1)∣∣y(u, v)

∣∣dx dt

–
∫

Q

∣∣F(x, t, 0)
∣∣dx dt – c

∫
�

(
1 +

∣∣y(u, v; T)
∣∣σ2)∣∣y(u, v; T)

∣∣dx dt

–
∫

�

∣∣K(x, 0)
∣∣dx – ‖L1‖L1(�)

∥∥η
(|v|)∥∥L∞(�)

≥ c1‖u‖2
L2(0,T ;H) – C

(∥∥y(u, v)
∥∥
S(0,T) +

∥∥y(u, v)
∥∥1+σ1
S(0,T)

+
∥∥y(u, v)

∥∥1+σ2
S(0,T) + 1

)
– ‖L1‖L1(�)

∥∥η
(|v|)∥∥L∞(�)

≥ c1‖u‖2
L2(0,T ;H) – C

(
c(y0, y1 + v, f ,σ1,σ2) + ‖u‖L2(0,T ;H)

+ ‖u‖1+σ1
L2(0,T ;H) + ‖u‖1+σ2

L2(0,T ;H) + 1
)

– ‖L1‖L1(�)
∥∥η

(|v|)∥∥L∞(�)

≥ c1

2
‖u‖2

L2(0,T ;H) – C
(
c(y0, y1 + v, f ,σ1,σ2) + 1

)

– ‖L1‖L1(�)
∥∥η

(|v|)∥∥L∞(�). (4.10)

Let {un} ⊂ Uad be a minimizing sequence for problem (Pv). Thanks to (4.10), {un} is
bounded in L2(0, T ; H). Since Uad is weakly closed, there exist u∗ ∈ Uad and a subsequence
of {un}, indexed again by n, such that

un ⇀ u∗ weakly in L2(0, T ; H) as n → ∞. (4.11)

For simplicity, we denote the associated solutions y(un, v) and y(u∗, v) of Eq. (3.1) by yn and
y∗, respectively. We note that

J
(
u∗, v

)
– J(un, v) =

∫
Q

Fn(x, t)
(
y∗ – yn

)
dx dt +

∫
�

Kn(x)
(
y∗(T) – yn(T)

)
dx

+
∫

Q

(
H

(
x, t, u∗) – H(x, t, un)

)
dx dt, (4.12)

where

Fn(x, t) =
∫ 1

0
Fy

(
x, t, θy∗ + (1 – θ )yn

)
dθ ,

Kn(x) =
∫ 1

0
Ky

(
x, θy∗(T) + (1 – θ )yn(T)

)
dθ .

From (A3)–(A4) and Proposition 4.1 we easily see that

lim
n→∞

∫
Q

Fn(x, t)
(
y∗ – yn

)
dx dt = lim

n→∞

∫
�

Kn(x)
(
y∗(T) – yn(T)

)
dx = 0. (4.13)
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Due to (A3) together with the well-known classical Mazur theorem, we deduce that

∫
Q

H
(
x, t, u∗)dx dt ≤ lim inf

n→∞

∫
Q

H(x, t, un) dx dt. (4.14)

Applying (4.13) and (4.14) to (4.12), we obtain that

J
(
u∗, v

) ≤ lim inf
n→∞ J(un, v) ≤ inf(Pv). (4.15)

This completes the proof. �

To study the existence of a solution to problem (P), we need the following weak conver-
gence result.

Proposition 4.2 Let (A1)–(A4) be fulfilled, and let {vn} ⊂ Vad be a sequence converging to
some v ∈ Vad for the weak-star topology of L∞(�). Then the corresponding sequence {uvn}
(where uvn ∈ Argmin(Pvn )) also converges to some uv (∈ Argmin(Pv)) for the weak topology
of L2(0, T ; H).

Proof Since {vn} is bounded in L∞(�), we have

J(uvn , vn) ≤ J(u0, vn) < ∞, (4.16)

where u0 is any fixed element of Uad. From (4.10) we know that the sequence {uvn} is
bounded in L2(0, T ; H). Then there exist a subsequence of {uvn}, still denoted by itself,
and u∗ ∈ L2(0, T ; H) such that

uvn ⇀ u∗ weakly in L2(0, T ; H) as n → ∞. (4.17)

Since Uad is weakly closed by (A1), we see that u∗ ∈ Uad. By (4.17) and Proposition 4.1 we
deduce that

y(uvn , vn) → y
(
u∗, v

)
strongly in C

(
[0, T]; V1

) ∩ C(Q̄) (4.18)

as n → ∞. By the definition of uvn (∈ Argmin(Pvn )), we have

J(uvn , vn) ≤ J(u, vn) ∀u ∈ Uad. (4.19)

This can be written again as

∫
Q

(
F
(
x, t, y(uvn , vn)

)
+ H(x, t, uvn )

)
dx dt +

∫
�

K
(
x, y(uvn , vn; T)

)
dx

≤
∫

Q

(
F
(
x, t, y(u, vn)

)
+ H(x, t, u)

)
dx dt +

∫
�

K
(
x, y(u, vn; T)

)
dx (4.20)
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for all u ∈ Uad. Let Ln and Rn be the left and right sides of (4.20), respectively. Due to (4.17)
and (4.18), we have

lim inf
n→∞ Ln ≥

∫
Q

(
F
(
x, t, y

(
u∗, v

))
+ H

(
x, t, u∗))dx dt

+
∫

�

K
(
x, y

(
u∗, v; T

))
dx, (4.21)

lim
n→∞ Rn =

∫
Q

(
F
(
x, t, y(u, v)

)
+ H(x, t, u)

)
dx dt

+
∫

�

K
(
x, y(u, v; T)

)
dx. (4.22)

Adding
∫
�

L(x, v) dx to the right sides of (4.21) and (4.22), we obtain by (4.20)–(4.22) that

J
(
u∗, v

) ≤ J(u, v) ∀u ∈ Uad. (4.23)

This implies that u∗ ∈ Argmin(Pv). Therefore we can set u∗ = uv.
This completes the proof. �

Theorem 4.2 Assume (A1)–(A4) are fulfilled. Then problem (P) admits at least one opti-
mal solution v∗.

Proof Problem (P) is to find

sup
{

J(uv, v) | v ∈ Vad, uv ∈ Argmin(Pv)
}

. (4.24)

Let {vn} (⊂ Vad) be a maximizing sequence for problem (P). SinceVad is bounded in L∞(�),
we can find a subsequence of {vn}, still dented by itself, and v∗ ∈ L∞(�) such that

vn ⇀ v∗ weak-star in L∞(�) as n → ∞. (4.25)

As is noted in Remark 3.1, (A2) ensures that Vad is weakly closed in Lp(�) (p ≥ 1). So we
know that the limit v∗ in (4.25) belongs to Vad. With a symmetric reasoning of (4.14), we
infer from (4.25) that assumption (A4) ensures that

lim sup
n→∞

∫
�

L(x, vn) dx ≤
∫

�

L
(
x, v∗)dx. (4.26)

Meanwhile, by Proposition 4.2 we know that there exists a subsequence of {uvn} (where
uvn ∈ Argmin(Pvn )), denoted by itself, and uv∗ ∈ Argmin(Pv∗ ) such that

uvn ⇀ uv∗ weakly in L2(0, T ; H) as n → ∞. (4.27)

We can also combine Proposition 4.1 with (4.25) and (4.27) to obtain that

y(uvn , vn) → y
(
uv∗ , v∗) strongly in C

(
[0, T]; V1

) ∩ C(Q̄) (4.28)
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as n → ∞, where y(uvn , vn) and y(uv∗ , v∗) are associated solutions of Eq. (3.1). Thus we
have

J(uvn , vn) – J
(
uv∗ , v∗)

=
(
J(uvn , vn) – J(uv∗ , vn)

)
+

(
J(uv∗ , vn) – J

(
uv∗ , v∗))

≤ J(uv∗ , vn) – J
(
uv∗ , v∗)

=
∫

Q

(
F
(
x, t, y(uv∗ , vn)

)
– F

(
x, t, y

(
uv∗ , v∗)))dx dt

+
∫

�

(
K

(
x, y(uv∗ , vn; T)

)
– K

(
x, y

(
uv∗ , v∗; T

)))
dx

+
∫

�

(
L(x, vn) – L

(
x, v∗))dx. (4.29)

From (A3)–(A4), (4.26), (4.28), and (4.29) we deduce

lim sup
n→∞

J(uvn , vn) ≤ J
(
uv∗ , v∗). (4.30)

Thus it readily follows that

sup
{

J(uv, v) | v ∈ Vad, uv ∈ Argmin(Pv)
}

= lim sup
n→∞

J(uvn , vn)

≤ J
(
uv∗ , v∗). (4.31)

Therefore v∗ (∈ Vad) (with uv∗ ∈ Argmin(Pv∗ )) is an optimal solution for problem (P).
This completes the proof. �

5 Taylor expansions
As pointed out before, to derive necessary conditions for the optimal solution, it is nec-
essary to study the state perturbation of the cost function corresponding to admissible
control variables and disturbance variables. This amounts to finding a sort of Taylor ex-
pansion of first order for the state and the cost with respect to the perturbations of the
control and disturbance. As is well known in other related studies ([4, 18, 22, 24], etc.),
since the control domain is just a metric space, the perturbation of the control has to be of
the spike (or needle-like) type. Here we follow the construction developed in [4] and [22].

Given a reference control ū ∈ Uad, an admissible control u ∈ Uad, and a number ρ ∈ (0, 1),
a diffuse perturbation of ū is defined by

uρ(x, t) :=

⎧⎨
⎩

ū(x, t) in Q \ Qρ ,

u(x, t) in Qρ ,
(5.1)

where Qρ is a measurable subset of Q explicitly described below.
We present the following increment formula due to Taylor expansion for the solution of

Eq. (3.1) with respect to diffuse perturbations of the reference control.

Theorem 5.1 For any given ū, u ∈ Uad and ρ ∈ (0, 1), we consider the diffuse perturbation
in (5.1) and the solutions ȳ (≡ y(ū, v)) and yρ (≡ y(uρ , v)) of Eq. (3.1) corresponding to (ū, v)
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and (uρ , v), respectively. Then there is a measurable subset Qρ ⊂ Q such that

τN+1(Qρ) = ρτN+1(Q), (5.2)∫
Qρ

(
H(x, t, u) – H(x, t, ū)

)
dx dt = ρ

∫
Q

(
H(x, t, u) – H(x, t, ū)

)
dx dt, (5.3)

yρ = ȳ + ρz + ρδρ with lim
ρ→0+

‖δρ‖C([0,T];V1)∩C(Q̄) = 0, (5.4)

J(uρ , v) = J(ū, v) + ρ�J + o(ρ), (5.5)

where τN+1 is the (N + 1)-dimensional Lebesgue measure,

�J := J ′
y(ū, v)z +

∫
Q

(
H(x, t, u) – H(x, t, ū)

)
dx dt,

and z is the weak solution to

⎧⎨
⎩

z′′ + Az + G(ȳ, z) + g ′(ȳ)z = u – ū in (0, T),

z(0) = 0, z′(0) = 0,
(5.6)

where G(ȳ, z) = (1 + ‖ȳ‖2
V1

)A 1
2 z + 2((ȳ, z))1A 1

2 ȳ.

To prove Theorem 5.1, we need the following technical lemma, which was used in [9,
22, 24], etc.

Lemma 5.1 Let u, ū ∈ Uad. For every ρ ∈ (0, 1), there is a sequence of measurable subsets
Qn

ρ in Q such that

τN+1(Qn
ρ

)
= ρτN+1(Q), (5.7)∫

Qn
ρ

(
H(x, t, ū) – H(x, t, u)

)
dx dt = ρ

∫
Q

(
H(x, t, ū) – H(x, t, u)

)
dx dt, (5.8)

1
ρ

χQn
ρ

⇀ 1 weak-star in L∞(Q) as n → ∞, (5.9)

where χQn
ρ

means the characteristic function of Qn
ρ .

Proof See [24]. �

We also need the following lemma.

Lemma 5.2 Let y1 and y2 be the weak solutions of Eq. (3.1) corresponding to (u1, v) and
(u2, v) with other data fixed, respectively. Then we have

‖y1 – y2‖S(0,T) ≤ C‖u1 – u2‖L2(0,T ;H). (5.10)

Proof The proof is an immediate consequence of Theorem 2.2. �
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Proof of Theorem 5.1 The existence of the subset Qρ satisfying (5.2) and (5.3) immediately
follows from Lemma 5.1. We easily infer that the increment formula (5.5) follows from
(5.3) and (5.4). Thus we focus on justifying (5.4), that is, the Taylor expansion for the weak
solution y of Eq. (3.1) corresponding to the diffuse control perturbations.

For any ρ ∈ (0, 1), we take the sets Qn
ρ as in Lemma 5.1 and consider the following diffuse

control perturbations:

un
ρ(x, t) :=

⎧⎨
⎩

ū(x, t) in Q \ Qn
ρ ,

u(x, t) in Qn
ρ .

(5.11)

Let yn
ρ (≡ y(un

ρ , v)) and ȳ (≡ y(ū, v)) be the weak solutions of Eq. (3.1) corresponding to
(un

ρ , v) and (ū, v) with other data fixed, respectively. Let z be the weak solution of Eq. (5.6).
Now we construct an equation that admits δn

ρ := yn
ρ–ȳ
ρ

– z as a unique weak solution: We
observe that

1
ρ

((
1 +

∥∥yn
ρ

∥∥2
V1

)
A

1
2 yn

ρ –
(
1 + ‖ȳ‖2

V1

)
A

1
2 ȳ

)

–
(
1 + ‖ȳ‖2

V1

)
A

1
2 z – 2((ȳ, z))1A

1
2 ȳ

=
(
1 + ‖ȳ‖2

V1

)
A

1
2 δn

ρ +
1
ρ

(∥∥yn
ρ

∥∥2
V1

– ‖ȳ‖2
V1

)
A

1
2 yn

ρ – 2((ȳ, z))1A
1
2 ȳ

=
(
1 + ‖ȳ‖2

V1

)
A

1
2 δn

ρ +
1
ρ

((
yn
ρ – ȳ, yn

ρ + ȳ
))

1A
1
2 yn

ρ – 2((ȳ, z))1A
1
2 ȳ

=
(
1 + ‖ȳ‖2

V1

)
A

1
2 δn

ρ +
((

δn
ρ , yn

ρ + ȳ
))

1A
1
2 yn

ρ

+
((

z, yn
ρ + ȳ

))
1A

1
2 yn

ρ – 2((ȳ, z))1A
1
2 ȳ

=
(
1 + ‖ȳ‖2

V1

)
A

1
2 δn

ρ +
((

δn
ρ , yn

ρ + ȳ
))

1A
1
2 yn

ρ

+
((

z, yn
ρ – ȳ

))
1A

1
2 yn

ρ + 2((ȳ, z))1A
1
2
(
yn
ρ – ȳ

)
. (5.12)

Thus we infer that δn
ρ is a unique weak solution of

⎧⎪⎪⎨
⎪⎪⎩

δn
ρ

′′ + Aδn
ρ + (1 + ‖ȳ‖2

V1
)A 1

2 δn
ρ + ((δn

ρ , yn
ρ + ȳ))1A 1

2 yn
ρ + B(yn

ρ , ȳ)δn
ρ

= F (yn
ρ , ȳ) + ( 1

ρ
χQn

ρ
– 1)(u – ū) in (0, T),

δn
ρ(0) = 0, δn

ρ
′(0) = 0,

(5.13)

where

B
(
yn
ρ , ȳ

)
=

∫ 1

0
g ′(θ ȳ + (1 – θ )yn

ρ

)
dθ , (5.14)

F
(
yn
ρ , ȳ

)
= 2((ȳ, z))1A

1
2
(
ȳ – yn

ρ

)
+

((
z, ȳ – yn

ρ

))
1A

1
2 yn

ρ

+
(

g ′(ȳ) –
∫ 1

0
g ′(θ ȳ + (1 – θ )yn

ρ

)
dθ

)
z. (5.15)

From (5.9) we deduce that
(

1
ρ

χQn
ρ

– 1
)

(u – ū) ⇀ 0 weakly in L2(0, T ; H) as n → ∞. (5.16)
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Hence for given ρ ∈ (0, 1), by the uniform boundedness principle we can find n(ρ) ∈ N

(n(ρ) → ∞ as ρ → 0+) and a positive constant M such that
∥∥∥∥
(

1
ρ

χQn(ρ)
ρ

– 1
)

(u – ū)
∥∥∥∥

L2(0,T ;H)
≤ M. (5.17)

Since

un(ρ)
ρ → ū strongly in L2(0, T ; H) as ρ → 0+, (5.18)

we infer from Lemma 5.2 that

yn(ρ)
ρ → ȳ strongly in S(0, T) as ρ → 0+. (5.19)

Moreover, since V2 is compactly embedded in C0(�) when N ∈ {1, 2, 3}, we can use
Lemma 4.1 by taking X = V2, B = C0(�) (or V1), and Y = H in Lemma 4.1 to obtain that
S(0, T) is compactly embedded in C([0, T]; V1)∩C(Q̄). Hence from (H1), (H2), and (5.19),
together with the fact that S(0, T) is compactly embedded in C([0, T]; V1) ∩ C(Q̄), we get
that there is a subsequence of {yn(ρ)

ρ }, still denoted by itself, such that

F
(
yn(ρ)
ρ , ȳ

) → 0 strongly in L2(0, T ; H) as ρ → 0+. (5.20)

To estimate δn
ρ in Eq. (5.13), we apply the energy equality (2.21) to Eq. (5.13). Then we have

∥∥δn
ρ

′(t)
∥∥2

2 +
∥∥δn

ρ(t)
∥∥2

V2

= –2
∫ t

0

((
δn
ρ , yn

ρ + ȳ
))

1

(
A

1
2 yn

ρ , δn
ρ

′)
2 ds – 2

∫ t

0

(
B
(
yn
ρ , ȳ

)
δn
ρ , δn

ρ
′)

2 ds

– 2
∫ t

0

(
1 + ‖ȳ‖2

V1

)(
A

1
2 δn

ρ , δn
ρ

′)
2 ds

+ 2
∫ t

0

(
F

(
yn
ρ , ȳ

)
+

(
1
ρ

χQn
ρ

– 1
)

(u – ū), δn
ρ

′
)

2
ds. (5.21)

Estimating (5.21) as in the proof of Theorem 2.2, we arrive at

∥∥δn
ρ

∥∥
S(0,T) ≤ C

(∥∥F(
yn
ρ , ȳ

)∥∥
L2(0,T ;H) +

∥∥∥∥
(

1
ρ

χQn
ρ

– 1
)

(u – ū)
∥∥∥∥

L2(0,T ;H)

)
, (5.22)

where C dose not depend on n and ρ . From (5.17) and (5.20) we deduce that

{
δn(ρ)
ρ

}
is bounded in W(0, T) ∩ L∞(0, T ; V2) ∩ W 1,∞(0, T ; H). (5.23)

Therefore by Rellich’s extraction theorem we can extract a subsequence of {δn(ρ)
ρ }, say again

{δn(ρ)
ρ }, and find δ ∈W(0, T) ∩ L∞(0, T ; V2) ∩ W 1,∞(0, T ; H) such that

δn(ρ)
ρ ⇀ δ weakly in W(0, T) as ρ → 0+, (5.24)

δn(ρ)
ρ ⇀ δ weak-star in L∞(0, T ; V2) as ρ → 0+, (5.25)

δn(ρ)
ρ

′
⇀ δ′ weak-star in L∞(0, T ; H) as ρ → 0+. (5.26)
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Considering (5.16), (5.19), (5.20), (5.24), and (5.25), we replace δn
ρ by δn(ρ)

ρ in the weak form
of Eq. (5.13) (in view of Definition 2.1) and let ρ → 0+. Then by standard arguments as in
Dautray and Lions [11, pp. 561–565] we conclude that the limit δ is the weak solution of

⎧⎨
⎩

δ′′ + Aδ + (1 + ‖ȳ‖2
V1

)A 1
2 δ + 2((δ, ȳ))1A 1

2 ȳ + g ′(ȳ)δ = 0 in (0, T),

δ(0) = 0, δ′(0) = 0.
(5.27)

By the uniqueness of the weak solution in Theorem 2.2 we know clearly that δ = 0. Finally,
we apply again Lemma 4.1 to (5.23) with X = V2, B = C0(�) (or V1), and Y = H to verify that
{δn(ρ)

ρ } is precompact in C([0, T]; V1) ∩ C(Q̄). Hence we can find a subsequence {δnk (ρ)
ρ } ⊂

{δn(ρ)
ρ }, if necessary, such that

δnk (ρ)
ρ → δ(= 0) strongly in C

(
[0, T]; V1

) ∩ C(Q̄) as ρ → 0+. (5.28)

This proves (5.4).
It can infer (5.5) from (5.4), but we prove it simply as follows: First, we have

∣∣∣∣ J(uρ , v) – J(ū, v)
ρ

– �J
∣∣∣∣

≤
∣∣∣∣
∫

Q

(
F(x, t, y(uρ , v)) – F(x, t, y(ū, v))

ρ
– Fy

(
x, t, y(ū, v)

)
z
)

dx dt
∣∣∣∣

+
∣∣∣∣
∫

�

(
K(x, y(uρ , v; T)) – K(x, y(ū, v; T))

ρ
– Ky

(
x, y(ū, v; T)

)
z(T)

)
dx

∣∣∣∣
≤

∣∣∣∣
∫

Q
Fρ(x, t)δρ dx dt

∣∣∣∣ +
∣∣∣∣
∫

Q

(
Fρ(x, t) – Fy

(
x, t, y(ū, v)

))
z dx dt

∣∣∣∣
+

∣∣∣∣
∫

�

Kρ(x)δρ(T) dx
∣∣∣∣ +

∣∣∣∣
∫

�

(
Kρ(x) – Ky

(
x, y(ū, v; T)

))
z(T) dx

∣∣∣∣
= I1

ρ + I2
ρ + I3

ρ + I4
ρ , (5.29)

where Ii
ρ (1 ≤ i ≤ 4) are given in the order of the last terms of (5.29), and

Fρ(x, t) = Fy
(
x, t, θ1y(uρ , v) + (1 – θ1)y(ū, v)

)
,

Kρ(x) = Ky
(
x, θ2y(uρ , v; T) + (1 – θ2)y(ū, v; T)

)

for some θ1, θ2 ∈ (0, 1). From (5.4) we deduce that

I1
ρ , I3

ρ → 0 as ρ → 0+. (5.30)

Thanks to (A3), (A4), and (5.19), we obtain that

I2
ρ , I4

ρ → 0 as ρ → 0+. (5.31)

This completes the proof. �

We need another Taylor expansion of y with respect to v.
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Theorem 5.2 For any given v̄, v ∈ Vad and ρ ∈ (0, 1), there are a measurable subset �ρ ⊂ �

and uv̄ ∈ Argmin(Pv̄) such that

τN (�ρ) = ρτN (�), (5.32)∫
�ρ

(
L(x, v) – L(x, v̄)

)
dx = ρ

∫
�

(
L(x, v) – L(x, v̄)

)
dx, (5.33)

y(uvρ , vρ) = y(uvρ , v̄) + ρz + ρδρ with lim
ρ→0+

‖δρ‖C([0,T];V1)∩C(Q̄) = 0, (5.34)

J(uvρ , vρ) = J(uvρ , v̄) + ρ�J + o(ρ), (5.35)

where

�J := J ′
y(uv̄, v̄)z +

∫
�

(
L(x, v) – L(x, v̄)

)
dx,

vρ(x) =

⎧⎨
⎩

v̄(x) in � \ �ρ ,

v(x) in �ρ ,

uvρ ∈ Argmin(Pvρ ),

and z is the weak solution to
⎧⎨
⎩

z′′ + Az + G(y(uv̄, v̄), z) + g ′(y(uv̄, v̄))z = 0 in (0, T),

z(0) = 0, z′(0) = v – v̄,
(5.36)

where G(y(uv̄, v̄), z) = (1 + ‖y(uv̄, v̄)‖2
V1

)A 1
2 z + 2((y(uv̄, v̄), z))1A 1

2 y(uv̄, v̄).

The proof relies on the following lemmas.

Lemma 5.3 Let v, v̄ ∈ L∞(�). Then for every ρ ∈ (0, 1), there is a sequence of measurable
subsets �n

ρ in � such that

τN(
�n

ρ

)
= ρτN (�), (5.37)∫

�n
ρ

(
L(x, v̄) – L(x, v)

)
dx = ρ

∫
�

(
L(x, v̄) – L(x, v)

)
dx, (5.38)

1
ρ

χ�n
ρ

⇀ 1 weak-star in L∞(�) as n → ∞, (5.39)

where χ�n
ρ

means the characteristic function of �n
ρ .

Proof See [18]. �

Lemma 5.4 Let ρ be in (0, 1), and let {�n
ρ} be the sets in Lemma 5.3. Set

vn
ρ(x) :=

⎧⎨
⎩

v̄(x) in � \ �n
ρ ,

v(x) in �n
ρ .

(5.40)
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Then

vn
ρ ⇀ ρv + (1 – ρ)v̄ weak-star in L∞(�) as n → ∞. (5.41)

Proof See [4]. �

Proof of Theorem 5.2 Let uvn
ρ

∈ Argmin(Pvn
ρ
). By Propositions 4.1 and 4.2 we can show

that the sequence {uvn
ρ
} (or a subsequence) admits a weak limit uρ ∈ L2(0, T ; H), where

uρ ∈ Argmin(Pρv+(1–ρ)v̄), and

y
(
uvn

ρ
, vn

ρ

) → y
(
uρ ,ρv + (1 – ρ)v̄

)
strongly in C

(
[0, T]; V1

) ∩ C(Q̄) (5.42)

as n → ∞. By similar arguments the sequence {uρ} (or a subsequence) admits a weak limit
uv̄ ∈ L2(0, T ; H), where uv̄ ∈ Argmin(Pv̄), such that

y
(
uρ ,ρv + (1 – ρ)v̄

) → y(uv̄, v̄) strongly in C
(
[0, T]; V1

) ∩ C(Q̄) (5.43)

as ρ → 0+. Thus we can deduce from (5.42) and (5.43) that there exists a sequence {n(ρ)} ⊂
N (n(ρ) → ∞ as ρ → 0+) such that

y
(
uvn(ρ)

ρ
, vn(ρ)

ρ

) → y(uv̄, v̄) strongly in C
(
[0, T]; V1

) ∩ C(Q̄) (5.44)

as ρ → 0+. Let z be the weak solution of Eq. (5.36), yn
ρ := y(uvn(ρ)

ρ
, vn(ρ)

ρ ), and ȳ := y(uv̄, v̄). By
an argument similar to that in the proof of Theorem 5.1 we can construct the following
equation that admits δn

ρ := yn
ρ–ȳ
ρ

– z as the solution:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δn
ρ

′′ + Aδn
ρ + (1 + ‖ȳ‖2

V1
)A 1

2 δn
ρ + ((δn

ρ , yn
ρ + ȳ))1A 1

2 yn
ρ + B(yn

ρ , ȳ)δn
ρ

= F (yn
ρ , ȳ) in (0, T),

δn
ρ(0) = 0, δn

ρ
′(0) = ( 1

ρ
χ

�
n(ρ)
ρ

– 1)(v – v̄),

(5.45)

where

B
(
yn
ρ , ȳ

)
=

∫ 1

0
g ′(θ ȳ + (1 – θ )yn

ρ

)
dθ , (5.46)

F
(
yn
ρ , ȳ

)
= 2((ȳ, z))1A

1
2
(
ȳ – yn

ρ

)
+

((
z, ȳ – yn

ρ

))
1A

1
2 yn

ρ

+
(

g ′(ȳ) –
∫ 1

0
g ′(θ ȳ + (1 – θ )yn

ρ

)
dθ

)
z. (5.47)

As seen in (5.16), we deduce from (5.39) that

(
1
ρ

χ�n
ρ

– 1
)

(v – v̄) ⇀ 0 weakly in H as n → ∞. (5.48)

Hence for every ρ ∈ (0, 1), by the uniform boundedness principle we can find a subse-
quence of {n(ρ)} ⊂N, if necessary, still denoted by itself, and a positive constant M1 such
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that
∥∥∥∥
(

1
ρ

χ
�

n(ρ)
ρ

– 1
)

(v – v̄)
∥∥∥∥

H
≤ M1. (5.49)

Applying again the energy equality (2.21) to Eq. (5.45) and estimating the equality as shown
in (5.22), we arrive at

∥∥δn
ρ

∥∥
S(0,T) ≤ C

(∥∥F(
yn
ρ , ȳ

)∥∥
L2(0,T ;H) +

∥∥∥∥
(

1
ρ

χ
�

n(ρ)
ρ

– 1
)

(v – v̄)
∥∥∥∥

H

)
, (5.50)

where C dose not depend on n and ρ . From (5.49) and (5.50) we know that

{
δn
ρ

}
is bounded in W(0, T) ∩ L∞(0, T ; V2) ∩ W 1,∞(0, T ; H). (5.51)

Therefore by Rellich’s extraction theorem we can extract a subsequence of {δn
ρ}, still de-

noted by itself, and find δ ∈W(0, T) ∩ L∞(0, T ; V2) ∩ W 1,∞(0, T ; H) such that

δn
ρ ⇀ δ weakly in W(0, T) as ρ → 0+, (5.52)

δn
ρ ⇀ δ weak-star in L∞(0, T ; V2) as ρ → 0+, (5.53)

δn
ρ

′
⇀ δ′ weak-star in L∞(0, T ; H) as ρ → 0+. (5.54)

Noting (4.3), we can deduce that F (yn
ρ , ȳ) converge to 0 for the weak topology of

L2(0, T ; H), and considering (5.44) and (5.52)–(5.54), we conclude by arguments similar to
the proof of Theorem 5.1 that the limit δ is the weak solution of Eq. (5.27). By the unique-
ness of the weak solution in Theorem 2.2 we know clearly that δ = 0. Thus by following
arguments similar to the proof of Theorem 5.1 we can find a subsequence {δnk

ρ } ⊂ {δn
ρ}, if

necessary, such that

δnk
ρ → δ(= 0) strongly in C

(
[0, T]; V1

) ∩ C(Q̄) as ρ → 0+. (5.55)

This proves (5.34).
Thanks to (5.34), by analogy to the proof of (5.5), we can show (5.35).
This completes the proof. �

6 Necessary optimality conditions
In this section, we prove necessary optimality conditions that have to be satisfied by opti-
mal solutions to (Pv) and (P).

6.1 Proof of Theorem 3.1
Let ρ ∈ (0, 1), v ∈ Vad, uv ∈ Argmin(Pv), and u ∈ Uad. By Theorem 5.1 it is clear that there
exists a measurable subset Qρ such that

τN+1(Qρ) = ρτN+1(Q), (6.1)

y
(
uρ(v), v

)
= y(uv, v) + ρz + ρδρ , with lim

ρ→0+
‖δρ‖C([0,T];V1)∩C(Q̄) = 0, (6.2)

J
(
uρ(v), v

)
= J(uv, v) + ρ�J + o(ρ), (6.3)
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where uρ(v) is given by

uρ(v)(x, t) :=

⎧⎨
⎩

uv(x, t) in Q \ Qρ ,

u(x, t) in Qρ ,

and

�J =
∫

Q

(
Fy

(
x, t, y(uv, v)

)
z(x, t) + H(x, t, u) – H(x, t, uv)

)
dx dt

+
∫

�

Ky
(
x, y(uv, v; T)

)
z(x, T) dx, (6.4)

where z is the solution of
⎧⎨
⎩

z′′ + Az + G(y(uv, v), z) + g ′(y(uv, v))z = u – uv in (0, T),

z(0) = 0, z′(0) = 0,
(6.5)

with G(y(uv, v), z) = (1 + ‖y(uv, v)‖2
V1

)A 1
2 z + 2((y(uv, v), z))1A 1

2 y(uv, v). Since uv ∈ Argmin(Pv)
and (uρ(v), v) is admissible for (Pv), we have with (6.3) that

–�J = lim
ρ→0+

J(uv, v) – J(uρ(v), v)
ρ

≤ 0. (6.6)

Let p be the solution of (3.6). Multiplying both sides of Eq. (6.5) by p and noting that

∫ T

0

(
G

(
y(uv, v), z

)
, p

)
2 dt =

∫ T

0

(
z,G

(
y(uv, v), p

))
2 dt,

we obtain

∫ T

0
(p, u – uv)2 dt

=
∫ T

0

〈
p, z′′ + Az + G

(
y(uv, v), z

)
+ g ′(y(uv, v)

)
z
〉
V2,V ′

2
dt

=
∫ T

0

(
Fy

(
y(uv, v)

)
, z

)
2 dt +

(
Ky

(
y(uv, v; T)

)
, z(T)

)
2. (6.7)

From (6.4), (6.6), and (6.7) we arrive at the following condition:

∫
Q
H1(x, t, uv, p) dx dt ≤

∫
Q
H1(x, t, u, p) dx dt ∀u ∈ Uad. (6.8)

The pointwise Pontryagin principle (3.8) can be given by referring to [18, pp. 157–158].

6.2 Proof of Theorem 3.2
Let v̄ be the optimal solution to (P) we want to characterize. By Theorem 5.2 it is clear that
there exist ū ∈ Argmin(Pv̄) and a measurable subsets �ρ such that

τN (�ρ) = ρτN (�), (6.9)
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y(uvρ , vρ) = y(uvρ , v̄) + ρz + ρδρ , with lim
ρ→0+

‖δρ‖C([0,T];V1)∩C(Q̄) = 0, (6.10)

J(uvρ , vρ) = J(uvρ , v̄) + ρ�J + o(ρ), (6.11)

where vρ is given by

vρ(v)(x) :=

⎧⎨
⎩

v̄(x) in � \ �ρ ,

v(x) in �ρ ,

and

�J =
∫

Q
Fy

(
x, t, y(ū, v̄)

)
z(x, t) dx dt

+
∫

�

(
Ky

(
x, y(ū, v̄; T)

)
z(x, T) + L(x, v) – L(x, v̄)

)
dx, (6.12)

where z is the solution of
⎧⎨
⎩

z′′ + Az + G(y(ū, v̄), z) + g ′(y(ū, v̄))z = 0 in (0, T),

z(0) = 0, z′(0) = v – v̄.
(6.13)

Since v̄ is an optimal solution to (P) and ū ∈ Argmin(Pv̄), we deduce that

0 ≤ J(ū, v̄) – J(uvρ , vρ)
ρ

≤ J(uvρ , v̄) – J(uvρ , vρ)
ρ

. (6.14)

Thus it follows from (6.11) and (6.14) that

–�J = lim
ρ→0+

J(uvρ , v̄) – J(uvρ , vρ)
ρ

≥ 0. (6.15)

Let p be the solution of (3.9). Multiplying both sides of Eq. (6.13) by p, we obtain

(
p(0), v – v̄

)
2 =

∫ T

0

(
Fy

(
y(ū, v̄)

)
, z

)
2 dt +

(
Ky

(
y(ū, v̄; T)

)
, z(T)

)
2. (6.16)

From (6.12), (6.15), and (6.16) we arrive at the following condition:

∫
�

H2
(
x, v, p(x, 0)

)
dx ≤

∫
�

H2
(
x, v̄, p(x, 0)

)
dx ∀v ∈ Vad. (6.17)

The pointwise Pontryagin principle (3.12) can also be derived by referring to [18,
pp. 157–158]. Finally, since ū ∈ Argmin(Pv̄), (3.11) follows from Theorem 3.1.
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