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Abstract
This ongoing work is vehemently dedicated to the investigation of a class of ordinary
linear Volterra type integro-differential equations with fractional order in numerical
mode. By replacing the unknown function by an appropriate multilayered
feed-forward type neural structure, the fractional problem of such initial value is
changed into a course of non-linear minimization equations, to some extent. Put
differently, interest was sparked in structuring an optimized iterative first-order
algorithm to estimate solutions for the origin fractional problem. On top of that, some
computer simulation models exemplify the preciseness and well-functioning of the
indicated iterative technique. The outstanding accomplished numerical outcomes
conveniently reflect the productivity and competency of artificial neural network
methods compared to customary approaches.

Keywords: Higher-order linear integro-differential equation; Artificial neural
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1 Introduction
To the best of our knowledge, the expansion of the notion of differentiation and integra-
tion to random non-integer (real/complex) order formed with the well-established foun-
dation of deliberations on fractional calculus. Over the course of the last two decades,
many researchers have studied fractional calculus in the domain of modern mathemat-
ics. That is why the problem of fractional-order integro-differential equations (FOIDEs)
is generally utilized in applied mathematics in the same way as in other linked domains
of science and engineering. This is one of the foremost reasons why the issue tackled in
the current study has been more interesting to a large circle of researchers and scien-
tists. It is well known that a majority of the initial or boundary value problems in frac-
tional derivatives are not meant to be solved explicitly. A class of non-linear fractional
Fredholm–Volterra–Hammerstein integro-differential delay equations with a functional
bound was studied by Kurkcu [14]. Wnang [23] has developed a hybrid method based on
the combination of Bernoulli polynomials approximation and Caputo fractional deriva-
tive and numerical integral transformation to approximate solutions of two-dimensional
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non-linear Volterra–Fredholm integral equations and fractional integro-differential equa-
tions (of Hammerstein and mixed types). Nematia and Lima showed a case in point
for an adjustment of hat functions in finding solutions to a class of non-linear singu-
lar fractional integro-differential equations [17]. Elbeleze et al. [5] applied the methods
of homotopy perturbation and variational iteration for Fredholm–Volterra type integro-
differential equations with initial/boundary conditions. Wang and Zhu [24] employed
Euler wavelet approximation to gain a solution to non-linear fractional-order Volterra
type integro-differential equations. Bazgir and Ghazanfari [2] benefited from a very ef-
ficient combination of a self-adjoint operator at fourth order concerning a fractional or-
der of eigenfunctions and changed the Legendre polynomials into the numerical solution
for a fourth-order fractional partial integro-differential equation. Rahimkhani et al. [19]
used the Bernoulli pseudo-spectral method to solve non-linear fractional Volterra integro-
differential equations. A large number of numerical methods deal with solutions for sev-
eral types of fractional integro-differential equations. For more details, the reader is re-
ferred to references [1, 7, 25, 26]. It is noteworthy that Bentrcia et al. [3] investigated the
asymptotic stability of a viscoelastic Bresse system in the one-dimensional bounded do-
main. They introduced two internal damping terms expressed using the generalized Ca-
puto fractional derivative. Of course, it seems necessary to mention that Mennouni [15]
established an improved convergence analysis via the Kulkarni method to approximate
the solution of an integro-differential equation in L2([–1, 1]).

In order to model and solve newly emerging and complex mathematic problems, it is
highly recommended to employ the approach of artificial neural networks (ANNs), which
simulate the neural structure of the human brain, which has been called one of the world’s
wonders. Of course, it is highly desirable to recall that the multiple structures of these
networks were previously used to estimate solutions of different mathematical problems
in applied grounds (for instance, see [9, 10, 22]). Also, remarkable fractional-order math-
ematical problems have been numerically examined through the ANN approach in the
recent past [11–13, 21]. Now, an appropriate structure of ANNs will be introduced and
later applied to numerically solve a fractional higher-order linear Volterra type integro-
differential equation having initial conditions. In this regard, in order to model the frac-
tional problem in question, an appropriate three-layered feed-forward neural network will
be designed and then applied. The neural architecture, based on a first-order gradient
descent optimization algorithm, is able to transform the origin fractional problem into
a minimization one through accumulating the initial grounds. Then a back-propagation
(BP) algorithm is used to train the designed network, until the network error reaches an
acceptable value. Now, the supposed ANN architecture is able to estimate the unknown
function on a solution area to any desired accuracy. The present paper is organized as fol-
lows: In Sect. 2, different notations and definitions used in fractional calculus and ANNs
are shortly elaborated on. In Sect. 3, an acceptable architecture of neural networks is struc-
tured for estimating solutions of the mentioned fractional problem. In Sect. 4, numerical
accomplishments are appropriately illustrated to indicate the accuracy of the proposed
iterative technique. Finally, in Sect. 5 the discussion is extended with the major outcomes
of the recommended method.

2 Preliminaries
As declared before, the preeminent goal of the current research is to apply the ANN ap-
proach to approximate the solution of a FOIDE problem. The current section provides a
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clear explanation of several required mathematical interpretations, features of fractional
calculus theory, and the ANN approach.

2.1 Fractional calculus
A short summary of the literature on fractional calculus reveals that the field initiated
with the question “how can a function’s derivative and integral be generalized to a non-
integer order?” Following this ambiguous controversy, the mathematical explanation of
a non-integer-order integral or derivative was placed under the spotlight by a number
of scholars for a specific period of time. Finally, Lacroix presented the first research con-
cerning fractional-order derivatives [20]. Over the course of the following years, numerous
researchers studied the subject of fractional calculus and proffered multifarious applica-
ble descriptions of non-integer-order derivatives or integrals. Amongst the definitions, the
Caputo and Riemann–Liouville definitions seem to be the two most used ones. There is no
need to note which derivative has been utilized more widely, as each derivative has its own
appropriate operational range. The Caputo definition more appropriately describes prob-
lems of initial value fractional order [27]. Due to the congruence of the initial conditions,
we decided to use Caputo’s fractional definition in this research. The Caputo fractional
differential operator, proposed by the Italian mathematician Caputo [4], is clearly defined
below.

Definition 1 Let u(x) be a continuously differentiable function on finite interval [a, b] up
to order k. The Caputo derivative Dα

x and fractional integral operator Iα
a,x of order α > 0

are defined as follows:

aDα
x
[
u(x)

]
=

⎧
⎨

⎩

dk u(x)
dxk , α = k ∈ N ,

1
�(k–α)

∫ x
a

u(k)(τ )
(x–τ )α–k+1 dτ , x > a, 0 ≤ k – 1 < α < k,

(1)

Iα
a,x

[
u(x)

]
=

1
�(α)

∫ x

a

u(τ )
(x – τ )1–α

dτ , (2)

respectively. Many studies have been conducted on the properties and performance of
the Caputo fractional operator. Here, we will focus on its important properties and uses.
It should be noted that the derivative of any order of the constant function is zero and also
that the following attributes hold:

aDα
x
[
xk] =

⎧
⎨

⎩
0, k ∈ Z+, k < �α�,

�(k+1)
�(k+1–α) xk–α , x > a, k ∈ Z+, k ≥ �α�,

(3)

Iα
0,x

[
tk] =

�(k + 1)
�(k + 1 + α)

xk+α , k ∈ Z+. (4)

In the above relations, the notation �α� indicates the smallest integer greater than or equal
to constant α.

2.2 Basic structure of ANNs
As time passes, new methods are developed and others fall into disfavor. As is well known,
an ANN can be defined as a tidy brain-inspired computing system intended to empower
computer systems to learn empirically. The logic of the ANN procedure is to gather some
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Figure 1 The planned ANN architecture

training figures and then automatically establish a system that is capable of learning from
the training data. Based on such perspective, we will consider a neural architecture called
“perceptron,” which was suggested by the researcher Frank Rosenblatt, who founded an
important research program. In such a neural network, various numbers of signals are
introduced to input neurons. The network’s first layer (known as the input layer) does
not change the input signals’ values. Neurons in the second layer (called the hidden layer)
combine their inputs by benefiting from a set of network weights and biases. Then they
pass through the nodes of the hidden layer via a proper activation function. Here, the
sigmoidal activation function is employed to control the oscillation of the hidden neurons’
output. The output of each node in the hidden layer is then passed on to the last layer of
neurons to generate the output of the network. One should bear in mind that this model,
just as many others, utilizes the identity function for the input and output layers. For more
details on the proposed approach, see [6, 8]. Paying attention to the neural architecture
illustrated in Fig. 1, one can comprehend the usefulness and innovative value of ANNs.
The description elaborated on in this part can be formulated as follows:

• input layer unit:

o1
1 = x; (5)

• hidden layer units:

o2
i = f (neti), i = 1, . . . , I, (6)

neti = x.w1
i + bi,

where the symbol f demonstrates the sigmoid function;
• output layer unit:

Net(x) =
I∑

i=1

(
w2

i .o2
i
)

=
I∑

i=1

(
w2

i .f
(
w1

i .x + bi
))

. (7)

It seems necessary to mention at this point that after making some slight alterations to
this pro type network model, it becomes an efficient tool for modeling the main
problem.
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3 Description of the proposed method
FOIDEs have gained a lot of attention due to their applicability in various scientific dis-
ciplines. Generally, there is no straightforward way to find exact solutions of fractional
problems. As such, researchers must draw inferences from the suggested arbitrary nu-
merical methods. The primary objective of this section is to use the ANN approach to
find the approximate solution for a given class of fractional integro-differential equations
(see Fig. 1). Hence, a preliminary value is considered for ordinary linear Volterra type
integro-differential equations with fractional order requiring the Caputo type derivative
of the form

P(x).aDα1
x

[
u(x)

]
+ Q(x).Iα2

a,x
[
u(t)

]
= H(x), 1 < α1,α2 ≤ 2, a ≤ x ≤ b, (8)

under the influence of initial conditions

u(a) = β1 and u′(a) = β2.

Here P, Q, and H are specified real-valued analytic functions on the continuous region
(a, b). As is obvious, a power optimization technique is fundamentally comprised of a fi-
nite Maclaurin series approximation of a solution function with a successful optimization
strategy. The power series (PS) method is applicable for estimating the solution of a mini-
mization (or maximization) problem on a given region. From now on, we desire to use the
PS method to approximate the unknown function u(x), after rewriting it in an applicable
trial solution form. This means that in order to employ this strategy, the initial conditions
should be firstly applied to the origin problem. For the alluded equation the trial solution
is written as follows:

ũ(x) = β1 + β2x + x2
I∑

i=1

(
w2

i .f
(
w1

i .x + bi
))

. (9)

During the process of this research, an attempt will be made to approximate the network
parameter vectors w1, w2, and b, utilizing the most applicable BP machine learning algo-
rithm.

3.1 Formulating a minimization problem
As shown in the previous part, the intended ANN architecture can be modeled completely
and imitate the fractional problem (8) with the assistance of the trial solution (9). Here it is
important to be aware of the fact that the neural network needs to be fully trained prior to
treating it as an option for the unknown function u(x). In this way, it must be pointed out
that the learning objective means finding proper quantitative values for the parameters
of the network, i.e., w1

i , w2
i , and bi (for i = 1, . . . , n), in such a way as to approximate the

solution function with high precision. Therefore, the origin problem (8) is reduced to a
corresponding minimization problem through discretizing the specific domain � = (a, b).
In this discretization procedure, �r is a partition of the domain � with the nodal points
xr = a + r(b–a)

R (for r = 0, . . . , R, R ∈ N). For simplification, the research is continued under
the supposition that (a, b) = (0, 1). More generally, any case is capable of being absolutely
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transformed to this circumstance by the linearization operator x
b–a + a

a–b , x ∈ (a, b). Replac-
ing the above trial solution in equation (8) contributes to the following applicable form:

P(x).0Dα1
x

[

β1 + β2x + x2
I∑

i=1

(
w2

i .f
(
w1

i .x + bi
))

]

(10)

+ Q(x).Iα2
0,x

[

β1 + β2t + t2
I∑

i=1

(
w2

i .f
(
w1

i .t + bi
))

]

= H(x), x ∈ �.

Here one must spread out the operators Dα1
x and Iα2

0,x in the series involving the non-linear
activation function f . From a mathematical point of view, computing the fractional-order
derivative and integral for the non-linear function f is very complicated. An alternative
scheme must be found so as to assist us in explaining the issue. Now, for calculating higher-
order fractional derivatives, a recurrence relation is proposed [16]:

f (n)(x) =
n+1∑

k=1

(–1)k–1ξn
k f k , (11)

ξn
k = (k – 1)ξn–1

k–1 + kξn–1
k ,

ξn
k = 0, n < 0, k < 1, k > n + 1.

The constant coefficients ξn
k for the initial values of n and k are shown in Table 1. After

replacing equation (11) in equation (10) and simplifying the result, the following result is
obtained:

P(x).0Dα1
x

[

x2
I∑

i=1

(

w2
i .

∞∑

n=0

f (n)(0)
n!

(
w1

i .x + bi
)n

)]

(12)

+ Q(x).Iα2
0,x

[

t2
I∑

i=1

(

w2
i .

∞∑

n=0

f (n)(0)
n!

(
w1

i .t + bi
)n

)]

+ Q(x).
β1

�(1 + α2)
.xα2 + Q(x).

β2

�(2 + α2)
.x1+α2 = H(x), x ∈ �.

Now, we have

P(x).
I∑

i=1

∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.w2

i .
(
w1

i
)j.

�(j + 3)
�(j – α1 + 3)

.xj–α1+2.(bi)n–j (13)

+ Q(x).
I∑

i=1

∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.w2

i .
(
w1

i
)j.

�(j + 3)
�(j + α2 + 3)

.xj+α2+2.(bi)n–j

+ Q(x).
β1

�(α2 + 1)
.xα2 + Q(x).

β2

�(α2 + 2)
.xα2+1 = H(x), x ∈ �.

To complete this strategy, the identified points xr (for r = 0, . . . , R) are put into equation
(13). In the end, the differentiable least mean square (LMS) algorithm is used to improve
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Table 1 The constant coefficients ξn
k

n k = 1 k = 2 k = 3 k = 4 k = 5

0 1 0 0 0 0
1 1 1 0 0 0
2 1 3 2 0 0
3 1 7 12 6 0
4 1 15 50 60 24

the optimization strategy as follows:

Er =
1
2

(

P(xr).
I∑

i=1

∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.w2

i .
(
w1

i
)j.

�(j + 3)
�(j – α1 + 3)

.xj–α1+2
r .(bi)n–j

+ Q(xr).
I∑

i=1

∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.w2

i .
(
w1

i
)j.

�(j + 3)
�(j + α2 + 3)

.xj+α2+2
r .(bi)n–j

+ Q(xr).
β1

�(α2 + 1)
.xα2

r + Q(xr).
β2

�(α2 + 2)
.xα2+1

r – H(xr)

)2

, r = 0, . . . , R. (14)

Improving this system using a suitable error rectification strategy is our objective in the
following part. For more details, see reference [8].

3.1.1 Proposed machine learning approach
As reasonably explained above, in equation (8), the indicated integro-differential fractional
initial value problem was meant to be converted into an optimization model through
applying the prominent LMS rule. To find the solution of the obtained system, the net-
work error needs to be significantly optimized on the reduced network parameter space
(weights and biases). To do so, the quadratic error function, consisting of the sum of the
squared network errors, Er (for r = 0, . . . , R), is minimized benefiting from the standard BP
(gradient descent-based) algorithm. To train a neural network, BP is an often used repet-
itive learning procedure on the foundation of the adjustment of weights and biases. At
the beginning, the parameters of the network, i.e., w1

i , w2
i , and bi, are real-valued random

constants for training. Then, the differentiable function E =
∑R

r=0 is improved via the sug-
gested supervised BP learning rule. To do so, the algorithm is established for parameter
w2

i as follows:

w2
i (τ + 1) = w2

i (τ ) + �w2
i (τ ), (15)

�w2
i (τ ) = –η.

∂E
∂w2

i
+ γ .�w2

i (τ – 1), i = 1, . . . , I,

∂E
∂w2

i
=

R∑

r=0

∂Er

∂w2
i

,

where τ , η, and γ are the repetition step number, learning rate, and momentum term,
respectively. Furthermore, the indexes w2

i (τ + 1) and w2
i (τ ) depict the adjusted and cur-

rent weight parameter for each label of the training subscript i, respectively. In order to
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complete the learning process, the partial derivative ∂Er
∂w2

i
is given as follows:

∂Er

∂w2
i

=

(

P(xr).
I∑

i=1

∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.w2

i .
(
w1

i
)j.

�(j + 3)
�(j – α1 + 3)

.xj–α1+2
r .(bi)n–j

+ Q(xr).
I∑

i=1

∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.w2

i .
(
w1

i
)j.

�(j + 3)
�(j + α2 + 3)

.xj+α2+2.(bi)n–j

+ Q(xr).
β1

�(α2 + 1)
.xα2

r + Q(xr).
β2

�(α2 + 2)
.xα2+1

r – H(xr)

)

×
( ∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.
(
w1

i
)j.(bi)n–j

(
P(xr).

�(j + 3)
�(j – α1 + 3)

.xj–α1+2
r

+ Q(xr).
�(j + 3)

�(j + α2 + 3)
.xj+α2+2

)
.

In a process similar to that for the weight parameter w2
i , this modifying routine is reiterated

for parameter w1
i as follows:

w1
i (τ + 1) = w1

i (τ ) + �w1
i (τ ), (16)

�w1
i (τ ) = –η.

∂E
∂w1

i
+ γ .�w1

i (τ – 1),

where

∂E
∂w1

i
=

R∑

r=0

((

P(xr).
I∑

i=1

∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.w2

i .
(
w1

i
)j.

�(j + 3)
�(j – α1 + 3)

.xj–α1+2
r .(bi)n–j

+ Q(xr).
I∑

i=1

∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.w2

i .
(
w1

i
)j.

�(j + 3)
�(j + α2 + 3)

.xj+α2+2.(bi)n–j

+ Q(xr).
β1

�(α2 + 1)
.xα2

r + Q(xr).
β2

�(α2 + 2)
.xα2+1

r – H(xr)

)

×
( ∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.w2

i .j.
(
w1

i
)j–1.(bi)n–j

(
P(xr).

�(j + 3)
�(j – α1 + 3)

.xj–α1+2
r

+ Q(xr).
�(j + 3)

�(j + α2 + 3)
.xj+α2+2

r

)))

.

In this case, the bias parameter adjustment relations are identical to those in the example
given above. Hence, we gain

bi(τ + 1) = bi(τ ) + �bi(τ ), (17)

�bi(τ ) = –η.
∂E
∂bi

+ γ .�bi(τ – 1),
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where

∂E
∂bi

=
R∑

r=0

((

P(xr).
I∑

i=1

∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.w2

i .
(
w1

i
)j.

�(j + 3)
�(j – α1 + 3)

.xj–α1+2
r .(bi)n–j

+ Q(xr).
I∑

i=1

∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.w2

i .
(
w1

i
)j.

�(j + 3)
�(j + α2 + 3)

.xj+α2+2.(bi)n–j

+ Q(xr).
β1

�(α2 + 1)
.xα2

r + Q(xr).
β2

�(α2 + 2)
.xα2+1

r – H(xr)

)

×
( ∞∑

n=0

n∑

j=0

Cn.
(n

j

)
.w2

i .
(
w1

i
)j.(n – j).(bi)n–j–1

(
P(xr).

�(j + 3)
�(j – α1 + 3)

.xj–α1+2
r

+ Q(xr).
�(j + 3)

�(j + α2 + 3)
.xj+α2+2

r

)))

.

To a large extent, an initial value fractional higher-order linear Volterra type integro-
differential equation is carefully regarded as follows:

P(x).aDα1
x

[
u(x)

]
+ Q(x).Iα2

a,x
[
u(t)

]
= H(x), a ≤ x ≤ b, (18)

with initial conditions

u(a) = β1,

u′(a) = β2,

...

u(m)(a) = βm+1,

where m < α1 ≤ m + 1, m′ < α2 ≤ m′ + 1, m, m′ ∈ N>1. The investigated trial solution for
this problem is chosen as follows:

ũ(x) =
m∑

i=0

βi+1xi + xm+1N(x). (19)

To keep up with the procedure, the trial solution (19) has been replaced with equation
(18) and various simplifications have been performed. As a result, the parallel optimiza-
tion system is fulfilled for x = xr . As previously indicated, the resulting problem might be
minimized with the help of the BP learning rule. Please be aware that to shun overstate-
ment, the related updating relations are not rewritten here.

4 Illustrative examples
Two test sample problems are treated in this part to show the productivity and suitability
of the suggested method. Based on the data gathered below, a comparison is made with a
method described in [18] to contribute to a better understanding and to show the accuracy
of the proposed method. The consecutive mathematical calculations have been carried out
employing the analytic software Matlab-R2013b. Parameters were set as follows:
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1. learning rate η = 0.05,
2. momentum constant γ = 0.01,
3. PS limitation N = 6,
4. number of nodal points R = 11.

Example 4.1 First, presume the following higher-order linear fractional Volterra type
integro-differential equation:

D1.5
x

[
u(x)

]
+ I2

0,x
[
u(t)

]
=

�(3)
�( 1

5 )
x

1
2 +

�(3)
�(5)

x4, 0 ≤ x ≤ 1,

with primary requirements u(0) = 1, u′(0) = 0 and the accurate solution u(x) = x2 + 1.
To proceed, it would be crucial to determine the network parameters w1

i , w2
i , and bi (for

i = 1, . . . , 5) with real-valued random constants. The achieved modified data are then ap-
plied, and the net parameters are adjusted for τ = 1000 in succession. The accessed results
are illustrated in Table 2, confirming the accuracy of the technique introduced in this study.
The demonstrated total network error E is plotted in Fig. 2. In addition, the accurate and
proximate solutions are plotted in Fig. 3 for several numbers of repetitions. The absolute
errors between the exact and the approximate solutions are shown in Fig. 4. The profi-

Table 2 Numerical outcomes for Example 4.1 (for I = 2)

x Solution Absolute error

Exact Approximate

0.1 1.0100 1.010031652495624 3.1652× 10–5

0.2 1.0400 1.040050245132188 5.0245× 10–5

0.3 1.0900 1.090051494824863 5.1494× 10–5

0.4 1.1600 1.160037912535227 3.7912× 10–5

0.5 1.2500 1.250013755435422 1.3755× 10–5

0.6 1.3600 1.360009123128541 9.1231× 10–6

0.7 1.4900 1.490028884324511 2.8884× 10–5

0.8 1.6400 1.640038231158423 3.8231× 10–5

0.9 1.8100 1.810030512245391 3.0512× 10–5

Figure 2 The error function for Example 4.1
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Figure 3 Exact and approximate solutions for Example 4.1

Figure 4 Absolute errors for Example 4.1

Figure 5 Suitability of the designed ANN architecture for Example 4.1
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ciency of the designed ANN structure for varied control bases are illustrated using the
Emid function in Fig. 5.

Note that each time the training procedure was performed, the adjustable parameters
were randomly selected as small positive real numbers.

Example 4.2 Consider the following fractional initial value problem:

D2
x
[
u(x)

]
+ D

1
2
x
[
u(x)

]
+ u(x) – I1

0,x
[
(x – t)u(t)

]
= R(x),

R(x) = –
1

12
x4 + x2 +

2
�( 5

2 )
x

3
2 + 2,

with initial conditions u(0) = 1, u′(0) = 1 and the exact solution u(x) = x2 on a finite do-
main 0 ≤ x ≤ 1. The main purpose of this example is to compare the numerical results
(Emid errors) obtained from the proposed model with the samples acquired by the Bessel

Table 3 Emid errors for Example 4.2

x ANN, τ = 1000 ANN, τ = 10,000 Method in [18]

I = 2 I = 2 N = 2

0.0 0.2482× 10–6 0.7101× 10–9 0.5810× 10–5

0.1 0.8718× 10–6 0.1967× 10–8 0.9120× 10–7

0.2 0.1040× 10–5 0.3643× 10–8 0.5300× 10–5

0.3 0.8125× 10–6 0.9417× 10–9 0.1000× 10–4

0.4 0.7053× 10–6 0.1660× 10–8 0.1500× 10–4

0.5 0.6923× 10–6 0.2034× 10–8 0.2000× 10–4

0.5 0.5508× 10–6 0.8347× 10–9 0.2400× 10–4

0.7 0.4234× 10–6 0.9604× 10–9 0.2700× 10–4

0.8 0.4037× 10–6 0.2758× 10–8 0.3100× 10–4

0.9 0.3561× 10–6 0.2061× 10–8 0.3400× 10–4

1.0 0.2381× 10–6 0.8845× 10–9 0.3700× 10–4

x ANN, τ = 1000 ANN, τ = 10,000 Method in [18]

I = 4 I = 4 N = 4

0.0 0.9307× 10–8 0.9743× 10–12 0.2040× 10–6

0.1 0.1874× 10–7 0.2627× 10–11 0.1850× 10–6

0.2 0.3520× 10–7 0.3322× 10–11 0.6490× 10–6

0.3 0.6172× 10–7 0.9051× 10–12 0.1130× 10–5

0.4 0.2563× 10–7 0.2143× 10–11 0.1600× 10–5

0.5 0.1982× 10–8 0.1927× 10–11 0.2030× 10–5

0.5 0.8369× 10–7 0.8836× 10–12 0.2390× 10–5

0.7 0.6991× 10–7 0.1007× 10–11 0.2680× 10–5

0.8 0.4207× 10–7 0.3747× 10–11 0.2910× 10–5

0.9 0.2017× 10–7 0.2067× 10–11 0.3100× 10–5

1.0 0.9143× 10–8 0.1015× 10–11 0.3280× 10–5

x ANN, τ = 1000 ANN, τ = 10,000 Method in [18]

I = 6 I = 6 N = 6

0.0 0.2980× 10–9 0.8024× 10–13 0.5810× 10–7

0.1 0.7135× 10–9 0.9115× 10–13 0.9120× 10–7

0.2 0.1076× 10–8 0.2468× 10–12 0.5300× 10–6

0.3 0.3855× 10–8 0.4046× 10–12 0.1000× 10–6

0.4 0.1969× 10–8 0.7361× 10–12 0.1500× 10–6

0.5 0.8299× 10–9 0.3997× 10–12 0.2000× 10–6

0.5 0.8064× 10–9 0.1643× 10–12 0.2400× 10–6

0.7 0.6823× 10–8 0.9325× 10–13 0.2700× 10–6

0.8 0.4347× 10–8 0.8211× 10–13 0.3100× 10–6

0.9 0.1994× 10–8 0.6842× 10–13 0.3400× 10–6

1.0 0.9361× 10–9 0.5017× 10–13 0.3700× 10–6
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polynomials method presented in [18], which are given in Table 3. These results allow us
to claim that the proposed hybrid algorithm is able to approximate the unknown function
with desired accuracy.

5 Conclusion
In this study, a combination of ANN and the PS approach has been effectually employed to
approximate the solution of a Caputo type ordinary higher-order linear fractional Volterra
integro-differential problem. To transmute the mentioned specific fractional problem into
a minimization one, some felicitous features of the PS method together with the LMS rule
were implemented. Not so long ago, ANNs’ copious structures were definitely ingrained
in the modeling and simulation of numerous realistic intricate phenomena. This ongoing
work is vehemently dedicated to the investigation of a class of ordinary linear Volterra
type integro-differential equations with fractional order in numerical mode. By replacing
the unknown function by an appropriate multilayered feed-forward type neural structure,
the fractional problem of such initial value is changed into a course of non-linear mini-
mization equations, to some extent. Because of the exceedingly complex structure of the
observed problem, the error BP algorithm was used by considering slight adjustments in
the learning procedure. The designed multilayer neural architecture was then utilized to
approximate the optimization problem on given sub-domains. Two fractional problems
were tested to deal with the dependability of the present numerical method. Comparative
comparison of the obtained numerical solution with corresponding exact ones for dif-
ferent partitionings of the solution domain revealed that the proposed technique is very
effective and reliable. Providing fractional derivatives of different orders of the employed
type of activation function in the hidden neurons is by far the most important result of
this research. To achieve this, employing an effectual formulation was a definite must to
calculate fractional derivatives of the sigmoidal function. This article is expected to un-
derline the significance of the proposed method not only to solving iterative functions but
also to other studies in related fields or specific areas. By expanding the recommended
strategy to a broad class of non-linear situations, the shortcomings of prior research can
be overcome and new ideas can be found to solve new problems.
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