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Abstract
In this paper, we study discontinuous subelliptic systems with VMO coefficients
related to Hörmander’s vector fields. In the case of growth exponential p ≥ 2 , the
regularity results of the partial Hölder continuity of weak solutions are established
based on theA-harmonic approximation method under the controllable growth
condition.
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1 Introduction
Let � be a bounded open domain in a homogeneous group of Hörmander’s vector fields,
X1, . . . , Xk (k < n). In this paper, we consider the partial regularity of weak solutions of
nonlinear subelliptic systems with the following form:

–
k∑

i=1

XiAα
i (x, u, Xu) = Bα(x, u, Xu), (1.1)

where α = 1, 2, . . . , N and Xu = (X1u, . . . , Xku) is the generalized gradient of u .
At present, the partial regularity of weak solutions of linear or nonlinear elliptic equa-

tions with smooth continuous coefficients has been studied extensively. From the ex-
ploratory work of De Giorgi [1], Campanto [2] generalized the results to lower dimen-
sional spaces; in [3], the partial regularity of quasilinear elliptic systems with uniformly
continuous coefficients was proved by using contradiction. Later, in the Euclidean space,
Chen and Tan considered the regularity results under the natural growth condition or the
controllable growth condition in [4, 5] respectively. In [6], Qiu obtained the partial regular-
ity with Dini continuous coefficients. Then, Marco Bramanti pointed out that a Euclidean
space is a special case of the nilpotent Lie group in [7]. Furthermore, subelliptic equations
and systems on nilpotent Lie groups have received extensive attention. Wang and Liao et
al. in [8, 9] studied the partial regularity of Dini continuous coefficients in the Heisenberg
groups, and in [10, 11], they developed it in Carnot groups. For Hörmander’s vector field,
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Gao and Niu [12], using the inverse Hölder inequality, obtained the partial regularity re-
sults of degenerate subelliptic systems. Then, Wang [13] considered the internal Hölder
continuity.

In recent years, scholars have been devoted to the study discontinuous coefficients. The
most popular one is VMO function, which is between the space of continuous functions
and the space of L∞. Although it is discontinuous, it has similar properties of continuous
functions. Based on the commutator theory of VMO for Calderón–Zygmund singular in-
tegral operator, Chiarenza, Frasca, and Longo [14] studied W 2,p for strong solutions of
nondivergence elliptic equations with VMO coefficients. Further, Fazio and Ragusa [15]
received the regularity of linear elliptic equations with VMO in the Morrey space L2,λ.
Lieberman [16] obtained the overall estimate with VMO coefficient of linear elliptic equa-
tions in the Morrey space Lp,λ based on the Lp theory from Chiarenza, Frasca, and Longo
with some primary methods. Zheng [17] discussed the partial regularity of the divergence
form quasilinear elliptic systems with VMO coefficients in the Morrey space.

Compared with the elliptic equations and quasilinear systems, the main new aspect of
our paper is the fact that we are able to deal with the more general subelliptic nonlinear
systems with VMO coefficients in divergence form, which is associated with Hörmander’s
vector fields.

In this paper, we use the A-harmonic approximation method to prove our results. This
method is derived from Simon [18] and is used to prove the regularity of harmonic func-
tions. Later, Duzaar and Grotowski [19] developed an approximate lemma, established
the corresponding harmonic form, and studied the partial regularity of weak solutions of
nonlinear elliptic equations. More recently, Duzaar in [20] developed it into the parabolic
form of A-harmonic approximation lemma. This is to connect A-harmonic functions
with nonlinear partial differential equations by the A-harmonic approximation lemma.
By constructing a special function related to the weak solution u, and then using the A-
harmonic approximation lemma, we can find that there exists an A-harmonic function
sufficiently approaching the special function in the sense of L2. The harmonic function
has good properties, and the desired attenuation estimation is derived. Finally, partial reg-
ularity results can be obtained. Using this method, not only the process of proof is greatly
simplified but, more importantly, the optimal partial regularity result is obtained.

Assume that X0, X1, . . . , Xk are a family of smooth vector fields in � ⊂R
n (n > k), i.e.,

Xi =
k∑

j=1

bij(ξ )
∂

∂ξj
, bij(ξ ) ∈ C∞(�),

where i = 0, 1, . . . , k and j = 1, 2, . . . , k. Let

L =
k∑

i=1

bijX2
i + X0.

Hörmander in his important article [21] proved that if smooth vector fields {X0, X1, . . . , Xk}
satisfy the finite rank conditions (see Sect. 2), then the operator L is the hypoelliptic. An
example is the most typical Heisenberg groups, Heisenberg type groups, and even the
more general Carnot groups, whose Lie algebras have a family of smooth vector fields sat-
isfying finite rank conditions, so the sum of squares (usually called sub-Laplace operators)
composed of these vector fields are subelliptic.
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Then can we establish �0,γ (0 < γ < 1) continuity for weak solutions to more general
nonlinear subelliptic systems arising from Hörmander’s vector fields? Compared with the
Euclidean space, our research faces three main challenges: first, the lack of commutativity
between elements makes Taylor’s expansion invalid; second, the vector fields lack homo-
geneity, so the scaling method from the indirect method in the Euclidean space cannot be
used; third, Hörmander’s vector fields have no specific form, so it is difficult to establish
the Caccioppoli type inequality. For the first difficulty, we construct appropriate auxiliary
functions and apply Poincaré’s inequality related to Hörmander’s vector fields proved by
Jerison [22] instead of Taylor’s expansion to establish suitable estimates. For the second
one, we use the new method—A harmonic approximation method adopted in this paper,
which allows us to solve this question. For the last challenge, we employ Lemma 2.2 for
the vector’s fields established by Xu and Zuily [23]. In this paper, we construct the decay
function

	(x0, r, l) =
 

Br(x0)

[ |Xu – Xl|2
(1 + |Xl|)2 +

|Xu – Xl|p
(1 + |Xl|)p

]
dx

such that the corresponding Caccioppoli type inequality is proved, where l is an affine
function in Hörmander’s vector fields that l : Rk → R

N . Meanwhile, the weak solution of
(1.1) is defined

ˆ
�

Aα
i (x, u, Xu)Xϕ dx =

ˆ
�

B(x, u, Xu)ϕ dx, ∀ϕ ∈ C∞
0 (�). (1.2)

We now state the precise structure assumptions we are dealing with.
(H1) The coefficient Aα

i (x, u, P) satisfies the ellipticity conditions

(
DPAα

i (x, u, P)P0, P0
) ≥ λ

(
1 + |P|)p–2|P0|2, (1.3)

whenever ∀x ∈ �, u, u0 ∈ R
N , p ≥ 2, and P, P0 ∈R

k×N .
We can derive from (H1) that

(
Aα

i (x, u, P) – Aα
i (x, u, P0)

)
(P – P0) ≥ λ

((
1 + |P0|

)p–2|P – P0|2 + |P – P0|p
)
, (1.4)

where λ is a positive constant.
(H2) The coefficient Aα

i (x, u, P) satisfies the following growth conditions:

∣∣Aα
i (x, u, P)

∣∣ +
(
1 + |P|)∣∣DPAα

i (x, u, P)
∣∣ ≤ L

(
1 + |P|)p–1, (1.5)

where 1 ≤ L < ∞.
(H3) The coefficient Aα

i (x, u, P) of the second variable u is continuous, and there exists a
bounded, convex, nondecreasing continuous module ω : [0,∞) → [0, 1] with lims→0ω(s) =
0 = ω(0) such that

∣∣Aα
i (x, u, P) – Aα

i (x, u0, P)
∣∣ ≤ Lω

(|u – u0|2
)(

1 + |P|)p–1, (1.6)

whenever x ∈ �, u, u0 ∈R
N , P, P0 ∈R

k×N .
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(H4) DPAα
i (x, u, P) about the third variable P is continuous, and there exists a bounded,

convex, nondecreasing continuous module μ : [0,∞) → [0, 1] with μ(s) ≤ s, lims→0μ(s) =
0 = μ(0) such that

∣∣DPAα
i (x, u, P) – DPAα

i (x, u, P0)
∣∣ ≤ Lμ

( |P – P0|
1 + |P| + |P0|

)(
1 + |P| + |P0|

)p–2. (1.7)

(H5) Mapping x 	→ Aα
i (x,u,P)

(1+|P|)p–1 on u, P satisfies the following VMO conditions:

∣∣Aα
i (x, u, P) –

(
Aα

i (x, u, P)
)

x0,r

∣∣ ≤ vx0 (x, r)
(
1 + |P|)p–1, ∀x ∈ Br(x0), (1.8)

whenever x0 ∈ �, r ∈ (0,ρ0], u ∈ R
N , P ∈ R

k×N , ρ0 > 0, vx0 : Rn × [0,ρ0] → [0, 2L] is a
bounded function satisfying limρ→0V (ρ) = 0, where

V (ρ) = sup
x0∈�

sup
0<r≤ρ

( 
Br(x0)∩�

vx0 (x, r) dx
)

,

(
Aα

i (x, u, P)
)

x0,r =
 

Br(x0)∩�

Aα
i (x, u, P) dx.

(H6) (Controllable growth conditions) Let r = pQ
Q–p if p < Q; or r ∈ [p,∞) if p = Q such

that

∣∣B(x, u, P)
∣∣ ≤ a|P|p(1– 1

r ) + b|u|r–1 + c, (1.9)

where a, b, c are positive constants, Q is the dimension of a homogeneous group of Hör-
mander’s vector fields.

Under this set of assumptions, we have the following partial regularity result.

Theorem 1 Assume that coefficients Aα
i and B satisfy (H1)–(H6), � ⊂ R

n, u ∈ HW 1,p(�,
RN ) is a weak solution to system (1.1). Then there exists an open subset �0 ⊂ � such that

u ∈ �
0,γ
loc

(
�0,RN)

, γ ∈ (0, 1).

Further,

� \ �0 ⊆ 1 ∪ 2, meas(� \ �0) = 0,

where

1 =
{

x0 ∈ � : lim
r→0+

sup
(|ux0,r| +

∣∣(Xu)x0,r
∣∣) = ∞

}
,

2 =
{

x0 ∈ � : lim
r→0+

inf
 

Br (x0)

∣∣Xu – (Xu)x0,r
∣∣p dx > 0

}
.

This paper is organized as follows: in Sect. 2, we introduce the knowledge of Hörman-
der’s vector fields, function spaces in Hörmander’s vector fields, affine functions, and some
necessary lemmas. Then we show a Caccioppoli type inequality in Sect. 3, and Sect. 4 in-
cludes three lemmas and is devoted to the proof of Theorem 1.
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2 Preliminaries
Let � ⊂ R

n be a bounded, open, and path-connected domain and {Xi}k
i=1 (k < n) be a family

of C∞ real-valued vector fields defined in a neighborhood of the closure �̄ of �. For a
multi-index α = (i1, i2, . . . , ik), we denote by Xα the commutator

[
Xi1 ,

[
Xi2 , . . . , [Xik–1 , Xik ]

]]

of length l = |α|. We say that the vector fields satisfy Hörmander’s condition if there exists
some positive integer s such that {Xα}|α|≤s span the tangent space of Rn at each point of �,
that is, rank Lie [X1, . . . , Xk] ≡ n. Throughout the paper, we assume that the vector fields
are free. Let G(s, k) be the free Lie algebra of step s with k generators, that is, the quotient
of the free Lie algebra with k generators by the ideal generated by commutators of length
at least s + 1. Then we say that {Xα}|α|≤s are free up to order s if and only if n = dimG(s, k).

Now, we introduce a metric in the following way. An admissible path γ is a Lips-
chitz curve γ : [0, b] 	→ � such that there exist ci(t), 0 ≤ t ≤ b, i = 1, . . . , k, satisfying∑k

i=1 c2
i (t) ≤ 1 and γ ′(t) =

∑k
i=1 ci(t)Xi(γ (t)) for a.e. t ∈ [0, b]. Then a Carnot-Carathéodory

(C-C) metric on � associated with {Xi}k
i=1 is defined by

�cc(x,η) = min
{

b ≥ 0 : ∃γ : [0, b] 	→ �, s.t. γ (0) = ξ ,γ (b) = η
}

.

So, we can define the C–C ball and the C–C sphere

Br(x) =
{
η : �cc(x,η) < r

}
, ∂Br(x) =

{
η : �cc(x,η) = r

}
,

respectively. A fundamental doubling property of the Lebesgue measure with respect to
the C–C metric balls was showed by Nagel, Stein, and Wainger in [24]; namely, given a
bounded set � ⊂ R

n for any �′ � �, there exist positive constants R0 and C such that
|B2R(x0)| ≤ C|BR(x0)|, only for x0 ∈ �′ and 0 < R < R0. Furthermore, it follows

∣∣BR(x)
∣∣ = ωXRQ

for free Hörmander’s vector fields, where ωX(x) is positively bounded and depends only
on the center x.

The following results for free Hörmander’s vector fields will be employed to establish
the Caccioppoli type inequality. See [23] for more details.

Lemma 1 Let P =
∑k

i,m=1 Xi(aimXm) be a second order differential operator with aim being
bounded measurable functions satisfying the uniform ellipticity condition, and denote by
A the matrix A = (aim)1≤i,m≤k . For any x0 ∈ �, one can find coordinates in a neighborhood
V of x0 and a matrix T(x) ∈ GL(k,R), which is C∞ in V such that if we set (Y1, . . . , Yk) =
T(x)(X1, . . . , Xk), then

1.

Yi =
∂

∂xi
+

n∑

l=k+1

∂

∂xl
, i = 1, . . . , k;

2. The set (Y1, . . . , Yk) satisfies Hörmander’s condition of order s and is free up to the order
s in V ;
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3.

P =
k∑

i,m=1

Yi(bimYm),

where (bim) = CT (x)AC(x), C(x) with C∞ an invertible matrix with C∞ entries in V .

Next, we introduce some spaces with norm.
Let � ⊂R

n be an open set and denote the Sobolev space by

HW 1,p(�) =
{

u ∈ Lp(�)|Xiu ∈ Lp(�), i = 1, . . . , k
}

.

The HW 1,p(�) is a Banach space under the norm

‖u‖HW 1,p(�) = ‖u‖Lp(�) +
k∑

i=1

‖Xiu‖Lp(�).

The local Sobolev space is defined by

HW 1,p
loc (�) =

{
u|ηu ∈ HW 1,p(�),η ∈ C∞

0 (�)
}

.

Jerison [22] showed a Poincaré type inequality related to Hörmander’s vector fields:
ˆ

Bρ (x0)

∣∣u(x) – ux0,ρ
∣∣p dx ≤ Cpρ

p
ˆ

Bρ (x0)
|Xu|p dx, u ∈ HW 1,p(Bρ(x0),RN)

, (2.1)

where ux0,ρ =
ffl

Bρ (x0) u(x) dx, Cp only relies on p and Q. Without loss of generality, we may
assume Cp > 1.

Let γ ∈ (0, 1) and denote

�0,γ (�) =
{

u ∈ L∞(�)|u ∈ �γ (�), i = 1, . . . , k
}

,

where �γ (�) = {u ∈ L∞(�)|supx,x0∈�,x �=x0
|u(x)–u(x0)|

�
γ
cc(x,x0) < ∞}. We say that �0,γ (�) is a Folland–

Stein space with the norm

‖u‖�0,γ (�) = ‖u‖L∞(�) + sup
x,x0∈�,x �=x0

|u(x) – u(x0)|
�

γ
cc(x, x0)

.

Capogna in [25] pointed out that any gauge ball Br(x) � � fits A– property and proved
a Campanato type lemma for Hörmander’s vector fields. First, we introduce a Campanato
space and the norm as follows.

Let � ⊂R
n, 1 ≤ p < ∞, μ ≥ 0, and denote

Lp,μ(�) =
{

u ∈ Lp(�)
∣∣∣ sup

x∈�,0<ρ<diam�

ρ–μ

ˆ
Bρ (x)∩�

∣∣u(z) – ux,ρ
∣∣p dz < +∞

}
.

Then Lp,μ(�) is said to be a Campanato space with the norm

‖u‖Lp,μ(�) = ‖u‖Lp(�) +
{

u ∈ Lp(�)
∣∣∣ sup

x∈�,0<ρ<diam�

ρ–μ

ˆ
Bρ (x)∩�

∣∣u(z) – ux,ρ
∣∣p dz

} 1
p

.
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We recall that an open set � ⊂ R
n has the A– property if and only if there exists A > 0

such that for every x ∈ � and ρ > 0,

∣∣� ∩ Bρ(x)
∣∣ ≥ A

∣∣Bρ(x)
∣∣.

Based on the knowledge of affine function in Hörmander’s vector fields, elementary cal-
culations yield the following estimates (for more details, see [26]).

Let u ∈ L2(Br(x0),RN ), x0 ∈ R
n and consider the horizontal components

x̄ =
(
x1, x2, . . . , xk) and x̄0 =

(
x1

0, x2
0, . . . , xk

0
)
.

If the function

l(x̄) = lx0,r(x̄0) + Xlx0,r(x̄ – x̄0)

minimizes the functional

l 	→
 

Br(x0)
|u – l|2 dx

among affine function l : Rk →R
N , then

lx0,r(x̄0) = ux0,r =
 

Br(x0)
u dx.

Lemma 2 Let u ∈ L2(Br(x0),RN ), θ ∈ (0, 1). We denote by lx0,r and lx0,θkr , the affine function
defined as above for radii r and θ kr. Then we have

|Xlx0,θk r – Xlx0,r|2 ≤ C
 

B
θk r(x0)

|u – lx0,r|2 dx, (2.2)

and more generally

|Xlx0,r – Xl|2 ≤ C
 

Br (x0)
|u – l|2 dx. (2.3)

Lemma 3 Let p > 1, r > 0, Q < μ ≤ Q + p, then

Lp,μ(
Bρ(x)

) ⊂ �γ
(
Bρ(x)

)
, γ =

μ – Q
p

.

Wang [13] obtained the following result by [23].

Lemma 4 For all x0 ∈ �, R ∈ (0, 1) such that B(x0, R) ⊂ � and all k ∈N,

Rk‖u‖HW k,2(B(x0), R
2k ) ≤ C‖u‖L2(B(x0,R)),

where C is a constant independent of x0, R, u.
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So, we can conclude the following inequality:

rQ sup
B r

2
(x0)

|Xu|2 ≤ C0

ˆ
Br (x0)

|Xu|2 dx, (2.4)

where Q ≥ 2.

Last, we give the introduction with the precise statement of the A-harmonic approx-
imation lemma. For the proof about this lemma, see [27]. We say that if for any testing
function ϕ ∈ C∞

0 (Br(x0),RN ) one has

 
Br (x0)

A(Xh, Xϕ) dx = 0, (2.5)

then a map h ∈ C∞(Br(x0),RN ) is A-harmonic.

Lemma 5 Let λ, L be a positive number, fixed n, N ∈ N, and n ≥ 2. If for any given ε > 0
there exists δ = δ(n, N , p,λ, L, ε) ∈ (0, 1], then one has the following properties:

(1) A is a bilinear form on R
k×N with the properties

A(v, v) ≥ λ|v|2, A(v, v) ≥ L|v||v|, v, v ∈R
k×N ; (2.6)

(2) Let w ∈ HW 1,p(Br(x0),RN ) be an approximately A-harmonic map in the sense that
there holds

∣∣∣∣
 

Br(x0)
A(Xw, Xϕ) dx

∣∣∣∣ ≤ δ sup
Br(x0)

|Xϕ|, ∀ϕ ∈ C∞
0

(
Br(x0),RN)

, (2.7)

and that
 

Br (x0)
|Xw|2 dx ≤ 1. (2.8)

Then there exists an A-harmonic map h ∈ C∞(Br(x0),RN ) that satisfies

 
Br (x0)

|Xh|2 + |Xh|p dx ≤ 2Q+1, (2.9)

and

 
Br (x0)

∣∣∣∣
h – w

r

∣∣∣∣
2

+
∣∣∣∣
h – w

r

∣∣∣∣
p

dx ≤ ε. (2.10)

3 Caccioppoli type inequality
The crucial point in the following Caccioppoli type inequality is based on the fact that the
constant appearing on the right-hand side depends only upon the structural constants of
the subelliptic system. Later on, we apply this inequality with the affine function.

At the first, we introduce some notations for convenience:

	(x0, r, l) =
 

Br(x0)

[ |Xu – Xl|2
(1 + |Xl|)2 +

|Xu – Xl|p
(1 + |Xl|)p

]
dx,
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�(x0, r, l) =
 

Br (x0)

[ |u – l|2
r2(1 + |Xl|)2 +

|u – l|p
rp(1 + |Xl|)p

]
dx,

f (x0, r) = r2
 

Br (x0)

[|Xu|p + |u|r + 1
]2 dx,

�∗(x0, r, l) = �(x0, r, l) + ω

( 
Br (x0)

∣∣u – l(x0)
∣∣2 dx

)
+ V (r) + f (x0, r).

Lemma 6 Let � ⊂ R
n, u ∈ HW 1,p(Br(x0),RN ) be a weak solution to system (1.1) with

(H1)–(H6). Then, for the minimizing affine function in Hörmander’s vector fields l ≡ lx0,r :
R

k → R
N introduced in Sect. 2 and for any x0 ∈ Br(x0) ⊆ � ⊂ R

k × R
n–k , r : 0 < r <

min{1, dist(x0, ∂�)}, we have the estimate

 
B r

2
(x0)

[ |Xu – Xl|2
(1 + |Xl|)2 +

|Xu – Xl|p
(1 + |Xl|)p

]
dx

≤ C(p, L,λ)
{ 

Br (x0)

[ |u – l|2
r2(1 + |Xl|)2 +

|u – l|p
rp(1 + |Xl|)p

]
dx

+ ω

( 
Br(x0)

∣∣u – l(x0)
∣∣2 dx

)
+ V (r) + r2

 
Br(x0)

[|Xu|p + |u|r + 1
]2 dx

}
,

i.e.,

	

(
x0,

r
2

, l
)

≤ Cc�∗(x0, r, l), (3.1)

where Cc = C(p, L,λ).

Proof Taking a testing function ϕ = φp(u – l), l = l(x0) – Xl(x – x0), where φ ∈ C∞
0 (Br(x0))

is a cut-off function, satisfying φ ≡ 1 on B r
2

(x0), and 0 ≤ φ ≤ 1, |Xφ| ≤ 4
r , 0 ≤ φ ≤ 1,

|Xφ| ≤ 4
r , we can substitute it into the weak solution systems (1.2) and take the average

integral of both sides. Then

 
Br (x0)

Aα
i (x, u, Xu)φp(Xu – Xl) dx

= –p
 

Br (x0)
Aα

i (x, u, Xu)φp–1(u – l)Xφ dx +
 

Br(x0)
Bα

i (x, u, Xu)φp(u – l) dx.

In a similar way, we replace Xu with Xl in
ffl

Br(x0) Aα
i (x, u, Xu)Xφ dx, and we can get

–
 

Br(x0)
Aα

i (x, u, Xl)φp(Xu – Xl) dx

= p
 

Br(x0)
Aα

i (x, u, Xl)φp–1(u – l)Xφ dx –
 

Br (x0)
Aα

i (x, u, Xl)Xϕ dx.

Since Aα
i (x0, l(x0), Xl) is a constant, which l(x0) = ux0,θk r , so we have

 
Br (x0)

Aα
i
(
x0, l(x0), Xl

)
dx =

(
Aα

i
(
x0, l(x0), Xl

))
x0,r = 0,
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it infers from the integration by parts that

 
Br (x0)

(
Aα

i
(
x0, l(x0), Xl

))
x0,rXϕ dx = 0.

Combined with the above equations, it follows

 
Br (x0)

[
Aα

i (x, u, Xu) – Aα
i (x, u, Xl)

]
φp(Xu – Xl) dx

= –p
 

Br (x0)

[
Aα

i (x, u, Xu) – Aα
i (x, u, Xl)

]
φp–1(u – l)Xφ dx

+
 

Br (x0)

[
Aα

i
(
x, l(x0), Xl

)
– Aα

i (x, u, Xl)
]
Xϕ dx

+
 

Br (x0)

[(
Aα

i
(
x0, l(x0), Xl

))
x0,r – Aα

i
(
x, l(x0), Xl

)]
Xϕ dx

+
 

Br (x0)
B(x, u, Xu)φp(u – l) dx

:= I + II + III + IV .

(3.2)

The left-hand side can be estimated via version (1.4) of the ellipticity condition, which
leads to

 
Br (x0)

[
Aα

i (x, u, Xu) – Aα
i (x, u, Xl)

]
φp(Xu – Xl) dx

≥ λ

 
Br (x0)

φp[(1 + |Xl|)p–2|Xu – Xl|2 + |Xu – Xl|p]dx.
(3.3)

Now, we will treat the terms I , II , III , IV of the right-hand side.
For the first term I , according to (1.5) and Young’s inequality, and |Xφ| ≤ 4

r , we gain the
following estimates:

I ≤ p
 

Br (x0)

∣∣Aα
i (x, u, Xu) – Aα

i (x, u, Xl)
∣∣|φ|p–1|u – l||Xφ|dx

= p
 

Br (x0)

∣∣∣∣
ˆ 1

0
DPAα

i
(
x, u, Xl + t(Xu – Xl)

)
(Xu – Xl) dt

∣∣∣∣|φ|p–1|u – l||Xφ|dx

≤ pL
 

Br (x0)

(
1 + |Xl| + |Xu – Xl|)p–2|Xu – Xl||φ|p–1|u – l||Xφ|dx

≤ C(p, L)
 

Br (x0)

(
1 + |Xl| + |Xu – Xl|)p–2|Xu – Xl||φ|p–1 |u – l|

r
dx

≤ C(p, L)
 

Br (x0)

(
1 + |Xl|)

p–2
2 |Xu – Xl|(1 + |Xl|)

p–2
2 |u – l|

r
dx

(3.4)

+ C(p, L)|φ|p–1
 

Br(x0)
|Xu – Xl|p–1 |u – l|

r
dx
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≤ C(p, L)|φ|p–1
 

Br(x0)

[(
1 + |Xl|)p–2|Xu – Xl|2 +

(
1 + |Xl|)p–2 |u – l|2

r2

]
dx

+ C(p, L)|φ|p–1
 

Br(x0)

[
|Xu – Xl|p +

|u – l|p
rp

]
dx.

Next, based on (1.6) and Young’s inequality,

II ≤ C(p)L
 

Br (x0)
ω

(∣∣l(x0) – u
∣∣2)(1 + |Xl|)p–1

(
φ|Xu – Xl| +

|u – l|
r

)
dx

≤ C(p)L
 

Br (x0)

[
φp|Xu – Xl|p +

|u – l|p
rp

]
dx

+ C(p)L
 

Br (x0)
ω

p
p–1

(∣∣l(x0) – u
∣∣2)(1 + |Xl|)p dx

≤ C(p, L)
 

Br (x0)

[
φp|Xu – Xl|p +

|u – l|p
rp

]
dx

+ C(p, L)
(
1 + |Xl|)p

ω

( 
Br (x0)

∣∣l(x0) – u
∣∣2 dx

)
.

(3.5)

Here we used 1
p + p–1

p = 1 and Jensen’s inequality in the last step.
Then, using (1.8) and Young’s inequality, we derive the following bound for III :

III ≤
 

Br (x0)

∣∣(Aα
i
(
x0, l(x0), Xl

))
x0,r – Aα

i
(
x, l(x0), Xl

)∣∣|Xϕ|dx

≤
 

Br (x0)
vx0 (x, r)

(
1 + |Xl|)p–1

(
φ|Xu – Xl| +

|u – l|
r

)
dx

≤
 

Br (x0)
v

p
p–1
x0 (x, r)

(
1 + |Xl|)p dx + C(p)

 
Br (x0)

(
φp|Xu – Xl|p +

|u – l|p
rp

)
dx.

Let us estimate
ffl

Br(x0) v
p

p–1
x0 (x, r)(1 + |Xl|)p dx. Because of the quality of vx0 and

limρ→0V (ρ) = 0, we get

(
1 + |Xl|)p

 
Br(x0)

v
p

p–1
x0 (x, r) dx

≤ (
1 + |Xl|)p

( 
Br (x0)

vx0 (x, r) dx
) p

p–1

≤ (
1 + |Xl|)pV

p
p–1 (r)

≤ (
1 + |Xl|)pV (r).

Therefore,

III ≤ C(p)
 

Br (x0)

(
φp|Xu – Xl|p +

|u – l|p
rp

)
dx +

(
1 + |Xl|)pV (r). (3.6)
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Finally, the term IV can be estimated by (1.9) and Young’s inequality, this yields

IV ≤
 

Br (x0)

[
a|Xu|p(1– 1

r ) + b|u|r–1 + c
]
φp(u – l) dx

≤ C
 

Br (x0)

∣∣|Xu|p(1– 1
r ) + |u|r–1 + 1

∣∣|φ|p(u – l) dx

≤ Cr2
 

Br (x0)

(|Xu|p(1– 1
r ) + |u|r–1 + 1

)2 dx + C
 

Br (x0)

|u – l|2
r2 dx

≤ Cr2(1 + |Xl|)p
 

Br (x0)

(|Xu|p + |u|r + 1
)2 dx

+ C
(
1 + |Xl|)p–2

 
Br(x0)

|u – l|2
r2 dx.

(3.7)

We note that in the last second line we used in turn 0 ≤ φ ≤ 1 and Hölder’s inequality.
Plug (3.4)–(3.7) into (3.2) and combine with (3.3) estimate of the items on the left. At the

same time, the left- and right-hand sides with division to (1 + |Xl|)p, and let λ > 3C(p, L),
we can absorb the first integral of the right-hand side into the left. So, in the end, we arrive
at this estimate

 
B r

2
(x0)

[ |Xu – Xl|2
(1 + |Xl|)2 +

|Xu – Xl|p
(1 + |Xl|)p

]
dx

≤
 

Br (x0)

[ |Xu – Xl|2
(1 + |Xl|)2 +

|Xu – Xl|p
(1 + |Xl|)p

]
dx

≤ C(p, L,λ)
{ 

Br (x0)

[ |u – l|2
r2(1 + |Xl|)2 +

|u – l|p
rp(1 + |Xl|)p

]
dx

+ ω

( 
Br(x0)

∣∣u – l(x0)
∣∣2 dx

)
+ V (r) + r2

 
Br(x0)

[|Xu|p + |u|r + 1
]2 dx

}
,

(3.8)

where we also scale the left-hand side down to B r
2

(x0), so one can get φ ≡ 1, and C(p, L,λ) =
C(p,L)

λ–3C(p,L) in the right-hand side, i.e., (3.1) holds. �

4 Proof of Theorem 1
In this section, we first establish three lemmas and finally prove Theorem 1. The following
lemma provides a linearization strategy for nonlinear elliptic systems as in (1.1). Later
on, this will be the starting point for the application of the A-harmonic approximation
lemma.

Lemma 7 Under the assumptions of Theorem 1, we consider a ball B2r(x0) ⊆ � with r ≤ r0

and an arbitrary affine function in Hörmander’s vector fields l : Rk →R
N . We define

A =
DPAα

i (x, l(x0), Xl)
(1 + |Xl|)p–1 ,

w = u – l.
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Then, for ∀ϕ ∈ C∞
0 (Br(x0);RN ), it follows

 
Br (x0)

A(Xw, Xϕ) dx

≤ C1
[
μ

(
�

1
2∗ (x0, 2r, l)

)
�

1
2∗ (x0, 2r, l) + �∗(x0, 2r, l)

]
sup

Br(x0)
|Xϕ|. (4.1)

Proof A direct calculation gives
 

Br (x0)
A(Xw, Xϕ) dx

=
1

(1 + |Xl|)p–1

 
Br (x0)

DPAα
i
(
x, l(x0), Xl

) · Xw · Xϕ dx

=
1

(1 + |Xl|)p–1

×
 

Br(x0)

ˆ 1

0

[
DPAα

i
(
x, l(x0), Xl

)
– DPAα

i
(
x, l(x0), Xl + tXw

)]
dt · Xw · Xϕ dx

+
1

(1 + |Xl|)p–1

 
Br (x0)

ˆ 1

0
DPAα

i
(
x, l(x0), Xl + tXw

)
dt · Xw · Xϕ dx

:=
1

(1 + |Xl|)p–1 (I + II).

(4.2)

To estimate the first term, we apply (1.7) and t ∈ [0, 1] to get the pointwise bound

ˆ 1

0

∣∣DPAα
i
(
x, l(x0), Xl

)
– DPAα

i
(
x, l(x0), Xl + tXw

)∣∣dt

≤
ˆ 1

0
Lμ

( |tXw|
1 + |Xl| + |Xl + tXw|

)(
1 + |Xl| + |Xl + tXw|)p–2 dt

≤
ˆ 1

0
C(L, p)μ

( |Xu – Xl|
1 + |Xl|

)(
1 + 2|Xl| + |tXw|)p–2 dt

≤ C(L, p)μ
( |Xu – Xl|

1 + |Xl|
)(

1 + |Xl| + |Xl – Xu|)p–2.

This pointwise estimate leads to the following bound for the first term:

I =
 

Br(x0)

[ˆ 1

0
DPAα

i
(
x, l(x0), Xl

)
– DPAα

i
(
x, l(x0), Xl + tXw

)
dt

]

· Xw · sup
Br (x0)

|Xϕ|dx

≤
 

Br(x0)

[ˆ 1

0

∣∣DPAα
i
(
x, l(x0), Xl

)
– DPAα

i
(
x, l(x0), Xl + tXw

)∣∣dt
]

· |Xu – Xl| sup
Br(x0)

|Xϕ|dx

≤ C(L, p)
 

Br (x0)
μ

( |Xu – Xl|
1 + |Xl|

)[(
1 + |Xl|)p–2 + |Xl – Xu|p–2]

(4.3)

· |Xu – Xl| sup
Br(x0)

|Xϕ|dx
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≤ C(L, p)
(
1 + |Xl|)p–1

 
Br (x0)

μ

( |Xu – Xl|
1 + |Xl|

) |Xu – Xl|
1 + |Xl| sup

Br(x0)
|Xϕ|dx

+ C(L, p)
(
1 + |Xl|)p–1

 
Br (x0)

μ

( |Xu – Xl|
1 + |Xl|

) |Xu – Xl|p–1

(1 + |Xl|)p–1 sup
Br (x0)

|Xϕ|dx.

And then, by Hölder’s inequality and Jensen’s inequality, we find that

I ≤ C(L, p)
(
1 + |Xl|)p–1

( 
Br (x0)

μ2
( |Xu – Xl|

1 + |Xl|
)

dx
) 1

2

·
( 

Br(x0)

|Xu – Xl|2
(1 + |Xl|)2 dx

) 1
2

sup
Br (x0)

|Xϕ|

+ C(L, p)
(
1 + |Xl|)p–1

( 
Br (x0)

μp
( |Xu – Xl|p

1 + |Xl|
)

dx
) 1

p

·
( 

Br(x0)

|Xu – Xl|p
(1 + |Xl|)p dx

) p–1
p

sup
Br(x0)

|Xϕ|

≤ C(L, p)
(
1 + |Xl|)p–1

μ
1
2

([ 
Br (x0)

|Xu – Xl|2
(1 + |Xl|)2 dx

] 1
2
)

·
( 

Br(x0)

|Xu – Xl|2
(1 + |Xl|)2 dx

) 1
2

sup
Br (x0)

|Xϕ|

+ C(L, p)
(
1 + |Xl|)p–1

μ
1
p

([ 
Br (x0)

|Xu – Xl|2
(1 + |Xl|)2 dx

] 1
p
)

·
( 

Br(x0)

|Xu – Xl|p
(1 + |Xl|)p dx

) p–1
p

sup
Br(x0)

|Xϕ|

≤ C(L, p)
(
1 + |Xl|)p–1

μ
1
2
(√

	(x0, r, l)
)√

	(x0, r, l) sup
Br (x0)

|Xϕ|

+ C(L, p)
(
1 + |Xl|)p–1

μ
1
p
[
(	

1
p (x0, r, l)

]
	

p–1
p (x0, r, l) sup

Br(x0)
|Xϕ|

≤ C(L, p)
(
1 + |Xl|)p–1[

μ
1
p
(
	

1
p (x0, r, l)

)
	

1
2 (x0, r, l) + 	(x0, r, l)

]
sup

Br (x0)
|Xϕ|,

(4.4)

where we used the fact that μ
1
2 < μ

1
p as μ ≤ 1 and 	

p–1
p (x0, r, l) ≤ 	

1
2 (x0, r, l) when 0 <

	(x0, r, l) < 1 in the last inequality.
Next let us estimate the last term II . Since Aα

i (x0, l(x0), Xl) is a constant, then

ˆ 1

0
DpAα

i
(
x0, l(x0), Xl

)
dt = 0.

In view of these facts, we can rewrite the integral II , and similar to the treatment of I , it
follows

II ≤
 

Br(x0)

ˆ 1

0

∣∣DpAα
i
(
x, l(x0), Xl + tXw

)
– DpAα

i
(
x0, l(x0), Xl

)∣∣|Xu – Xl|dt
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· sup
Br(x0)

|Xϕ|dx

≤ C(L)
 

Br(x0)
μ

( |Xu – Xl|
1 + |Xl|

)(
1 + |Xl| + |Xu – Xl|)p–2|Xu – Xl| sup

Br(x0)
|Xϕ|dx

(4.5)

≤ C(L, p)
(
1 + |Xl|)p–1[

μ
1
p
(
	

1
p (x0, r, l)

)
	

1
2 (x0, r, l) + 	(x0, r, l)

]
sup

Br (x0)
|Xϕ|.

Replace (4.3), (4.4), and (4.5) in (4.2) to see

(
1 + |Xl|)p–1

 
Br (x0)

A(Xw, Xϕ) dx

≤ C(L, p)
(
1 + |Xl|)p–1[

μ
1
p
(
	

1
p (x0, r, l)

)
	

1
2 (x0, r, l) + 	(x0, r, l)

]
sup

Br(x0)
|Xϕ|.

By Lemma 6, the following inequality is finally obtained:

 
Br (x0)

A(Xw, Xϕ) dx ≤ C1
[
μ

1
p
(
�

1
p∗ (x0, 2r, l)

)
�

1
2∗ (x0, 2r, l) + �∗(x0, 2r, l)

]
sup

Br (x0)
|Xϕ|,

where C1 = C(L, p, Cc). �

Next, we are in the position to establish the excess improvement. The strategy of the
proof is to approximate the given solution by A-harmonic functions, for which suitable
decay estimates are available from the classical theory.

Lemma 8 Suppose that the assumptions of Theorem 1 are satisfied and the ball Br(x0) ⊆
� with r ≤ r0 ∈ (0, 1]. For constants θ ∈ (0, 1

8 ], δ = δ(Q, N , p, L, θ ) ∈ (0, 1], we impose the
following smallness conditions:

(1) μ
1
p (�

1
p∗ (x0, 2r, l)) + �

1
2∗ (x0, 2r, l) ≤ 1;

(2) γ = ( δ
2 )–1√�∗(x0, 2r, l) ≤ 1,

then there holds the excess improvement estimate

�(x0, θr, lx0,r) ≤ C6θ
2�∗(x0, r, lx0,r). (4.6)

Proof We re-scale the map

w̃ =
u – lx0,θr

C2γ (1 + |Xlx0,r|) , where γ =
(

δ

2

)–1√
�∗(x0, 2r, l),

and

Xw̃ =
Xu – Xlx0,θr

C2γ (1 + |Xlx0,r|) , lx0,r = ux0,r + Xlx0,r(x̄ – x̄0), C2 = max{C1,
√

Cc, 1}.

We claim that w̃ satisfies the A-harmonic approximation Lemma 5. First denote

A :=
DPAα

i (x, l(x0), Xl)
(1 + |Xl|)p–1 ,
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for our choice of the bilinear form, conditions (2.6) are clearly valid. Next, we verify that
w̃ satisfies (2.7) in Lemma 5,

∣∣∣∣
 

Br(x0)
A(Xw̃, Xϕ) dx

∣∣∣∣

=
∣∣∣∣
 

Br (x0)

DPAα
i (x, l(x0), Xl)

(1 + |Xl|)p–1 · Xu – Xlx0,θr

C2γ (1 + |Xl|) · Xϕ dx
∣∣∣∣

≤ 1
C2γ

∣∣∣∣
 

Br (x0)

DPAα
i (x, l(x0), Xl)

(1 + |Xl|)p · (Xu – Xl) · Xϕ dx
∣∣∣∣

≤ 1
C2γ

 
Br (x0)

A(Xw, Xϕ) dx

≤ C1

C2

μ
1
p (�

1
p∗ (x0, 2r, l))�

1
2∗ (x0, 2r, l) + �∗(x0, 2r, l)

( δ
2 )–1�

1
2∗ (x0, 2r, l)

sup
Br (x0)

|Xϕ|

=
C1

C2

δ

2
[
μ

1
p
(
�

1
p∗ (x0, 2r, l)

)
+ �

1
2∗ (x0, 2r, l)

]
sup

Br(x0)
|Xϕ|

≤ δ sup
Br(x0)

|Xϕ|.

Moreover, w̃ satisfies the following energy bound:

 
Br (x0)

|Xw̃|2 dx

=
 

Br(x0)

|Xu – Xlx0,θr|2
C2

2γ
2(1 + |Xl|)2 dx

≤ 1
C2

2γ
2

 
Br(x0)

|Xu – Xl|2
(1 + |Xl|)2 dx

≤ 1
C2

2γ
2 	(x0, r, l)

=
(

δ

2

)2
	(x0, r, l)

C2
2�∗(x0, 2r, l)

≤
(

δ

2

)2 Cc�∗(x0, 2r, l)
C2

2�∗(x0, 2r, l)
≤ Cc

C2
2

≤ 1.

According to Lemma 6, it yields that
ffl

Br(x0) |Xw̃|2 dx ≤ 1 meets (2.8) in Lemma 5. So, there
is an A-harmonic function h ∈ C∞(Br(x0),RN ) to satisfy (2.4), and due to θ ∈ (0, 1

8 ], it
infers

 
B2θr (x0)

∣∣X2h(x)
∣∣2 dx ≤ sup

B r
4

(x0)

∣∣X2h
∣∣2.

By Proposition 3.1 in [21] with k = 2, the following inequality

ˆ
B r

8
(x0)

∣∣X2h(x)
∣∣2 dx ≤ Cr–4

ˆ
Br(x0)

|h|2 dx
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is true. Replace h with h – hx0,r and combine with Poincaré’s inequality, then one has

ˆ
B r

8
(x0)

∣∣X2h
∣∣2 dx ≤ Cr–4

ˆ
Br(x0)

|h – hx0,r|2 dx ≤ CCpr–2
ˆ

Br (x0)
|Xh|2 dx.

According to (2.9),

sup
B r

8
(x0)

∣∣X2h
∣∣2 ≤ 23QCCpr–2

 
Br (x0)

|Xh|2 dx ≤ 23QCCpr–2 · 2Q+1 = 24Q+1CCpr–2,

i.e.,

r2 sup
B r

8
(x0)

∣∣X2h
∣∣2 ≤ 24Q+1C3,

where denote C3 = CCp. Moreover, it can be deduced

 
B2θr (x0)

∣∣X2h(x)
∣∣2 dx ≤ sup

B r
4

(x0)

∣∣X2h
∣∣2 ≤ 24Q+1C3r–2. (4.7)

When p > 2, we can get

sup
B r

8
(x0)

∣∣X2h
∣∣p ≤

(
sup

B r
8

(x0)

∣∣X2h
∣∣2

) p
2 ≤ (

24Q+1C3r–2) p
2 = 2(4Q+1) p

2 C
p
2

3 r–p. (4.8)

So, take

lh = hx0,θr + (Xh)x0,θr(x – x0),

then let us estimate
ffl

Bθr(x0) | w̃–lh(x)
θr |s dx when s = 2, p, respectively. For s = 2, it shows

 
Bθr (x0)

∣∣∣∣
w̃ – lh(x)

θr

∣∣∣∣
2

dx

=
 

Bθr(x0)

∣∣∣∣
w̃ – h + h – lh(x)

θr

∣∣∣∣
2

dx (4.9)

≤ 2
 

Bθr (x0)

∣∣∣∣
w̃ – h
θr

∣∣∣∣
2

dx + 2
 

Bθr(x0)

∣∣∣∣
h – lh(x)

θr

∣∣∣∣
2

dx,

then

2
 

Bθr (x0)

∣∣∣∣
w̃ – h
θr

∣∣∣∣
2

dx

=
2
θ2

 
Bθr (x0)

∣∣∣∣
w̃ – h(x)

r

∣∣∣∣
2

dx

≤ 2
θ2

 
Br (x0)

∣∣∣∣
w̃ – h(x)

r

∣∣∣∣
2

dx

≤ 2Cθ–Q–2ε,

(4.10)
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and by Poincaré’s inequality, we can obtain

2
ˆ

Bθr (x0)

∣∣∣∣
h – lh(x)

θr

∣∣∣∣
2

dx

= 2
ˆ

Bθr(x0)

∣∣∣∣
h – hx0,θr – (Xh)x0,θr(x – x0)

θr

∣∣∣∣
2

dx

≤ 2
(θr)2 Cp(θr)2

 
Bθr(x0)

∣∣Xh – (Xh)x0,θr
∣∣2 dx

≤ 2C2
p(θr)2 sup

B r
8

(x0)

∣∣X2h
∣∣2

≤ 24Q+2C2
pC

p
2

3 θ2.

(4.11)

So, take (4.10) and (4.11) into (4.9), it derives

 
Bθr(x0)

∣∣∣∣
w̃ – lh(x)

θr

∣∣∣∣
2

dx

≤ 2
 

Bθr(x0)

∣∣∣∣
w̃ – h
θr

∣∣∣∣
2

dx +
2

|Bθr(x0)|
ˆ

Bθr(x0)

∣∣∣∣
h – lh(x)

θr

∣∣∣∣
2

dx

≤ 2Cθ–Q–2ε + 24Q+2C2
pC

p
2

3 θ2

≤ C4
(
θ–Q–2ε + θ2),

(4.12)

where C4 = 2C · 24Q+2C2
pC

p
2

3 = 24Q+3C2
pC

p
2

3 . Using the fact of this inequality, we have

 
Bθr(x0)

∣∣∣∣
w̃ – lh(x)

θr

∣∣∣∣
2

dx

=
1

C2
2γ

2(1 + |Xlx0,r|)2

 
Bθr(x0)

∣∣∣∣
u – lx0,θr – C2γ (1 + |Xlx0,r|)lh(x)

θr

∣∣∣∣
2

dx

≤ C4
(
θ–Q–2ε + θ2).

After the simplification, we thus conclude

 
Bθr (x0)

∣∣∣∣
u – lx0,θr – C2γ (1 + |Xlx0,r|)lh(x)

(θr)(1 + |Xlx0,r|)
∣∣∣∣
2

dx ≤ C4C2
2γ

2(θ–Q–2ε + θ2). (4.13)

Similar to s = 2, the result for condition of s = p is as follows:

 
Bθr (x0)

∣∣∣∣
w̃ – lh(x)

θr

∣∣∣∣
p

dx

≤ 2p–1
 

Bθr(x0)

∣∣∣∣
w̃ – h
θr

∣∣∣∣
p

dx + 2p–1
 

Bθr(x0)

∣∣∣∣
h – lh(x)

θr

∣∣∣∣
p

dx

≤ 2p–1

θp θ–Qε + 2p–1Cp
p (θr)p

 
Bθr(x0)

∣∣X2h
∣∣p dx

≤ 2p–1θ–Q–pε + 2p–1Cp
p(θr)p sup

B r
8

(x0)

∣∣X2h
∣∣p dx

(4.14)
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≤ 2p–1θ–Q–pε + 2(4Q+1) p
2 +p–1Cp

pC
p
2

3 θp

≤ C5
(
θ–Q–pε + θp),

where C5 = 2p–1C · 2(4Q+2) p
2 +p–1Cp

pC
p
2

3 = 2(4Q+1) p
2 +2(p–1)Cp

pC
p
2

3 . And it infers that

 
Bθr (x0)

∣∣∣∣
u – lx0,θr – C2γ (1 + |Xlx0,r|)lh(x)

(θr)(1 + |Xlx0,r|)
∣∣∣∣
p

dx ≤ C5Cp
2γ p(θ–Q–pε + θp).

It follows by 0 < γ = ( δ
2 )–1√�∗(x0, 2r, l) ≤ 1, θ ∈ (0, 1

8 ], p ≥ 2, and take ε = θQ+2p, then

�(x0, θr, lx0,θr)

=
 

Bθr(x0)

∣∣∣∣
u – lx0,θr

(θr)(1 + |Xlx0,θr|)
∣∣∣∣
2

dx +
 

Bθr(x0)

∣∣∣∣
u – lx0,θr

(θr)(1 + |Xlx0,θr|)
∣∣∣∣
p

dx

≤
 

Bθr(x0)

∣∣∣∣
u – lx0,θr – C2γ (1 + |Xlx0,r|)lh(x)

(θr)(1 + |Xlx0,r|)
∣∣∣∣
2

dx

+
 

Bθr (x0)

∣∣∣∣
u – lx0,θr – C2γ (1 + |Xlx0,r|)lh(x)

(θr)(1 + |Xlx0,r|)
∣∣∣∣
p

dx

≤ C4C2
2γ

2(θ–Q–2ε + θ2) + C5Cp
2γ p(θ–Q–pε + θp)

≤ 2(C4 + C5)Cp
2θ2γ 2

= 4(C4 + C5)Cp
2θ2

(
δ

2

)–2

�∗(x0, 2r, l)

:= C6θ
2�∗(x0, 2r, l),

(4.15)

again for a constant C6 = 4(C4 + C5)Cp
2 ( δ

2 )–2. �

In the following lemma, we iterate the excess improvement estimate from Lemma 8.

Lemma 9 Suppose that the assumptions of Theorem 1 are satisfied, for μ = Q + 2γ > 2,
there exist ε∗, k∗,ρ∗ > 0, θ ∈ (0, 1

8 ] such that

�(x0, r, lx0,r) < ε∗, ϒμ(x0, r) < ε∗ (A0)

for r ∈ (0,ρ∗) with Br(x0) ⊂⊂ � imply

�
(
x0, θ kr, lx0,θk r

)
< ε∗, ϒμ

(
x0, θ kr

)
< ε∗, (Ak)

respectively, for every k ∈ N, where

ϒμ(x0, r) = r–μ

 
Br (x0)

|u – ux0,r|2 dx.
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Proof Let

θ <
1

2
√

C6
≤ 1

8
,

ω(ε∗) < ε∗ < 1,

f
(
x0, θ kr

)
< ε∗,

fix ρ∗ ∈ (0, 1) small enough to guarantee

ρ∗ ≤ {
ρ0, ε

1
2–μ∗ , 1

}
, V (ρ∗) < ε∗.

Next we will prove assertion (Ak) by induction. We assume that we have already estab-
lished (Ak) up to some k ∈N0. We begin with proving the first part of assertion (Ak+1), that
is, the one concerning �(x0, θ kr, lx0,θk+1r). For this we want to show that the assumptions
for the excess improvement in Lemma 8 are satisfied. First, we note that

 
B

θk r (x0)

∣∣u – l(x0)
∣∣2 dx =

(
θ kr

)μ
ϒμ

(
x0, θ kr

) ≤ ϒμ

(
x0, θ kr

)
.

So, it infers with ϒμ(x0, θ kr) < ε∗ that

�∗
(
x0, θ kr, lx0,θk r

)

= �
(
x0, θ kr, lx0,θk r

)
+ ω

( 
B

θk r (x0)

∣∣u – l(x0)
∣∣2 dx

)

+ V
(
θ kr

)
+

(
θ kr

)2f
(
x0, θ kr

)

≤ �
(
x0, θ kr, lx0,θk r

)
+ ω

[
ϒμ(x0, r)

]
+ V

(
θ kr

)
+

(
θ kr

)2f
(
x0, θ kr

)

≤ 2ε∗ + ω(ε∗) + V (ρ∗) ≤ 4ε∗.

(4.16)

We can thus apply Lemma 8 with the radius θ kr instead of r, which yields

�
(
x0, θ k+1r, lx0,θk+1r

) ≤ C6θ
2�∗

(
x0, θ k+1r, lx0,θk+1r

) ≤ 4C6θ
2ε∗ < ε∗. (4.17)

We have thus established the first part of assertion (Ak+1), and it remains to prove the
second one, that is, the one concerning ϒμ(x0, θ k+1r). For this aim, we first compute by the
definition of �(x0, θ kr, lx0,θk r) and (4.17),

 
B

θk r (x0)
|u – lx0,θk r|2 dx ≤ 2

(
θ kr

)2
ε∗

(
1 + |Xlx0,θkr|2

)
. (4.18)

Abbreviating lx0,θk r = ux0,θk r +Xlx0,θk r(x–x0), and then, the latter part of (Ak+1) is estimated:

ϒμ

(
x0, θ k+1r

)
=

(
θ k+1r

)–μ
 

B
θk+1r(x0)

|u – ux0,θk+1r|2 dx

≤ (
θ k+1r

)–μ

 
B

θk+1r(x0)
|u – ux0,θk r|2 dx
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≤ 2
(
θ k+1r

)–μ

 
B

θk+1r (x0)

[|u – lx0,θk r|2 dx +
(
θ k+1r

)2|Xlx0,θk r|2
]

≤ 2
(
θ k+1r

)–μ[θ–Q
 

B
θk r(x0)

[|u – lx0,θk r|2 dx +
(
θ k+1r

)2|Xlx0,θk r|2
]

(4.19)

≤ 2
(
θ k+1r

)–μ[
2θ–Q(

θ kr
)2

ε∗
(
1 + |Xlx0,θk r|2

)
+

(
θ k+1r

)2|Xlx0,θk r|2
]

≤ 4
(
θ k+1r

)–μ(
θ kr

)2[(
θ–Qε∗ + θ2)|Xlx0,θk r|2 + θ–Qε∗

]

≤ 4
(
θ k+1r

)2–μ[(
θ–Qε∗ + (θr)2)|Xlx0,θk r|2 + θ–Qε∗

]
,

where we use (θ kr)–μ ≤ (θ k+1r)–μ in the last inequality.
Now, we need to estimate |Xlx0,θk r|. Owing to (2.3) and (θ kr)μ < 1 , we have

|Xlx0,θk r|2 ≤ C
 

B
θk r (x0)

|u – ux0,θk r|2 dx ≤ C
(
θ kr

)μ
ϒμ(x0, r) < Cε∗. (4.20)

Combined with the above estimations, take ε∗ sufficiently small so that 4θ–Qε2∗ +
4Cθ–Qε3∗ + 4C(θr)2ε2∗ < 1 is true, then the following can be obtained:

ϒμ

(
x0, θ k+1r

) ≤ 4
(
θ kr

)2–μ[
θ–Qε∗ +

(
θ–Qε∗ + (θr)2)|Xlx0,θkr|2

]

≤ 4ρ2–μ
∗ θ–Qε∗ + 4Cρ2–μ

∗
(
θ–Qε∗ + (θr)2)ε∗

≤ (
4θ–Qε2

∗ + 4Cθ–Qε3
∗ + 4C(θr)2ε2

∗
)
ε∗

< ε∗.

(4.21)

This proves the second part of assertion (Ak+1) and finally concludes the proof of the
lemma. �

Proof of Theorem 1 In fact, by Lebesgue’s differentiation theorem, one gets |∑1 ∪∑
2 | =

0. Consequently, it suffices to show that every x0 ∈ � \ (
∑

1 ∪∑
2) is a regular point. For

this, we note first that from Poincaré’s inequality it implies

�(x0, r0, lx0,r) ≤ r–2
 

Br0 (x0)
|u – lx0,r0 |2 dx + r–p

 
Br0 (x0)

|u – lx0,r0 |p dx

≤ C2
p

 
Br0 (x0)

|Xu – Xlx0,r0 |2 dx + Cp
p

 
Br0 (x0)

|Xu – Xlx0,r0 |p dx.

Because of r0 ≤ 1, using

lx0,r0 = ux0,r0 + Xlx0,r0 (x̄ – x̄0),

namely, ux0,r0 = lx0,r0 – Xlx0,r0 (x̄ – x̄0), |lx0,r0 | + |Xlx0,r0 | ≤ M0, there holds

ϒμ(x0, r) = r–μ

 
Br (x0)

|u – ux0,r|2 dx

= r2–μ

 
Br (x0)

|u – ux0,r|2
r2 dx



Zhu et al. Boundary Value Problems         (2023) 2023:78 Page 22 of 23

≤ r2–μ

 
Br (x0)

( |u – ux0,r|
r

+ |Xlx0,r0 |
)2

dx

≤ 2r2–μ

[ 
Br(x0)

|u – ux0,r|2
r2 dx + |Xlx0,r0 |2

]

≤ C(M0)r2–μ

[ 
Br(x0)

|u – lx0,r|2
r2 dx + 1

]

≤ C(M0)r2–μ
[
�(x0, r, lx0,r) + 1

]
,

and by the definition of
∑

1 and
∑

2, there exists 0 < r < min{ρ∗, dist(x0, ∂�)} satisfying

�(x0, r, lx0,r) < ε∗, ϒμ(x0, r) < ε∗.

The continuity of integrals implies that there exists a neighborhood U ⊆ � of x0 so that
for any x ∈ U ,

�(x, r, lx0,r) < ε∗, ϒμ(x, r) < ε∗,

there for all x ∈ U and k ∈N that

�
(
x, θ kr, lx0,θk r

)
< ε∗, ϒμ

(
x, θ kr

)
< ε∗,

and it follows that

sup
x∈U ,σ∈(0,r)

σ –μ

 
Bσ (x)

|u – ux,σ |2 dx = sup
x∈U ,σ∈(0,r)

ϒμ(x,σ ) < ε∗ < ∞,

i.e., u ∈Lp,μ(Bσ (x)). Therefore, by Hölder’s properties of Campanato type for a continuous
function, we have

u ∈ �
0,γ
loc

(
U ,RN)

. �
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