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Abstract
The objective of this article is to investigate how the properties of a non-Newtonian
Williamson nanofluid flow, which occurs due to an exponential stretching sheet
placed in a porous medium, are influenced by heat generation, viscous dissipation,
and magnetic field. This study focuses on analyzing the heat transfer process by
considering the impact of temperature on the thermal conductivity and viscosity of
Williamson nanofluids. Additionally, the research significantly contributes by
investigating the flow characteristics of these nanofluids when influenced by slip
velocity. Using the spectral collocation method (SCM), the equations that describe
the current problem are transformed into a collection of ordinary differential
equations and then solved. The SCM proposed here basically depends on the
properties of the Appell-type Changhee polynomials (ACPs). First, with the aid of
ACPs, we give an approximate formula of the derivatives for the approximated
functions. Through this procedure, the provided model is transformed into a
nonlinear set of algebraic equations. Physical factors of interest, such as skin friction,
the Nusselt number, and the Sherwood number, are explained using tabular
expressions. Data are displayed as graphs for the nanofluid’s velocity, temperature,
and concentration. The primary findings showed that increasing the Williamson,
magnetic, thermal conductivity, and Brownian parameters significantly improves the
thermal field. Finally, testing the suggested method with specific cases from some
past literature-based publications reveal a good degree of agreement.

Keywords: Williamson nanofluid; Variable thermal conductivity; Exponential
stretching; Slip velocity; Appell–Changhee polynomials; Spectral collocation method;
Numerical simulation

1 Introduction
Due to the limited applications of Newtonian fluid models, non-Newtonian fluid research
has drawn interest. Non-Newtonian fluids include materials like starch, honey, ketchup,
lubricating sprays, and more. Earlier, many non-Newtonian fluid models were proposed.
From these a Williamson model was constructed. In 1929, Williamson [1] proposed a non-
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Newtonian fluid model that illustrates the rheological characteristics of these fluids. Shear
thinning is a characteristic of non-Newtonian fluids like in the Williamson fluid model. In
the literature, the Williamson fluid model is the description of a fluid that thins under
shear. The Williamson model has been utilized by numerous researchers (see [2–8]) due
to its applicability in illuminating fluid dynamics in the preceding decade.

Due to its applicability in the industrial sector, nanotechnology is currently attracting the
attention of scientists and researchers, for instance, the application of nanofluids to cool
nuclear reactors, regulate heat flow through heat valves, lower automobile radiator tem-
peratures, cool computer processors, etc. Cancer patients are treated in the medical field
using medications and radiation delivered by devices made of iron-based nanofluids. By
incorporating nanoscale material particles in regular fluids, Choi [9] established the name
“nanofluid” and mathematically validated the approach. The nanoparticles mainly consist
of metals, nitride ceramics, oxide ceramics, carbide ceramics, and common base fluids
like methanol, water, ethylene glycol, and oil. The results of experiments by the authors
of [10, 11] proved that nanofluids have a higher thermal conductivity than regular flu-
ids. Mixed convection is a phenomenon where fluid flow involves both natural and forced
convection mechanisms simultaneously [12]. It holds significant importance in practical
applications, especially in the fields of heat transfer and fluid dynamics. Its significance
lies in its capability to affect fluid flow patterns, boost heat transfer rates, enhance energy
efficiency, and influence thermal stratification. Precise modeling and analysis of mixed
convection phenomena are crucial for optimizing the efficiency and performance of vari-
ous engineering systems in diverse industries. Due to the significance of mixed convection,
Abbas et al. [13] addressed this phenomenon in their study on nanofluid flow in the sec-
ond grade. After that many authors (see [14–18]) have presented an extensive survey of
the flow of nanofluids in various thermo-physical contexts.

In this paper, we will, for the first time, derive an approximate formula of the derivatives
with the help of the Appell-type Changhee polynomials and apply it to solve the model
under study by using the spectral collocation approaches (see [19, 20]). The most famous
advantage of these methods is their capability to generate accurate outcomes with a very
small degree of freedom error [21]. They are widely used because of their good properties
in the approximation of functions. The orthogonality property of the ACPs is used to ap-
proximate functions on their domain. These polynomials have a main and important role
in the methods for ODEs [22]. Many researchers used and implemented these polynomi-
als to numerically solve many problems, such as in [23] were they were used to solve the
high-dimensional chaotic Lorenz system. Therefore, the primary goal of the current paper
is to examine the behavior of a mixed convection boundary layer flow of a non-Newtonian
nanofluid flow that includes nanoparticles towards a vertical stretching permeable sheet
under slip velocity, nonuniform heat generation, and magnetic field impacts. This goal is
motivated by the earlier cited references on the subject of nanofluid models. For the solu-
tion of the coupled nonlinear model equations, the spectral collocation method is applied.
The motivation of this investigation is to learn more about the non-Newtonian Williamson
nanofluid problem and to improve our understanding of it. By examining this research,
we hope to add to the body of knowledge, fill in knowledge gaps, and perhaps open the
door to breakthroughs in a variety of disciplines, including engineering, materials science,
and nanotechnology. The primary objective of this study is to investigate the influence of
slip velocity, magnetic field, internal heat generation, and viscous dissipation on the flow
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behavior of Williamson nanofluid, providing a distinctive viewpoint. The study’s novelty
and purpose stem from the fact that it is the first of its type to implement the proposed
numerical technique to solve the proposed model. The proposed method possesses nu-
merous advantages. The use of Appell–Changhee polynomials in the spectral collocation
method results in significant advantages such as exceptional precision, extensive usability,
global approximation, efficient execution, high convergence order, and numerical reliabil-
ity. These advantageous characteristics establish it as a potent and dependable numerical
approach suitable for tackling diverse mathematical problems.

This study is organized as follows. A full description of the problem is given in Sect. 2.
In Sect. 3, we give some basic concepts about Appell–Changhee polynomials, and an ap-
proximation of the Dn via ACPs, with procedure solution using SCM. The code validation
is given in Sect. 4. In Sect. 5, we present the results and discussion. Finally, the conclusions
are given at the end of the paper through Sect. 6.

2 Basic model
Here, we consider the two-dimensional non-Newtonian Williamson flow of a nanofluid
along an exponentially stretched sheet with a constant temperature Tw and concentration
Cw. The appropriate values for ambient concentration and temperature are C∞ and T∞,
respectively. Also, we presume that the constant axial surface temperature Tw is greater
than the ambient fluid temperature T∞. Based on the flow model, the behavior of ther-
mophoresis and Brownian motion are also taken into consideration. Additionally consid-
ered are the novel slip velocity, nonuniform heat generation with Brownian motion, and
thermophoresis properties. The velocity is assumed to be Uw = U0e

x
L and the x-axis is

taken in the direction of the stretched sheet, where L is a characteristic length and U0

is a constant velocity (Fig. 1). Furthermore, a suction velocity of vw is produced by the
hypothesis that the sheet is porous.

In addition, the following fluid properties are taken into consideration as a variable be-
sides the assumption of nonuniform heat generation.

(i) Viscosity We assume that the nonlinear exponential function of temperature and the
nanofluid viscosity μ are related to one another [24], i.e.,

μ = μ∞e–α( T–T∞
Tw–T∞ ),

Figure 1 Schematic geometry of the flow problem
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where μ∞ is the nanofluid viscosity away from the sheet and α is the viscosity parame-
ter. Also, this relation explains that the nanofluid viscosity behavior is influenced by the
thermal parameter α. Usually, α is regarded as a positive value for a liquid.

(ii) Thermal conductivity Thermal conductivity κ(T) demonstrates how a material’s con-
ductivity changes. Here, we assume that the relationship between the nanofluid thermal
conductivity and the distributed temperature is as follows [24]:

κ(T) = κ∞
(

1 + ε

(
T – T∞
Tw – T∞

))
,

where ε is the thermal conductivity parameter, assumed to be small, and κ∞ is the ambient
thermal conductivity. Further, if ε = 0, this relationship indicates that thermal conductivity
is a constant.

(iii) Nonuniform heat generation One can observe that the nonuniform heat generation
q∗ is directly articulated as follows in light of the multiple correlations between nonuni-
form heat generation and the sheet as well as the ambient temperatures [25]:

q∗ =
κ(T)Uw

2Lν∞

(
D1(Tw – T∞)

u
Uw

+ E1(T – T∞)
)

,

where D1 is the kinematic viscosity, ν∞ and E1 are constants.
The conservative equations after using the boundary layer and Boussinesq estimations

yield under the consideration of all the aforementioned factors [26]

∂u
∂x

+
∂v
∂y

= 0, (1)

ρ∞
(

v
∂u
∂y

+ u
∂u
∂x

)
=

∂

∂y

(
μ

∂u
∂y

+ μ
�√

2

(
∂u
∂y

)2)
– σB2

0u –
μ

k0
u

+ ρ∞gβT (T – T∞) + ρ∞gβc(C – C∞),

(2)

ρ∞cp

(
u

∂T
∂x

+ v
∂T
∂y

)
=

∂

∂y

(
k(T)

∂T
∂y

)
+ ρ∞cpτ

[
DB

∂C
∂y

∂T
∂y

+
DT

T∞

(
∂T
∂y

)2]

+ μ

((
∂u
∂y

)2

+
�√

2

(
∂u
∂y

)3)
+ σB2

0u2 + q∗,

(3)

u
∂C
∂x

+ v
∂C
∂y

=
DT

T∞
∂2T
∂y2 + DB

∂2C
∂y2 , (4)

and the related boundary conditions are [8]:

u = Uw +
λ1

μ∞

(
μ

∂u
∂y

+ μ
�√

2

(
∂u
∂y

)2)
, v = –vw = –V0e

x
2L ,

T = Tw, C = Cw, at y = 0,

(5)

u → 0, T → T∞, C → C∞, as y → ∞. (6)

It is crucial to note that the momentum equation (2) introduces two significant additions:
the inclusion of a variable thermal viscosity and the mixed convection term. Similarly, the
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energy equation (3) incorporates the viscous dissipation term and the internal heat gen-
eration term. Also, it is important to emphasize that the initial component of equation (5)
represents the phenomenon of slip velocity, where the x- and y-axis coefficients of the fluid
velocity vectors are u and v, respectively; DB, �, B0 represent diffusivity of the Brownian
motion, the Williamson parameter, and the magnetic field intensity; τ is the ratio of the
nanoparticle’s effective heat capacitance to that of the base fluid, V0 is the constant suc-
tion velocity, k0 is the porous medium’s permeability, DT is the thermophoretic diffusion
coefficient, σ is electrical conductivity, βc is the coefficient of concentration expansion, βT

is the temperature expansion factor, g is the acceleration due to gravity, cp is the specific
heat at constant pressure, λ1 is the factor of slip velocity, and ρ∞ is the ambient density.

Now, the following dimensionless transformation is used to convert the nonlinear par-
tial differential equations (1)–(4) into nonlinear ordinary differential equations (ODEs),
assuming the apposite similarity variable η = y

√
U0ρ∞
2Lμ∞ e

x
2L as shown below [26]:

u = U0e
x
L f ′(η), v = –

√
U0μ∞
2Lρ∞

e
x

2L
(
f (η) + ηf ′), (7)

T = T∞ + (Tw – T∞)θ (η), C = C∞ + (Cw – C∞)φ(η), (8)

where f is the dimensionless stream function, θ (η) is the dimensionless temperature, and
φ(η) is the dimensionless concentration. Now, equation (7) enables the continuity equa-
tion (1) to be satisfied precisely. The following dimensionless system of ODEs with associ-
ated boundary constraints is obtained from the system (2)–(4) with boundary constraints
(5)–(6) by invoking transformation (7)–(8). So, we have

((
1 + Wef ′′)f ′′′ – αθ ′f ′′

(
1 +

We

2
f ′′

))
e–αθ

+ ff ′′ – 2f ′2 – Mf ′ – γ e–αθ f ′ + GrTθ + GrCφ = 0,
(9)

1
Pr

(
(1 + εθ )θ ′′ + εθ ′2) + f θ ′ – f ′θ + Nt

(
θ ′)2 + Nbθ ′φ′ + MEcf ′2

+ Ec
(

f ′′2 +
We

2
f ′′3

)
e–αθ +

(
1 + εθ

Pr

)(
D1f ′ + E1θ

)
= 0,

(10)

φ′′ + Scf φ′ +
Nt
Nb

θ ′′ = 0, (11)

subject to the following restrictions on boundaries:

f ′(0) = 1 + λ

(
f ′′ +

We

2
f ′′2

)
e–αθ (0), f (0) = S, θ (0) = 1, φ(0) = 1, (12)

f ′(∞) → 0, θ (∞) → 0, φ(∞) → 0, (13)

where M = σB0
ρ∞U0

e
–x
L is the magnetic parameter, λ = λ1

√
Uw

2Lν∞ is the slip velocity parameter,

S = V0

√
2L

U0ν∞ is the suction parameter, We = ( U0
2 ) 2

3 �√
L

e
x

2L is the Williamson parameter,

Pr = μ∞cp
κ∞ is the Prandtl number, γ = ν∞L

k0U0
e

–x
L is the porous parameter, Nb = τDB(Cw–C∞)

ν∞ is
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the Brownian motion parameter, GrC = 2LgβC (Cw–C∞)

U0e
2x
L

is the local modified Grashof number,

GrT = 2LgβT (Tw–T∞)

U0e
2x
L

is the local Grashof number, Sc = ν∞
DB

is the Schmidt number, Ec =
U2

w
(Tw–T∞)cp

is the Eckert number, and Nt = τDT (Tw–T∞)
ν∞T∞ is the thermophoresis parameter.

Accordingly, the Sherwood number, Nusselt number, and skin friction are [27]:

√
2Cfx Re1/2

x = –
(

f ′′(0) +
We

2
f ′′2(0)

)
e–αθ (0),

1√
2

Re–1/2
x e

–x
2L Nux = –θ ′(0),

1√
2

Re–1/2
x e

–x
2L Shx = –φ′(0),

where Rex = UwL
ν∞ is the local Reynolds number.

3 Solution procedure
3.1 Basic concepts about Appell–Changhee polynomials
It is well-known that Changhee polynomials Chm(t) are usually defined using generating
functions (see [19, 22]),

2
z + 2

(1 – z)t =
∞∑

m=0

Chm(t)
zm

m!
,

where Chm = Chm(0) are the Changhee numbers, see [19]. These polynomials can also be
given in the following form:

Chm(t) =
∞∑

m=0

S1(m,�)E�(t),

where S1(m,�) and E�(t) are Sterling numbers of the first kind and Euler polynomials,
respectively. However, the Appell-type Changhee polynomials Ch∗

m(t) are defined by the
generating function given by [28]

2
z + 2

etz =
∞∑

m=0

Ch∗
m(t)

zm

m!
.

The ACPs of degree m are defined by

Ch∗
m(t) =

m∑
j=0

(
m
j

)
Ch∗

m–jt
j. (14)

From formula (14), one can easily get that

d
dt

Ch∗
m(t) = mCh∗

m–1(t), (15)

therefore from (15), we can confirm the following formula:

Ch∗
m(t) =

∫ t

0
mCh∗

m–1(y) dy + Ch∗
m.

It is also worth noting that Ch∗
0 = 1 and 2Ch∗

m + mCh∗
m–1 = 0, ∀m ≥ 1.
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In addition, we can prove that the ACPs satisfy the following identity:

∫ 1

0
Ch∗

n(t)Ch∗
m(t) dt =

m∑
i=0

m–i∑
k=0

(
m
i

) (–1)m–i–1(m – i)
(m–i

k
)
Ch∗

k(1)Ch∗
i

(2(m – i) – k + 1)
(2(m–i)–k

m–i
) . (16)

Let {Ch∗
i (t)}m

i=1 ⊂ L2[0, 1] be the set of ACPs and suppose that

� = Span
{

Ch∗
i (t)

}m
i=1,

is a finite-dimensional subspace of L2[0, 1] [28].
For a function g(t) of L2[0, 1], one has a good and unique approximation of it in �. If

g∗(t) is the unique approximation of g(t), we can write the following error estimate:

∥∥g(t) – g∗(t)
∥∥

2 ≤ ∥∥g(t) – h(t)
∥∥

2, ∀h(t) ∈ �.

But because � is a closed subspace of L2[0, 1], according to [29], we can write L2[0, 1] = �⊕
�⊥, where �⊥ denotes the orthogonal complement of �, and so we have g(t) = h(t) + r(t)
and then r(t) = g(t)–h(t), which also means that g(t)–g∗(t) ∈ �⊥. Therefore, this confirms
the following:

〈
g(t) – g∗(t), h(t)

〉
= 0, ∀h(t) ∈ �, (17)

where 〈·, ·〉 denotes the inner product.
Since g∗(t) ∈ �, we can write the following:

g(t) ≈ g∗(t) =
N∑

i=0

ciCh∗
i (t) = CT Ch∗(t), (18)

where

C = [c1, c2, . . . , cN ]T , Ch∗(t) =
[
Ch∗

1(t), Ch∗
2(t), . . . , Ch∗

N (t)
]T .

By taking h(t) = Ch∗
i (t) and substituting equation (18) into (17), we get

〈
g(t) – CT Ch∗(t), Ch∗

i (t)
〉

= 0.

Also from (18), we can see that

〈
g(t), Ch∗(t)

〉
= CT 〈

Ch∗(t), Ch∗(t)
〉

= CT
A, (19)

where A = 〈Ch∗(t), Ch∗(t)〉 is an N × N matrix, defined by

A =
〈
Ch∗(t), Ch∗(t)

〉
=

∫ t

0
Ch∗(τ )Ch∗T (τ ) dτ ,

and A can be computed by using (16). Therefore, the coefficients’ vector from (19) can
take the form

C = A
–1〈g(t), Ch∗(t)

〉
.
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In this subsection, we will show that the nth derivative Dn of the function g∗(η) given in
(18) can be approximated through the following theorem.

Theorem 1 The derivative of order n > 0 for the function g∗(η) given in (18) can be ap-
proximated by

Dng∗(η) =
N∑

i=n

i∑
j=n

ciχi,j,nη
j–n, (20)

where Ch∗
i–j is the Changhee number, and χi,j,n is given by

χi,j,n =
(i)!Ch∗

i–j

(i – j)!(j – n)!
.

Proof Considering the ACP, Ch∗
i (η) of degree i, with i = 0, 1, . . . , N , and by using (18), we

can get

Dng∗(η) =
N∑

i=0

ciDnCh∗
i (η) =

N∑
i=n

i∑
j=n

ci
(i!)Ch∗

i–j

(j!)(i – j)!
Dnηj

=
N∑

i=n

i∑
j=n

ci
(i!)Ch∗

i–j

(i – j)!(j – n)!
ηj–n =

N∑
i=n

i∑
j=n

ciχi,j,nη
j–n,

where χi,j,n is given in (20), and this completes the proof. �

3.2 Solution procedure using SCM
We will implement the SCM to solve the system (9)–(13) numerically. We approximate
f (η), θ (η), and φ(η) by fN (η), θN (η), and φN (η), respectively, as follows:

fN (η) =
N∑

i=0

aiCh∗
i (η), θN (η) =

N∑
i=0

biCh∗
i (η), φN (η) =

N∑
i=0

ciCh∗
i (η). (21)

By substituting (20) and (21) into the system (9)–(11), we get

(
1 + We

N∑
i=2

i∑
j=2

aiχi,j,2η
j–2

)( N∑
i=3

i∑
j=3

aiχi,j,3η
j–3

)
– α

( N∑
i=1

i∑
j=1

biχi,j,1η
j–1

)

×
( N∑

i=2

i∑
j=2

aiχi,j,2η
j–2

)(
1 +

We

2

( N∑
i=2

i∑
j=2

aiχi,j,2η
j–2

))

– γ

( N∑
i=1

i∑
j=1

aiχi,j,1η
j–1

)
+ exp

[
α

( N∑
i=0

biCh∗
i (η)

)]

×
(( N∑

i=0

aiCh∗
i (η)

)( N∑
i=2

i∑
j=2

aiχi,j,2η
j–2

)
(22)

– 2

( N∑
i=1

i∑
j=1

aiχi,j,1η
j–1

)2

– M

( N∑
i=1

i∑
j=1

aiχi,j,1η
j–1

)
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+

( N∑
i=0

(GrT bi + GrCci)Ch∗
i (η)

))
= 0,

1
Pr

((
1 + ε

( N∑
i=0

biCh∗
i (η)

))( N∑
i=2

i∑
j=2

biχi,j,2η
j–2

)
+ ε

( N∑
i=1

i∑
j=1

biχi,j,1η
j–1

)2)

+

( N∑
i=0

aiCh∗
i (η)

)( N∑
i=1

i∑
j=1

biχi,j,1η
j–1

)
–

( N∑
i=0

biCh∗
i (η)

)

×
( N∑

i=1

i∑
j=1

aiχi,j,1η
j–1

)
+ Nt

( N∑
i=1

i∑
j=1

biχi,j,1η
j–1

)2

+ Nb

( N∑
i=1

i∑
j=1

biχi,j,1η
j–1

)( N∑
i=1

i∑
j=1

ciχi,j,1η
j–1

)

+ MEc

( N∑
i=1

i∑
j=1

aiχi,j,1η
j–1

)2

+ Ec

(( N∑
i=2

i∑
j=2

aiχi,j,2η
j–2

)2

+
We

2

( N∑
i=2

i∑
j=2

aiχi,j,2η
j–2

)3)
exp

[
–α

( N∑
i=0

biCh∗
i (η)

)]

+
1
Pr

(
1 + ε

( N∑
i=0

biCh∗
i (η)

))(
D1

( N∑
i=1

i∑
j=1

aiχi,j,1η
j–1

)

+ E1

( N∑
i=0

biCh∗
i (η)

))
= 0,

(23)

( N∑
i=2

i∑
j=2

ciχi,j,2η
j–2

)
+ Sc

( N∑
i=0

aiCh∗
i (η)

)( N∑
i=1

i∑
j=1

ciχi,j,1η
j–1

)

+
Nt
Nb

( N∑
i=2

i∑
j=2

biχi,j,2η
j–2

)
= 0.

(24)

By collocation of the previous equations (22)–(24) at N – 1 points ηr = r
N–1 + 1, i =

1, 2, . . . , N – 1, they will reduce to a system of algebraic equations in the coefficients ai,
bi, ci, i = 0, 1, 2, . . . , N .

In addition, the boundary conditions (12)–(13) can be expressed by substituting Eq. (21)
into (12)–(13) to find the following equations:

N∑
i=0

Ch∗
i ai = S,

N∑
i=0

Ch∗
i bi = 1,

N∑
i=0

Ch∗
i ci = 1,

N∑
i=0

aiH1i = 1 + λ

(( N∑
i=0

aiH2i

)
+

We

2

( N∑
i=0

aiH2i

)2)
exp

[
–α

( N∑
i=0

biCh∗
i

)]
,

(25)

N∑
i=0

aiCh∗
i
′(η∞) = 0,

N∑
i=0

biCh∗
i (η∞) = 0,

N∑
i=0

ciCh∗
i (η∞) = 0, (26)
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where H1i = Ch∗
i
′(0), H2i = Ch∗

i
′′(0), and the values of Ch∗

i , i = 0, 1, 2, . . . , N can be com-
puted by using the iterative formula

2Ch∗
i + iCh∗

i–1 = 0, ∀i ≥ 1.

Equations (25)–(26), together with equations (22)–(24), give a system of 3(N + 1) algebraic
equations. We will solve this system for the unknowns ai, bi, ci, i = 0, 1, . . . , N , by using the
Newton iteration method. This, in turn, will leads us to compute the approximate solution
by substitution in the form (21).

4 Code validation
In this section, we compare the numerical values of the skin friction coefficient against
various values of the Williamson parameter We with the data calculated by Nadeem and
Hussain [30] to confirm our numerical results that were achieved using the spectral col-
location method, which depends on the characteristics of the ACPs. As shown in Table 1,
these findings are closely linked to those reported in the literature by Nadeem and Hussain
[30]. Therefore, we can confidently state that the data presented here is accurate.

5 Results and discussion
The findings of using the SCM to establish the significant features of the flow, heat, and
mass transfer characteristics with nanoparticles are shown in Figs. 2 through 13 and in
Table 2. Figure 2 depicts how a magnetic parameter M affects temperature θ (η), veloc-
ity f ′(η), and concentration φ(η) graphs, respectively. It can be shown in Fig. 2 that the
Lorentz force becomes strong for large magnetic field parameters, increasing the fluid re-
sistance and causing velocity to decrease. Additionally, it is observed that as the magnetic
parameter increases, species concentration drops, followed by a decrease in the thickness

Table 1 Values of skin friction
√
2Cfx Re1/2x with variousWe and the results of Nadeem and Hussain

[30] when γ = GrT = GrC =M = α = λ = 0 and S = 0.2

We Nadeem and Hussain [30] Present work

0.0 1.19298 1.1929799857
0.1 1.16468 1.1646900153
0.2 1.13365 1.1336499198
0.3 1.09881 1.0988099850

Figure 2 (a) f ′(η) and φ(η) for various M; (b) θ (η) for various M
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Figure 3 (a) f ′(η) and φ(η) for various λ; (b) θ (η) for various λ

Figure 4 (a) f ′(η) and φ(η) for various α ; (b) θ (η) for various α

of the solutal boundary layer. Furthermore, it appears that a rise in the magnetic parameter
improves the temperature distribution.

Figure 3 displays the variations in the fields of velocity f ′(η), temperature θ (η), and con-
centration φ(η) for various values of the slip velocity parameter λ. Diminishing behavior
is observed in the velocity field with rising values of the slip velocity parameter λ, whereas
the temperature field exhibits the opposite trend for the same parameter. It is shown that
increasing the slip velocity parameter decreases the volume friction of nanoparticles, im-
proving the boundary layer thickness and concentration profile. Physically, the reduction
in nanofluid velocity associated with the slip velocity parameter can be explained by slip
flow, which refers to the situation where the fluid near a solid surface moves at a differ-
ent speed compared to the surface itself. When nanoparticles are present in nanofluids
near the solid surface, they form a boundary layer that influences the flow behavior of the
fluid. The slip velocity parameter quantifies slip flow and represents the relative velocity
between the fluid and the solid surface.

For a particular viscosity parameter α values that define the flow behavior and the heat
mass transfer spread through the boundary layer, Fig. 4 illustrates the velocity, tempera-
ture, and concentration curves. It was made clear that an increase in the viscosity parame-
ter led to a greater improvement in the panoplied’s viscosity, which was related to the fact
that when the viscosity parameter increases, the fluid velocity decreases. Additionally, a
bigger viscosity parameter leads to stronger mass and heat transport, which enhances the
temperature and concentration fields. Physically, the viscosity parameter gauges a fluid’s
ability to flow. Nanoparticles alter the viscosity of nanofluids when they are added. As a
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Figure 5 (a) f ′(η) and φ(η) for variousWe ; (b) θ (η) for variousWe

Figure 6 (a) f ′(η) and φ(η) for various γ ; (b) θ (η) for various γ

result, the velocity of the nanofluid decreases. The addition of nanoparticles alters the
interactions between the fluid molecules, increasing the viscosity of the nanofluid as a
whole. This increased viscosity causes the fluid to experience greater internal friction,
which slows the flow and lowers the velocity.

Figure 5 examines the impact of the Williamson parameter We on the distributions of
f ′(η), θ (η), and φ(η). In contrast to concentration and temperature distribution, the ve-
locity distribution changes. The temperature and concentration distribution advance as
the Williamson parameter increases. It indicates that as nanoparticle mobility increases,
the thermal conductivity of nanofluids also increases, which boosts the heat- and mass-
transfer mechanisms.

The velocity, concentration, and temperature profiles for several porous parameter γ

values are shown in Fig. 6. In this case, raising the porous parameter γ induces the velocity
profile to drastically deteriorate, although the temperature and concentration fields exhibit
the opposite tendency. Additionally, the porous parameter produces a small improvement
in the thickness of the thermal boundary layer.

Figure 7 shows how raising the local Grashof number GrT improves the velocity pro-
file f ′(η). Physical justification can be found in the fact that as the local Grashof number
increases, the convection mechanism improves, increasing the nanofluid velocity. In con-
trast, the temperature θ (η) and concentration φ(η) fields exhibit different behavior. Phys-
ically, the Grashof number is a dimensionless parameter that captures the equilibrium
between buoyant and viscous forces in fluid flow. The following physical explanation ex-
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Figure 7 (a) f ′(η) and φ(η) for various GrT ; (b) θ (η) for various GrT

Figure 8 (a) f ′(η) and φ(η) for various GrC ; (b) θ (η) for various GrC

plains why a higher Grashof number could result in a faster nanofluid: An increase in
the Grashof number denotes a greater dominance of buoyant forces over viscous forces.
The fluid consequently encounters a stronger pushing force as a result of temperature or
density variations. This more powerful pushing force causes the nanofluid to move more
quickly, which improves convective heat transfer. As a result, an increase in the Grashof
number causes the nanofluid velocity to increase, encouraging more active fluid flow and
better convective heat transfer.

Plotted in Figs. 8(a) and 8(b) are the findings of the velocity, temperature, and concen-
tration distributions for the local modified Grashof number GrC operating in the laminar
Williamson nanofluid flow zone. According to the findings in these graphs, the velocity
field and boundary layer thickness both improve as the locally modified Grashof number
increases. Additionally, the opposite is shown for the same parameter on mass and heat
transport.

The relationship between the thermal conductivity parameter ε and the Williamson
nanofluid flow and heat mass properties is depicted in Fig. 9. This graph demonstrates that
the velocity f ′(η), concentration φ(η), and temperature θ (η) profiles through the boundary
layer region are ascending in nature for larger values of the thermal conductivity param-
eter. This is because the conductivity behavior of the nanofluid advances as the thermal
conductivity parameter increases. Physically, when it comes to nanofluids, the presence of
nanoparticles can increase the fluid’s thermal conductivity parameter, which is a measure
of a material’s capacity to conduct heat. And so, the nanofluid exhibits higher tempera-
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Figure 9 (a) f ′(η) and φ(η) for various ε; (b) θ (η) for various ε

Figure 10 (a) θ (η) for various Nt; (b) φ(η) for various Nt

tures as a result of this increased thermal conductivity parameter, which is brought on by
the fluid’s improved capacity to conduct and dissipate heat.

For various values of the thermophoresis parameter Nt, Fig. 10 depicts the variations
in the concentration and temperature fields. It has been noted that as the thermophore-
sis parameter is elevated, both concentration and temperature profiles rise because ther-
mophoresis is a phenomenon by which small particles are drawn from hot to cool surfaces,
which causes the temperature to rise.

Figure 11 shows how the temperature θ (η) and concentration φ(η) fields for nanofluids
are affected by the Brownian motion parameter Nb. This figure illustrates how raising
the Brownian motion parameter causes fluid particles to move randomly, which raises the
concentration and temperature profiles.

The temperature profile θ (η) within the thermal boundary layer region is affected by
Eckert number Ec, as shown in Fig. 12(a), since an increase in the Eckert number speeds
up the movement of kinetic energy. Fluid particles collide more regularly as a consequence,
which causes kinetic energy to be converted into heat energy in the process. As a result,
the temperature profile rises, as seen in the graph. Figure 12(b) shows how the space-
dependent heat source parameter D1 influences the temperature profile. The fluid tem-
perature increases for high values of the space-dependent heat source parameter; this
phenomenon is physically maintained because high values of D1 result in increased heat
generation and increased temperature distribution for a nanofluid.
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Figure 11 (a) θ (η) for various Nb; (b) φ(η) for various Nb

Figure 12 (a) θ (η) for various Ec; (b) θ (η) for various D1

Figure 13 (a) θ (η) for various E1; (b) φ(η) for various E1

The effect of the temperature-dependent heat source parameter E1 on the temperature
and concentration profile is seen in Fig. 13. The graph demonstrates how increasing the
temperature-dependent heat source parameter increased the capacity of heat and mass
transference, leading to an increase in both the nanofluid temperature and concentration.

Table 2 shows the variations in the skin friction coefficient
√

2Cfx Re1/2
x , Nusselt number

1√
2 Re–1/2

x e
–x
2L Nux, and Sherwood number 1√

2 Re–1/2
x e

–x
2L Shx caused by modifying the mag-

netic field parameter, slip velocity parameter, local Grashof number, thermal conductivity
parameter, thermophoresis parameter, porous parameter, local modified Grashof number,
and Williamson parameter. It is evident that with high values of the thermal conductivity,
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Table 2 Values of
√
2Cfx Re1/2x , 1√

2
Re–1/2x e

–x
2L Nux , and 1√

2
Re–1/2x e

–x
2L Shx for different values of M,

We , λ, M, α , GrT , γ , GrC , ε, and Nt with Nb = 0.3, Pr = 2.0, Sc = 0.7, E1 = D1 = 0.1

M λ α We γ GrT GrC ε Nt
√
2Cfx Re1/2x –θ ′(0) –φ′(0)

0.0 0.2 0.2 0.4 0.2 0.1 0.1 0.2 0.1 0.833653 0.170981 0.490641
0.5 0.2 0.2 0.4 0.2 0.1 0.1 0.2 0.1 0.894223 0.072283 0.393338
1.0 0.2 0.2 0.4 0.2 0.1 0.1 0.2 0.1 0.997098 0.060109 0.322310

0.5 0.1 0.2 0.4 0.2 0.1 0.1 0.2 0.1 0.997533 0.052086 0.399021
0.5 0.2 0.2 0.4 0.2 0.1 0.1 0.2 0.1 0.894223 0.072283 0.393338
0.5 0.4 0.2 0.4 0.2 0.1 0.1 0.2 0.1 0.832701 0.113745 0.374296

0.5 0.2 0.0 0.4 0.2 0.1 0.1 0.2 0.1 0.978704 0.068678 0.401294
0.5 0.2 0.2 0.4 0.2 0.1 0.1 0.2 0.1 0.894223 0.072283 0.393338
0.5 0.2 0.4 0.4 0.2 0.1 0.1 0.2 0.1 0.811372 0.125345 0.384812

0.5 0.2 0.2 0.0 0.2 0.1 0.1 0.2 0.1 0.972188 0.072382 0.403296
0.5 0.2 0.2 0.3 0.2 0.1 0.1 0.2 0.1 0.919105 0.068511 0.396582
0.5 0.2 0.2 1.0 0.2 0.1 0.1 0.2 0.1 1.001452 0.038467 0.364299

0.5 0.2 0.2 0.4 0.0 0.1 0.1 0.2 0.1 0.865521 0.075244 0.404453
0.5 0.2 0.2 0.4 0.2 0.1 0.1 0.2 0.1 0.894223 0.072283 0.393338
0.5 0.2 0.2 0.4 0.4 0.1 0.1 0.2 0.1 0.937923 0.068783 0.383043

0.5 0.2 0.2 0.4 0.2 0.0 0.1 0.2 0.1 0.926203 0.066614 0.375611
0.5 0.2 0.2 0.4 0.2 0.2 0.1 0.2 0.1 0.862694 0.076390 0.408515
0.5 0.2 0.2 0.4 0.2 0.5 0.1 0.2 0.1 0.769952 0.083254 0.445226

0.5 0.2 0.2 0.4 0.2 0.1 0.0 0.2 0.1 0.924370 0.067664 0.376091
0.5 0.2 0.2 0.4 0.2 0.1 0.2 0.2 0.1 0.864871 0.075555 0.407749
0.5 0.2 0.2 0.4 0.2 0.1 0.5 0.2 0.1 0.780159 0.081454 0.441202

0.5 0.2 0.2 0.4 0.2 0.1 0.1 0.0 0.1 0.895334 0.070789 0.391162
0.5 0.2 0.2 0.4 0.2 0.1 0.1 1.0 0.1 0.890185 0.048911 0.394952
0.5 0.2 0.2 0.4 0.2 0.1 0.1 2.0 0.1 0.884849 0.010936 0.398894

0.5 0.2 0.2 0.4 0.2 0.1 0.1 0.2 0.0 0.894151 0.102421 0.400172
0.5 0.2 0.2 0.4 0.2 0.1 0.1 0.2 0.1 0.894223 0.072283 0.393338
0.5 0.2 0.2 0.4 0.2 0.1 0.1 0.2 0.2 0.895166 0.045356 0.377218

Williamson, porous, thermophoresis, local Grashof, and magnetic parameters, the local
Nusselt number declines. The local Sherwood number is shown in the same table to have
a diminishing function for the slip velocity, magnetic field, viscosity, and porous param-
eters. It’s vital to remember that when the slip velocity, viscosity parameter, and thermal
conductivity parameter values rise, the local skin-friction coefficient drops. However, this
impact is inverted for the high values of the magnetic, porous, and Williamson parameters.

6 Conclusions
In this work, non-Newtonian Williamson nanofluid flow characteristics caused by a verti-
cal exponential stretching sheet were addressed. The spectral collocation technique which
basically depends on the properties of the Appell-type Changhee polynomials was used
to give a numerical solution to the aforementioned problem. The flow was thought to be
in a steady state. Williamson nanofluid flows’ slip velocity phenomena, the influence of
magnetic fields, heat generation, and viscous dissipation all play a role in how this study
is observed. Graphical analysis was used to view and analyze the impact of the embedded
factors. These numerical calculations and mathematical modeling have essential applica-
tions, particularly in cooling operations. As a consequence, the present study can specify
several essential aspects that are crucial in engineering applications. The key findings are
as follows:
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1. The skin friction decreases as the parameters for viscosity, slip velocity, and the local
Grashof number are improved.

2. In contrast to the effects of the magnetic field, slip velocity, and viscosity parameters
on fluid motion, an increase in the local Grashof number causes fluid velocity to
accelerate.

3. The Nusselt number is increased by the slip velocity and local modified Grashof
numbers, whereas it is decreased by the magnetic, Williamson, and porous
parameters.

4. The temperature of nanofluids is controlled by the magnetic field and higher levels of
the local Grashof number.

5. By increasing the values of the thermophoresis parameter, the Nusselt number
declines, whereas the viscosity parameter exhibits the reverse tendency.

6. Increased values of the variable viscosity parameter, Grashof number, modified
Grashof number, and thermal conductivity parameter result in a decrease in the skin
friction coefficient.

7. In future endeavors, it would be advantageous to broaden the scope of analysis
conducted in this study by examining the impact of different variables such as
nanoparticle concentration, porosity, and the chemical reaction on the flow behavior
of non-Newtonian Williamson nanofluids.

Acknowledgements
The authors extend their appreciation to the Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Saudi Arabia, for funding this research work through Grant No. 221412018.

Funding
Not applicable.

Availability of data and materials
No data were used for this work.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Author contributions
MMK and MMB wrote the main manuscript text and AMM prepared all figures. All authors reviewed the manuscript.

Received: 7 April 2023 Accepted: 9 July 2023

References
1. Williamson, R.V.: The flow of pseudo plastic materials. Ind. Eng. Chem. 21, 1108–1111 (1929)
2. Dapra, I., Scarpi, G.: Perturbation solution for the pulsatile flow of a non-Newtonian Williamson fluid in a rock fracture.

Int. J. Rock Mech. Min. Sci. 44, 271–278 (2007)
3. Vasudev, C., Rao, U.R., Reddy, M.V., Rao, G.P.: Peristaltic pumping of Williamson fluid through a porous medium in a

horizontal channel with heat transfer. Am. J. Sci. Ind. Res. 1, 656–666 (2010)
4. Kothandapani, M., Prakash, J.: Effects of thermal radiation parameter and magnetic field on the peristaltic motion of

Williamson nanofluids in a tapered asymmetric channel. Int. J. Heat Mass Transf. 81, 234–245 (2015)
5. Hayat, T., Bashir, G., Waqas, M., Alsaedi, A.: MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked

surface with melting heat transfer. J. Mol. Liq. 223, 836–844 (2016)
6. Nadeem, S., Hussain, S.T.: Analysis of MHD Williamson nano fluid flow over a heated surface. J. Appl. Fluid Mech. 9,

729–739 (2016)
7. Megahed, A.M.: Williamson fluid flow due to a nonlinearly stretching sheet with viscous dissipation and thermal

radiation. J. Egypt. Math. Soc. 27, 12–19 (2019)
8. Megahed, A.M.: Steady flow of MHD Williamson fluid due to a continuously moving surface with viscous dissipation

and slip velocity. Int. J. Mod. Phys. C 31, 1–12 (2020)



Khader et al. Boundary Value Problems         (2023) 2023:77 Page 18 of 18

9. Choi, U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 231, 99–103 (1995)
10. Wang, X., Xu, X., Choi, S.: Thermal conductivity of nanoparticles–fluid mixture. J. Thermophys. Heat Transf. 13, 474

(1999)
11. Keblinski, P., Phillpot, S.R., Choi, S., Eastman, J.A.: Mechanisms of heat flow in suspensions of nano-sized particles

(nanofluids). Int. J. Heat Mass Transf. 45, 855–863 (2002)
12. Zia, U., Muhammad, A., Saqib, Z., Yuming, C., Ilyas, K., Kottakkaran, S.N.: Computational analysis of the oscillatory

mixed convection flow along a horizontal circular cylinder in thermally stratified medium. Comput. Mater. Continua
65(1), 109–123 (2020)

13. Abbas, S.Z., Waqas, M., Thaljaoui, A., Zubair, M., Riahi, A., Chu, Y.M., Khan, W.A.: Modeling and analysis of unsteady
second-grade nanofluid flow subject to mixed convection and thermal radiation. Soft Comput. 26, 1033–1042 (2022)

14. Yu-Ming, C., Faisal, S., Ijaz, M.K., Seifedine, K., Zahra, A., Waqar, A.K.: Cattaneo–Christov double diffusions (CCDD) in
entropy optimized magnetized second grade nanofluid with variable thermal conductivity and mass diffusivity. J.
Mater. Res. Technol. 9(6), 13977–13987 (2020)

15. Fazal, H., Seifedine, K., Yu-Ming, C., Mair, K., Ijaz, M.K.: Modeling and theoretical analysis of gyrotactic microorganisms
in radiated nanomaterial Williamson fluid with activation energy. J. Mater. Res. Technol. 9(5), 10468–10477 (2020)

16. Waqas, M., Ijaz, A.K., Zeeshan, A., Seifedine, K., Yu-Ming, C., Khan, W.A.: Interaction of heat generation in nonlinear
mixed/forced convective flow of Williamson fluid flow subject to generalized Fourier’s and Fick’s concept. J. Mater.
Res. Technol. 9(5), 11080–11086 (2020)

17. Ijaz, M.K., Seifedine, K., Yu-Ming, C., Waqar, A.K., Amit, K.: Exploration of Lorentz force on a paraboloid stretched surface
inflow of Ree–Eyring nanomaterial. J. Mater. Res. Technol. 9(5), 10265–10275 (2020)

18. Muhammad, I., Tareq, S., Firooz, R.B., Shahab, N.S., Yu-Ming, C., Davood, T.: Two-phase analysis of heat transfer and
entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks
under a uniform magnetic field. Powder Technol. 384, 522–541 (2021)

19. Kim, D.S., Kim, T., Seo, J.J.: A note on Changhee polynomials and numbers. Adv. Stud. Theor. Phys. 7(20), 993–1003
(2013)

20. Khader, M.M., Adel, M.: Numerical and theoretical treatment based on the compact finite difference and spectral
collocation algorithms of the space fractional-order Fisher’s equation. Int. J. Mod. Phys. C 31(9), 1–15 (2020)

21. Adel, M., Assiri, T.A., Khader, M.M., Osman, M.S.: Numerical simulation by using the spectral collocation optimization
method associated with Vieta–Lucas polynomials for a fractional model of non-Newtonian fluid. Results Phys. 41, 1–8
(2022)

22. Lee, J.G., Jang, L.C., Seo, J.J., Choi, S.K., Kwon, H.I.: On Appell-type Changhee polynomials and numbers. Adv. Differ.
Equ. 1, 1–10 (2016)

23. Adel, M., Khader, M.M., Algelany, S.: High-dimensional chaotic Lorenz system: numerical treated using Changhee
polynomials of the Appell type. Fractal Fract. 7(398), 1–16 (2023)

24. Megahed, A.M.: Improvement of heat transfer mechanism through a Maxwell fluid flow over a stretching sheet
embedded in a porous medium and convectively heated. Math. Comput. Simul. 187, 97–109 (2021)

25. Mahmoud, M.A.A., Megahed, A.M.: Non-uniform heat generation effect on heat transfer of a non-Newtonian
power-law fluid over a non-linearly stretching sheet. Meccanica 47, 1131–1139 (2012)

26. Yi-Xia, L., Alshbool, M.H., Yu-Pei, L., Khan, I., Khan, M.R., Issakhov, A.: Heat and mass transfer in MHD Williamson
nanofluid flow over an exponentially porous stretching surface. Case Stud. Therm. Eng. 26, 100975 (2021)

27. Nadeem, S., Hussain, S.T., Lee, C.: Flow of a Williamson fluid over a stretching sheet. Braz. J. Chem. Eng. 30, 619–625
(2013)

28. Kreyszig, E.: Introductory Functional Analysis with Applications, vol. 1. Wiley, New York (1978)
29. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput.

Math. Appl. 59(3), 1326–1336 (2010)
30. Nadeem, S., Hussain, S.T.: Heat transfer analysis of Williamson fluid over exponentially stretching surface. Appl. Math.

Mech.-Engl. Ed. 35, 489–502 (2014)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Non-Newtonian nanoﬂuid ﬂow across an exponentially stretching sheet with viscous dissipation: numerical study using an SCM based on Appell-Changhee polynomials
	Abstract
	Keywords

	Introduction
	Basic model
	(i) Viscosity
	(ii) Thermal conductivity
	(iii) Nonuniform heat generation

	Solution procedure
	Basic concepts about Appell-Changhee polynomials
	Solution procedure using SCM

	Code validation
	Results and discussion
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Author contributions
	References
	Publisher's Note


