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Abstract
In this paper, we study the following chemotaxis system with a signal-dependent
motility and logistic source:

⎧
⎪⎨

⎪⎩

ut =�(γ (v)u) +μu(1 – uα), x ∈ �, t > 0,

0 =�v – v + ur , x ∈ �, t > 0,

u(x, 0) = u0(x), x ∈ �

under homogeneous Neumann boundary conditions in a smooth bounded domain
� ⊂ R

2, where the motility function γ (v) satisfies γ (v) ∈ C3([0,∞)) with γ (v) > 0, and
|γ ′(v)|2
γ (v) is bounded for all v > 0. The purpose of this paper is to prove that the model

possesses globally bounded solutions. In addition, we show that all solutions (u, v) of
the model will exponentially converge to the unique constant steady state (1, 1) as

t → +∞ when μ ≥ K
41+r

with K =max0<v≤∞ |γ ′(v)|2
γ (v) .
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1 Introduction
Experimental observations show that colonies of bacteria and simple eukaryotes can gen-
erate complex shapes and patterns. In order to understand the mechanism of pattern for-
mations, extensive mathematical models were derived, including the Keller–Segel system
in [10] modeling the pattern formations driven by chemotactic bacteria

⎧
⎨

⎩

ut = ∇(
μ(v)∇u – uχ (v)∇v

)
, x ∈ �, t > 0,

τvt = �v – v + u, x ∈ �, t > 0,
(1.1)

where the cell diffusion rate μ and the chemotactic sensitivity χ are assumed to depend
only on the signal concentration. In (1.1), the cell diffusion rate μ and chemotactic sensi-
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tivity χ are linked via

χ (v) = (σ – 1)μ′(v).

Here the parameter σ denotes the ratio of effective body length to step size, and γ ′(v) < 0
(resp. > 0) if the diffusive motility decreases (resp. increases) with respect to the chemical
concentration.

One notices that σ = 0 implies that χ = –μ′, the motion of cells is biased by the local
concentration chemotactic signal and is prescribed by the motility γ (v) of cells, so that
the system (1.1) can be written as

⎧
⎨

⎩

ut = �
(
γ (v)u

)
, x ∈ �, t > 0,

τvt = �v – v + u, x ∈ �, t > 0
(1.2)

with homogeneous Neumann boundary conditions. Recently, the mathematical research
on the system (1.2) has attracted a lot of interest. Tao and Winkler [22] considered the
chemotaxis model with τ = 1 under the condition that the motility function γ (v) satisfies
γ ∈ C3([0,∞)), C1 < γ (v) < C2, and |γ ′(v)| ≤ C3 for all v > 0, and they showed that the
chemotaxis model has globally bounded solutions. Yoon and Kim [23] proved that there
exists a globally bounded solution for the system (1.2) with τ = 1 and γ (v) = C0

vk (k > 0) for
small constant C0 > 0 in any dimension. Lately, the smallness assumption of C0 > 0 was
removed for the parabolic–elliptic case of (1.2) with τ = 0 when n ≤ 2, k > 0 or n ≥ 3 with
k < 2

n–2 ; Ahn and Yoon in [1] proved that the model (1.2) possesses a globally bounded and
classical solution.

In [7], Jiang and Laurençot proved the existence of a global and bounded classical solu-
tion to the model (1.2) with τ = 0 when γ ∈ C3((0,∞)), γ > 0, Kv

�= sups∈[v,∞]{γ (s)} < ∞,
v > 0 and if n ≥ 2, u0 satisfying

u0(x) ∈ C0(�), u0(x) ≥ 0, u0(x) 
≡ 0, x ∈ �. (1.3)

In addition, these solutions were shown to be uniformly bounded with respect to time
when γ ∈ C3((0,∞)), γ ′ ≤ 0, and there are k ≥ l > 0 such that limv→∞ inf vkγ (v) > 0 and
limv→∞ sup vlγ (v) < ∞ for any k < n

n–2 and k – l < 2
n–2 if n ≥ 3 and u0 satisfies (1.3).

Considering the presence of cell generation and death in a biological realistic setting, this
can be expressed through logical sources. Researchers usually considered the following
density-suppressed motility chemotaxis model with logical sources:

⎧
⎨

⎩

ut = �
(
γ (v)u

)
+ μu(1 – u), x ∈ �, t > 0,

0 = �v – v + u, x ∈ �, t > 0.
(1.4)

Essentially, (1.4) with μ > 0 has been used in [4] to justify that the bacterial motion with
density-suppressed motility (i.e., γ ′(v) < 0) can produce the stripe pattern formation ob-
served in the experiment of [11]. Fujie and Jiang [5] proved the global existence of a classi-
cal solution for (1.4) in the two-dimensional setting when u0 was assumed to be as in (1.3)
and γ (v) satisfied γ ∈ C3([0,∞)), γ > 0, Kv

�= sups∈[v,∞]{γ (s)} < ∞, v > 0. Moreover, if μ = 0
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and γ (v) also satisfies limv→+∞ vkγ (v) < +∞, for k > 0, the global solution to (1.4) in the
two-dimensional case is proven to be bounded uniformly in time. Recently, Lyu and Wang
[12] explored how strong the logistic damping can warrant the global boundedness of so-
lutions to (1.4) under the minimal conditions for the density-suppressed motility function
γ (v), and further established the asymptotic behavior of solutions under some conditions.

In order to address the dependence of dynamical behaviors of solutions on the interac-
tions between nonlinear cross-diffusion, generalized logistic source, and nonlinear signal
production, Tao and Fang [17] considered the density-suppressed motility mode

⎧
⎨

⎩

ut = �
(
γ (v)u

)
+ ru – μuα , x ∈ �, t > 0,

vt = �v – v + uβ , x ∈ �, t > 0.

They proved that if β < 2
N+2α, then the system has a globally bounded classical solution,

and further established the asymptotic behavior of solutions for sufficiently large μ.
Inspired by the above works, in this paper we consider the initial–Neumann boundary

value problem of the following parabolic–elliptic system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = �
(
γ (v)u

)
+ μu

(
1 – uα

)
, x ∈ �, t > 0,

0 = �v – v + ur , x ∈ �, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �

(1.5)

in a smooth bounded domain � ⊂R
2. Here μ,α, r > 0 are any given constants. We denote

the cell density by u and the chemical concentration by v. In order to study the large-time
behavior of the system (1.5), we assume that the motility function γ (v) satisfies:

(H) γ (v) ∈ C3([0,∞)
) with γ (v) > 0 and

|γ ′(v)|2
γ (v)

is bounded for all v ≥ 0.

In this paper we shall develop some results on the global boundedness and large-time
behavior of solutions to the system (1.5) with general motility γ (v). The main result of this
paper reads as follows.

Theorem 1.1 Let � ⊂ R
2 be a bounded domain with a smooth boundary. Suppose that

parameters μ,α, r > 0, and the motility function γ (v) satisfies (H). If 1+2α
2(1+α) ≤ r ≤ 1 ≤ α, then

for any initial data u0 satisfying the conditions (1.3), the system (1.5) possesses a globally
bounded solution (u, v) which is bounded in � × (0,∞) in the sense that there exists C > 0
satisfying

∥
∥u(·, t)

∥
∥

L∞(�) +
∥
∥v(·, t)

∥
∥

W 1,∞(�) ≤ C for all t > 0.

Theorem 1.2 Under the same assumptions as in Theorem 1.1, if the constant μ satisfies
μ ≥ K

41+r with K = max0<v≤∞ |γ ′(v)|2
γ (v) , then the globally bounded solution of (1.5) satisfies

∥
∥u(·, t) – 1

∥
∥

L∞(�) +
∥
∥v(·, t) – 1

∥
∥

L∞(�) → 0, as t → ∞.
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Moreover, the convergence rate is exponential in the sense that there exist constants λ, C
such that

∥
∥u(·, t) – 1

∥
∥

L∞(�) +
∥
∥v(·, t) – 1

∥
∥

L∞(�) ≤ Ce–λt for all t > 0.

2 Preliminaries
We first recall the local existence of classical solutions to equations (1.5). The proof is
based on an appropriate fixed point theorem and the maximum principle, refer to [9,
Lemma 2.1] for more details.

Lemma 2.1 (Local existence) Let � ⊂ R
2 be a bounded domain with a smooth boundary

and assume that the motility function γ satisfies condition (H). Assume that the initial
data u0 satisfies the conditions (1.3). Then there exists a unique local-in-time nonnegative
classical solution

(u, v) ∈ C0(� × [0, Tmax
)
) ∩ C2,1(� × (0, Tmax)

)

to (1.5). Here, Tmax ∈ (0,∞] denotes the maximal existence time. Moreover, if Tmax < ∞,
then

∥
∥u(·, t)

∥
∥

L∞(�) +
∥
∥v(·, t)

∥
∥

W 1,∞(�) → ∞ as t ↗ Tmax. (2.1)

At the end of this section, we state some a priori estimates on u, v, which shall be used
in the sequel.

Lemma 2.2 Let (u, v) be the solution of the system (1.5). Then it holds that
∫

�

u(·, t) dx ≤ max
{‖u0‖L1(�), |�|} := m∗, for all t ∈ (0, Tmax), (2.2)

and
∫

�

v(·, t) dx ≤ C, for all t ∈ (0, Tmax). (2.3)

Proof Integrating the first equation of (1.5) over �, we obtain

d
dt

∫

�

u dx = μ

∫

�

u dx – μ

∫

�

u1+α dx, for all t ∈ (0, Tmax). (2.4)

Due to the Hölder inequality, we conclude that
∫

�
u1+α dx ≥ 1

|�|α (
∫

�
u dx)1+α , which im-

plies that

d
dt

∫

�

u dx ≤ μ

∫

�

u dx – μ|�|–α

(∫

�

u dx
)1+α

, for all t ∈ (0, Tmax), (2.5)

and hence (2.2). Now (2.3) results from a time integration of to the second equation of
(1.5). As the parameters satisfy 1+2α

2(1+α) ≤ r ≤ 1 ≤ α, one has
∫

�

v dx =
∫

�

ur dx ≤
∫

�

u dx + C1 ≤ C2, for all t ∈ (0, Tmax) (2.6)

and hence (2.3) follows. �
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3 Boundedness of solutions
In this section, we shall prove Theorem 1.1. First, we show the global existence of
uniformly-in-time bounded solutions.

Lemma 3.1 Let the same assumptions as in Theorem 1.1 hold. Then there exists a constant
C > 0 independent of t such that the solution of (1.5) satisfies

‖u ln u‖L1(�) ≤ C for all t ∈ (0, Tmax). (3.1)

Proof Multiplying the first equation of (1.5) by ln u, and integrating the result by parts,
one has

d
dt

(∫

�

u ln u dx –
∫

�

u dx
)

+
∫

�

γ (v)
|∇u|2

u
dx

= –
∫

�

γ ′(v)∇u · ∇v dx + μ

∫

�

u ln u dx – μ

∫

�

u1+α ln u dx
(3.2)

for all t ∈ (0, Tmax). From the assumptions in (H), we can find a constant K > 0 such that

|γ ′(v)|2
γ (v)

≤ K , for all v > 0. (3.3)

We now estimate the first integrals on the right of this inequality (3.2). Using the Hölder
and Young inequalities, we have

–
∫

�

γ ′(v)∇u · ∇v dx ≤ 1
2

∫

�

γ (v)
|∇u|2

u
dx +

1
2

∫

�

u|∇v|2 |γ ′(v)|2
γ (v)

dx

≤ 1
2

∫

�

γ (v)
|∇u|2

u
dx +

K
2

∫

�

u|∇v|2 dx

≤ 1
2

∫

�

γ (v)
|∇u|2

u
dx +

K
2

‖∇v‖2

L
2(1+α)

α (�)
‖u‖L1+α (�)

(3.4)

for all t ∈ (0, Tmax), and substituting into (3.2) gives

d
dt

(∫

�

u ln u dx –
∫

�

u dx
)

+
1
2

∫

�

γ (v)
|∇u|2

u
dx

≤ K
2

‖∇v‖2

L
2(1+α)

α (�)
‖u‖L1+α (�) + μ

∫

�

u ln u dx – μ

∫

�

u1+α ln u dx.
(3.5)

Applying the Agmon–Douglis–Nirenberg Lp estimates (cf. [1, 2]) to the second equation
of (3.5) with homogeneous Neumann boundary conditions, we know that for all p > 1,
there exists a constant C1 > 0 such that

∥
∥v(·, t)

∥
∥

W 2,p(�) ≤ C1
∥
∥ur(·, t)

∥
∥

Lp(�). (3.6)

The Sobolev embedding theorem yields ‖∇v‖
L

2(1+α)
α (�)

≤ C2‖v‖
W 2, 2(1+α)

1+2α (�)
in two dimen-

sions (i.e., n = 2) which, together with (3.6), implies

‖∇v‖2

L
2(1+α)

α (�)
≤ C2

2‖v‖2

W 2, 2(1+α)
1+2α (�)

≤ C3
∥
∥ur∥∥2

L
2(1+α)
1+2α (�)

. (3.7)



Hu and Du Boundary Value Problems         (2023) 2023:84 Page 6 of 22

On the other hand, using the Lp-interpolation inequality and the fact ‖u(·, t)‖L1(�) ≤ m∗
(see Lemma 2.2), with positive parameters satisfying 1+2α

2(1+α) ≤ r ≤ 1 ≤ α, we have

∥
∥ur∥∥2

L
2(1+α)
1+2α (�)

= ‖u‖2r

L
2r(1+α)

1+2α (�)
≤ ‖u‖

(1+α)2r–1–2α
α

L1+α (�) ‖u‖ 2α–2r+1
α

L1(�) ≤ C4‖u‖α
L1+α (�) + C5, (3.8)

the last inequality holding due to the Young inequality. We substitute (3.7) and (3.8) into
(3.5) to obtain

d
dt

(∫

�

u ln u dx –
∫

�

u dx
)

+
1
2

∫

�

γ (v)
|∇u|2

u
dx +

∫

�

u ln u dx –
∫

�

u dx

≤ KC3

2
‖u‖L1+α (�)

(
C4‖u‖α

L1+α (�) + C5
)

+ (μ + 1)
∫

�

u ln u dx

– μ

∫

�

u1+α ln u dx –
∫

�

u dx

≤ C6‖u‖1+α
L1+α (�) + C7 + (μ + 1)

∫

�

u ln u dx – μ

∫

�

u1+α ln u dx

≤ C8,

(3.9)

where we have used the following fact (see [21, Lemma 3.1]): Let μ > 0, α ≥ 1, and b ≥ 0,
then there exists a constant l := l(μ, b,α) > 0 such that

(1 + μ)z ln z + bz1+α – μz1+α ln z ≤ l, for all z > 0.

Hence from (3.9), we obtain

d
dt

(∫

�

u ln u dx –
∫

�

u dx
)

+
∫

�

u ln u dx –
∫

�

u dx ≤ C8,

which gives
∫

�
u ln u dx –

∫

�
u dx ≤ C9 and then

∫

�

u ln u dx ≤
∫

�

u dx + C9 ≤ C10.

Since u ln u ≥ – 1
e , we derive

∫

�

|u ln u|dx ≤
∫

�

u ln u dx +
2|�|

e
≤ C11,

which yields (3.1). �

Next, we will show that there exists some p > 1 close to 1 such that
∫

�
up dx is uniformly

bounded in time. The following basic statement can be found in [6, Chap. 4, Sect. 21] or
[14, p. 43].

Lemma 3.2 Suppose that � ⊂ R
2 is a bounded domain with a smooth boundary, and let

G denote Green’s function of –� + 1 in � subject to Neumann boundary conditions. Then
we have

∣
∣G(x, y)

∣
∣ ≤ L ln

A
|x – y| , for all x, y ∈ � with x 
= y. (3.10)
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In order to estimate the product uv in terms of u ln u and eβv below, we shall refer to a
variant of the Young inequality.

Lemma 3.3 Let β > 0. Then

xy ≤ 1
β

x ln x +
1

eβ
eβy, for all x > 0 and y > 0. (3.11)

Proof The assertion easily follows by simply maximizing x ∈ (0,∞) �→ xy– 1
β

x ln x for fixed
β > 0 and y > 0. �

We next provide a specific estimate for the solution of a linear elliptic equation with a
source term in L1.

Lemma 3.4 Let � ⊂R
2 be a bounded domain with a smooth boundary. Then for all M > 0

there exist β > 0 and C > 0 such that

∥
∥ur∥∥

L1(�) ≤ M (3.12)

and the solution v of

⎧
⎨

⎩

0 = �v – v + ur , x ∈ �,
∂v
∂ν

= 0, x ∈ ∂�,
(3.13)

satisfies

∫

�

eβv dx ≤ C. (3.14)

Proof Since (3.14) is trivial in the special case u ≡ 0, we may assume that u 
≡ 0. Then
with G denoting Green’s function of –�+1 in � under homogeneous Neumann boundary
conditions, v can be represented as

v(x) =
∫

�

G(x, y)ur(y) dy, a.e. x ∈ �,

see [14, p. 43]. Now Lemma 3.2 provides A > 0 and L > 0 such that

v(x) ≤ L
∫

�

ln
A

|x – y| · ∣∣ur(y)
∣
∣dy, a.e. x ∈ �.

Therefore, invoking Jensen inequality, (3.12), and Fubini theorem, we find that for each
β > 0,

∫

�

eβv(x) dx ≤
∫

�

e
βL‖ur‖L1(�)·

∫

� ln A
|x–y| · |ur (y)|

‖ur‖L1(�)
dy

dx

≤
∫

�

{∫

�

eβL‖ur‖L1(�)·ln A
|x–y| · |ur(y)|

‖ur‖L1(�)
dy

}

dx
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= AβL‖ur‖L1(�) ·
∫

�

∫

�

|x – y|–βL‖ur‖L1(�) · |ur(y)|
‖ur‖L1(�)

dy dx (3.15)

≤ AβLM
∫

�

∫

�

|x – y|–βLM· |ur(y)|
‖ur‖L1(�)

dy dx

= AβLM
∫

�

{∫

�

|x – y|–βLM dx
}

· |ur(y)|
‖ur‖L1(�)

dy.

If we now fix β > 0 to be small enough fulfilling βLM < 2, then C1 := supy∈�

∫

�
|x – y|–βLM dx

is finite due to the boundedness of �, and therefore
∫

�

eβv dx ≤ C1AβLM ·
∫

�

|ur(y)|
‖u‖Lr(�)

dy = C2AβLM

holds for any such β > 0. �

Lemma 3.5 Let � ⊂R
2 be a bounded domain with a smooth boundary. There exists C > 0

such that the solution of (3.13) satisfies
∫

�

|∇v|2 dx ≤ C. (3.16)

Proof Now in order to prove (3.16), we use v as a test function in (3.13) to obtain
∫

�

|∇v|2 dx +
∫

�

v2 dx =
∫

�

urv dx. (3.17)

We find β > 0 and C1, C2 > 0 such that
∫

�
eβv dx ≤ C1,

∫

�
u ln u dx ≤ C2. We employ

Lemma 3.3 to estimate
∫

�

urv dx ≤
∫

�

uv dx + C3

∫

�

v dx

≤ 1
β

∫

�

u ln u dx +
1

eβ

∫

�

eβv dx + C3

∫

�

v dx ≤ C4,

which, together with (3.17), establishes (3.16). �

Next, we will show that there exists some p > 1 close to 1 such that
∫

�
up dx is uniformly

bounded in time.

Lemma 3.6 Suppose the conditions in Theorem 1.1 hold. Then there exists p > 1 close to 1
such that

∥
∥u(·, t)

∥
∥

Lp(�) ≤ C, for all t ∈ (0, Tmax), (3.18)

where C > 0 is a constant independent of t.

Proof We multiply the first equation of (1.5) by up–1 to obtain

1
p

d
dt

∫

�

up dx + (p – 1)
∫

�

γ (v)up–2|∇u|2 dx

= –(p – 1)
∫

�

γ ′(v)up–1∇u · ∇v dx + μ

∫

�

up dx – μ

∫

�

up+α dx.
(3.19)
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The Cauchy–Schwarz inequality and (3.3) allow us to have

– (p – 1)
∫

�

up–1γ ′(v)∇u · ∇v dx

≤ (p – 1)
2

∫

�

up–2γ (v)|∇u|2 dx +
(p – 1)

2

∫

�

up |γ ′(v)|2
γ (v)

|∇v|2 dx

≤ (p – 1)
2

∫

�

up–2γ (v)|∇u|2 dx +
(p – 1)K

2

∫

�

up|∇v|2 dx.

(3.20)

Using the Hölder and Gagliardo–Nirenberg inequalities, as well as (3.16) and (3.6), one
has

∫

�

up|∇v|2 dx ≤ ‖u‖p
Lp+r (�)‖∇v‖2

L
2(p+r)

r (�)

≤ C1‖u‖p
Lp+r (�)‖v‖

W 2, p+r
r (�)

‖∇v‖L2(�)

≤ C2‖u‖p
Lp+r (�)‖v‖

W 2, p+r
r (�)

= C3‖u‖p
Lp+r (�)

∥
∥ur∥∥

L
p+r

r (�)
= C3‖u‖p+r

Lp+r (�).

(3.21)

Then we can substitute (3.20) and (3.21) into (3.19) to obtain

1
p

d
dt

∫

�

up dx +
(p – 1)

2

∫

�

γ (v)up–2|∇u|2 dx

≤ KC3(p – 1)
2

∫

�

up+r dx + μ

∫

�

up dx – μ

∫

�

up+α dx,
(3.22)

Using the Young and Hölder inequalities, we can prove that

(μ + 1)
∫

�

up dx ≤ (μ + 1)|�| α
p+α

(∫

�

up+α dx
) p

p+α

≤ μ

2

∫

�

up+α dx + C4. (3.23)

Moreover, we can choose p > 1 satisfying KC3(p–1)
2 < μ

2 to derive that

KC3(p – 1)
2

∫

�

up+r dx ≤ μ

2

∫

�

up+α dx. (3.24)

Then the combination of (3.22), (3.23), and (3.24) gives

1
p

d
dt

∫

�

up dx +
∫

�

up dx ≤ C4. (3.25)

Applying the ODE comparison principle to (3.25), we have (3.18) for some p > 1 close
to 1. �

Next, we will show ‖v(·, t)‖L∞(�) is uniformly bounded in time, which rules out the pos-
sibility of degeneracy.
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Lemma 3.7 Suppose the conditions in Theorem 1.1 hold. Then there exist constants
C,γ1,γ2 > 0 such that

∥
∥v(·, t)

∥
∥

L∞(�) ≤ C, for all t ∈ (0, Tmax). (3.26)

and

0 < γ1 ≤ γ (v) ≤ γ2. (3.27)

Proof From Lemma 3.6, we can find a constant C1 > 0 such that ‖u(·, t)‖Lp(�) ≤ C1 for
some p > 1. Then applying the elliptic regularity estimate to the second equation of (1.5),
one has

∥
∥v(·, t)

∥
∥

W 2, p
r (�)

≤ C2
∥
∥ur(·, t)

∥
∥

L
p
r (�)

≤ C2
∥
∥u(·, t)

∥
∥r

Lp(�) ≤ Cr
1C2, (3.28)

which, along with the Sobolev inequality, gives (3.26). Then since 0 < γ (v) ∈ C3([0,∞)),
we can find two positive constants γ1 and γ2 such that (3.27) holds. �

Lemma 3.8 Suppose the conditions in Theorem 1.1 hold. Then there exists a constant C > 0
such that

∥
∥u(·, t)

∥
∥

L2(�) ≤ C for all t ∈ (0, Tmax). (3.29)

Proof Multiplying the first equation of (1.5) by u and integrating the result by parts, using
the Young inequality and (3.3), we end up with

1
2

d
dt

∫

�

u2 dx +
∫

�

γ (v)|∇u|2 dx + μ

∫

�

u2+α dx

= –
∫

�

γ ′(v)u∇u · ∇v dx + μ

∫

�

u2 dx

≤ 1
2

∫

�

γ (v)|∇u|2 dx +
1
2

∫

�

|γ ′(v)|2
γ (v)

u2|∇v|2 dx + μ

∫

�

u2 dx

≤ 1
2

∫

�

γ (v)|∇u|2 dx +
K
2

∫

�

u2|∇v|2 dx + μ

∫

�

u2 dx,

(3.30)

which, combined with (3.27), gives

d
dt

∫

�

u2 dx + γ1

∫

�

|∇u|2 dx + 2μ

∫

�

u2+α dx

≤ K
∫

�

u2|∇v|2 dx + 2μ

∫

�

u2 dx.
(3.31)

We differentiate the second equation of the system (1.5) and multiply the result by 2∇v to
obtain

0 = 2∇v · ∇�v + 2∇v · ∇ur – 2|∇v|2

= �|∇v|2 – 2
∣
∣D2v

∣
∣2 + 2∇v · ∇ur – 2|∇v|2,

(3.32)
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where we have used the identity �|∇v|2 = 2∇v · ∇�v + 2|D2v|2. Then multiplying (3.32)
by |∇v|2 and integrating the results, we have

∫

�

∣
∣∇|∇v|2∣∣2 dx + 2

∫

�

|∇v|2∣∣D2v
∣
∣2 dx + 2

∫

�

|∇v|4 dx

=
∫

∂�

|∇v|2 ∂|∇v|2
∂ν

dS + 2
∫

�

|∇v|2∇v · ∇ur dx

=
∫

∂�

|∇v|2 ∂|∇v|2
∂ν

dS – 2
∫

�

ur�v|∇v|2 dx – 2
∫

�

ur∇(|∇v|2) · ∇v dx
(3.33)

≤
∫

∂�

|∇v|2 ∂|∇v|2
∂ν

dS + 2
∫

�

ur(|�v||∇v|2 +
∣
∣∇|∇v|2∣∣ · |∇v|)dx.

With the inequality ∂|∇v|2
∂ν

≤ 2λ|∇v|2 on ∂� (see [13, Lemma 4.2]) and the following trace
inequality (see [16, Remark 52.9]) for any ε > 0:

‖ϕ‖L2(∂�) ≤ ε‖∇ϕ‖L2(�) + Cε‖ϕ‖L2(�),

we have

∫

∂�

|∇v|2 ∂|∇v|2
∂ν

dS ≤ 2λ
∥
∥|∇v|2∥∥2

L2(∂�)

≤ 1
4

∫

�

∣
∣∇|∇v|2∣∣2 dx + C1

∥
∥|∇v|2∥∥2

L2(�).
(3.34)

By the Gagliardo–Nirenberg inequality and the fact ‖|∇v|2‖L1(�) = ‖∇v‖2
L2(�) ≤ C2 (see

Lemma 3.5), we have

C1
∥
∥|∇v|2∥∥2

L2(�) ≤ C3
∥
∥∇|∇v|2∥∥L2(�)

∥
∥|∇v|2∥∥L1(�) + C3

∥
∥|∇v|2∥∥2

L1(�)

≤ 1
4

∫

�

∣
∣∇|∇v|2∣∣2 dx + C4.

(3.35)

Then a combination of (3.34) and (3.35) gives

∫

∂�

|∇v|2 ∂|∇v|2
∂ν

dS ≤ 1
2

∫

�

∣
∣∇|∇v|2∣∣2 dx + C4. (3.36)

Next, we will estimate the last term on the right of (3.33). To this end, we use the Young
inequality and the facts |�v| ≤ √

2|D2v| and ∇|∇v|2 = 2D2v · ∇v to derive

2
∫

�

ur(|�v||∇v|2 +
∣
∣∇|∇v|2∣∣ · |∇v|)dx

≤ 2
√

2
∫

�

ur|∇v|2∣∣D2v
∣
∣dx + 4

∫

�

ur|∇v|2∣∣D2v
∣
∣dx

≤ 2(
√

2 + 2)
∫

�

ur|∇v|2∣∣D2v
∣
∣dx

≤ 2
∫

�

|∇v|2∣∣D2v
∣
∣2 dx +

(
√

2 + 2)2

2

∫

�

u2r|∇v|2 dx.

(3.37)
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Substituting (3.36) and (3.37) into (3.33), one has
∫

�

∣
∣∇|∇v|2∣∣2 dx + 4

∫

�

|∇v|4 dx ≤ (2 +
√

2)2
∫

�

u2r|∇v|2 dx + 2C4

≤ (2 +
√

2)2
∫

�

u2|∇v|2 dx + C5.
(3.38)

Combining (3.31) and (3.38) and using the Young inequality, we can find some ς > 0 such
that

d
dt

∫

�

u2 dx + γ1

∫

�

|∇u|2 dx + 2μ

∫

�

u2+α dx

+
∫

�

∣
∣∇|∇v|2∣∣2 dx + 4

∫

�

|∇v|4 dx

≤ [
K + (2 +

√
2)

2]
∫

�

u2|∇v|2 dx + 2μ

∫

�

u2 dx + C5

≤ [
K + (2 +

√
2)

2]‖u‖2
L3(�)‖∇v‖2

L6(�) + 2μ|�| α
2+α ‖u‖2

L2+α (�) + C5

≤ C6‖u‖3
L3(�) + ς‖∇v‖6

L6(�) + μ‖u‖2+α
L2+α (�) + C7.

(3.39)

With the boundedness of ‖u‖L1(�) and ‖u ln u‖L1(�) and the inequality in [15, Lemma 3.5],
we can choose ε small enough to obtain

‖u‖3
L3(�) ≤ ε‖∇u‖2

L2(�)‖u ln u‖L1(�) + Cε

(‖u ln u‖3
L1(�) + ‖u‖L1(�)

)

≤ γ1

C6
‖∇u‖2

L2(�) + C8.
(3.40)

On the other hand, using the Gagliardo–Nirenberg inequality, we can derive that

‖∇v‖6
L6(�) =

∥
∥|∇v|2∥∥3

L3(�)

≤ C9
(∥
∥∇|∇v|2∥∥2

L2(�)

∥
∥|∇v|2∥∥L1(�) +

∥
∥|∇v|2∥∥3

L1(�)

)

≤ C9C2
∥
∥∇|∇v|2∥∥2

L2(�) + C9C3
2 .

(3.41)

Substituting (3.40) and (3.41) into (3.39), and choosing ς = 1
C2C9

, we end up with
d
dt

∫

�
u2 dx + μ

∫

�
u2+α dx ≤ C10 which, along with the Young inequality and

∫

�
u2 dx ≤

μ
∫

�
u2+α dx + C11 yields

d
dt

∫

�

u2 dx +
∫

�

u2 dx ≤ C10 + C11.

This gives (3.29) with the help of the ODE comparison principle. �

Next, we shall show the boundedness of ‖u(·, t)‖L∞(�). To this end, we first improve the
regularity of v. More precisely, we have the following results.

Lemma 3.9 Suppose the conditions in Theorem 1.5 hold. Then we have
∥
∥∇v(·, t)

∥
∥

L∞(�) ≤ C, (3.42)

where C > 0 is a constant independent of t.
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Proof Using (3.6) and (3.29), we can derive that ‖v(·, t)‖W 2,2(�) ≤ C1‖ur(·, t)‖L2(�) ≤
C1‖u(·, t)‖L2(�) + C2 ≤ C3, which, by the Gagliardo–Nirenberg inequality, gives

‖∇v‖L4(�) ≤ C4‖v‖ 1
2
W 2,2(�)‖∇v‖ 1

2
L2(�) + C4‖∇v‖L2(�) ≤ C5. (3.43)

Then multiplying the first equation of (1.5) by u2 and integrating over � by parts, one
obtains

1
3

d
dt

∫

�

u3 dx + 2
∫

�

γ (v)u|∇u|2 dx + μ

∫

�

u3+α dx

= –2
∫

�

γ ′(v)u2∇u · ∇v dx + μ

∫

�

u3 dx

≤
∫

�

γ (v)u|∇u|2 dx +
∫

�

|γ ′(v)|2
γ (v)

u3|∇v|2 dx +
μ

2

∫

�

u3+α dx + C6,

which, subject to the facts (3.3) and (3.43), gives rise to

1
3

d
dt

∫

�

u3 dx +
4γ1

9

∫

�

∣
∣∇u

3
2
∣
∣
2

dx +
μ

2

∫

�

u3+α dx

≤ K
∫

�

u3|∇v|2 dx + C6

≤ K‖u‖3
L6(�)‖∇v‖2

L4(�) + C6

≤ C2
5K‖u‖3

L6(�) + C6.

(3.44)

Using the Gagliardo–Nirenberg inequality with the fact ‖u 3
2 ‖

L
4
3 (�)

= ‖u‖ 3
2
L2(�) ≤ C7, we can

show that

C2
5K‖u‖3

L6(�) = C2
5K

∥
∥u

3
2
∥
∥2

L4(�)

≤ C8
(∥
∥∇u

3
2
∥
∥

4
3
L2(�)

∥
∥u

3
2
∥
∥

2
3

L
4
3 (�)

+
∥
∥u

3
2
∥
∥2

L
4
3 (�)

)

≤ C9
∥
∥∇u

3
2
∥
∥

4
3
L2(�) + C9

≤ 4γ1

9

∫

�

∣
∣∇u

3
2
∣
∣
2

dx + C10.

(3.45)

On the other hand, using the Hölder and Young inequalities, one has

∫

�

u3 dx ≤ |�| α
3+α

(∫

�

u3+α dx
) 3

3+α ≤ μ

2

∫

�

u3+α dx + C11. (3.46)

Substituting (3.45) and (3.46) into (3.44) gives

1
3

d
dt

∫

�

u3 dx +
∫

�

u3 dx ≤ C12.
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By the ODE comparison principle, we have

∥
∥u(·, t)

∥
∥

L3(�) ≤ C13. (3.47)

Using the elliptic regularity (3.6) and Sobolev embedding theorem again, from (3.47) we
derive

‖∇v‖L∞(�) ≤ C14‖v‖W 2,3(�) ≤ C15
∥
∥ur∥∥

L3(�) ≤ C16‖u‖L3(�) + C17 ≤ C18.

This finishes the proof. �

Proof of Theorem 1.1 With the aid of Lemma 3.9 and a Moser-type iteration (cf. Lemma 3.6
in [9] or Lemma A.1 in [18]), we obtain that u is bounded in (0, Tmax). Thus, we can find a
positive constant C independent of t such that

∥
∥u(·, t)

∥
∥

L∞(�) +
∥
∥v(·, t)

∥
∥

W 1,∞(�) ≤ C for all t ∈ (0, Tmax), (3.48)

which, together with Lemma 2.1, shows that Tmax = ∞. Therefore, (u, v) is a global
bounded classical solution to the system (1.1) and the proof of Theorem 1.1 is com-
pleted. �

4 Large time behavior
In this section, we will study the large-time behavior of the solution for the system (1.5).
Let

K = max
0<v≤∞

|γ ′(v)|2
γ (v)

(4.1)

and

A(t) :=
∫

�

(u – 1 – ln u) dx. (4.2)

Then based on some ideas in [8, 19], we shall show that the constant steady state (1, 1) is
globally asymptotically stable by showing A(t) is a Lyapunov functional under the condi-
tions μ ≥ K

41+r .
We next introduce the following lemma, which is a useful tool in this section.

Lemma 4.1 ([2, Lemma 3.1]) Let f : (1,∞) → [0,∞) be uniformly continuous such that

∫ ∞

1
f (t) dt < ∞.

Then

f (t) → 0, as t → ∞. (4.3)

We construct an appropriate energy function to the system (1.5), which is prepared for
the proof of the large-time behavior.
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Lemma 4.2 Suppose (u, v) is the solution of (1.5) obtained in Lemma 2.1. Let K and A(t)
be defined by (4.1) and (4.2), respectively. Then we have the following results:

(1) A(t) ≥ 0 for any t > 0.
(2) If μ ≥ K

41+r , then there exists a positive constant δ such that for all t > 0,

d
dt

A(t) ≤ –F(t), (4.4)

where

F(t) := δ

∫

�

(u – 1)2 dx. (4.5)

Proof First, we will show the nonnegativity of A(t). In fact, letting ϕ(u) := u– 1 – ln u, u > 0,
noting that ϕ(1) = ϕ′(1) = 0, and applying Taylor’s formula to ϕ(u) at u = 1 gives

ϕ(u) :=
1
2
ϕ′′(ũ)(u – 1)2 =

1
2ũ2 (u – 1)2 ≥ 0,

where ũ is between 1 and u, which implies A(t) ≥ 0.
Taking the time derivative of (4.2), we get

d
dt

A(t) = –
∫

�

γ ′(v)
u

∇u · ∇v dx –
∫

�

γ (v)
u2

∣
∣∇u2∣∣dx – μ

∫

�

(u – 1)
(
uα – 1

)
dx. (4.6)

Using the Young inequality and assumptions (4.1), we have the following estimates:

–
∫

�

γ ′(v)
u

∇u · ∇v dx ≤
∫

�

γ (v)
u2 |∇u|2 dx +

1
4

∫

�

|γ ′(v)|2
γ (v)

|∇v|2 dx

≤
∫

�

γ (v)
u2 |∇u|2 dx +

K
4

∫

�

|∇v|2 dx.
(4.7)

Substituting into the above formula (4.6), when t > t0, t0 > 0, we have

d
dt

A(t) ≤ K
4

∫

�

|∇v|2 dx – μ

∫

�

(u – 1)
(
uα – 1

)
dx. (4.8)

Because u > 0 and α ≥ 1, through the calculation (u – 1)(uα – 1) ≥ (u – 1)2, we can get

d
dt

A(t) ≤ K
4

∫

�

|∇v|2 dx – μ

∫

�

(u – 1)2 dx. (4.9)

By simply treating the second equation of the model (1.5), we get

0 = �v – v + ur = �v – (v – 1) +
(
ur – 1

)
. (4.10)
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Multiplying both sides of the above equation (4.10) by (v – 1) and integrating at the same
time, using the Young inequality, we obtain

∫

�

|∇v|2 dx = –
∫

�

(v – 1)2 dx +
∫

�

(
ur – 1

)
(v – 1) dx

≤ –
∫

�

(v – 1)2 dx +
∫

�

(v – 1)2 dx +
1
4

∫

�

(
ur – 1

)2 dx

=
1
4

∫

�

(
ur – 1

)2 dx.

(4.11)

When α ≥ 1, one has 1+2α
2(1+α) ≤ r ≤ 1, and then the point (x̃, t̃) ∈ �× (0,∞) has the property

that u(x̃, t̃) ≤ 1
2 , so we can easily draw a conclusion

∣
∣ur – 1

∣
∣ ≤ |u – 1|r ≤ 21–r|u – 1|. (4.12)

As a point (x̃, t̃) ∈ � × (0,∞) satisfies u(x̃, t̃) > 1
2 , g̃(s) := sr , s ∈ ( 1

4 ,∞), according to the
mean value theorem, there exists θ ∈ (0, 1) such that

∣
∣ur – 1

∣
∣ =

∣
∣g̃(u) – g̃(1)

∣
∣ ≤ g̃ ′(u – uθ + θ )|u – 1|. (4.13)

Calculating the derivatives g̃ ′(s) = rsr–1 > 0, g̃ ′′(s) = r(r – 1)sr–2 < 0, we see that g̃ ′(s) de-
creases monotonically for s ∈ ( 1

4 ,∞). If u(x̃, t̃) > 1
2 and u – uθ + θ > 1

2 , then

∣
∣ur – 1

∣
∣ ≤ r(u – uθ + θ )r–1|u – 1|
≤ r21–r|u – 1|
≤ 21–r|u – 1|.

(4.14)

Collecting (4.12)–(4.14), we have
∫

�

(
ur – 1

)2 dx ≤ 41–r
∫

�

(u – 1)2 dx. (4.15)

Substituting (4.11) and (4.15) into (4.9), we have

d
dt

A(t) ≤ –
(

μ –
K

41+r

)∫

�

(u – 1)2 dx. (4.16)

When μ is appropriately large, we have μ ≥ K
41+r , μ – K

41+r = δ > 0, and we can substitute it
into the above equation (4.16) to get

d
dt

A(t) ≤ –δ

∫

�

(u – 1)2 dx. (4.17)

Therefore F(t) := δ
∫

�
(u – 1)2 dx, completing the proof. �

Lemma 4.3 Suppose that μ ≥ K
41+r and let (u, v) be the global classical solution of the system

(1.5). Then it follows that

∥
∥u(·, t) – 1

∥
∥

L∞(�) → 0, as t → ∞, (4.18)
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and

∥
∥v(·, t) – 1

∥
∥

L∞(�) → 0, as t → ∞. (4.19)

Proof From Lemma 4.2, for any δ, integrating inequality (4.17) from t0 > 0 to ∞, we can
get

∫ ∞

t0

∫

�

(u – 1)2 dx ≤ A(t0)
δ

< ∞. (4.20)

Due to the elliptic regularity [24] and the global boundedness of solutions, we conclude
that there exist σ ∈ (0, 1) and L1 > 0 such that

∥
∥u(·, t)

∥
∥

C2+σ ,1+ σ
2 (�×[t,t+1])

,
∥
∥v(·, t)

∥
∥

C2+σ ,1+ σ
2 (�×[t,t+1])

≤ L1 (4.21)

for all t > 0. So
∫

�
(v – 1)2 + (u – 1)2 dx is uniformly continuous. Since A(t) ≥ 0, combining

(4.20) and Lemma 4.1, we can get
∫

�
(u – 1)2 dx → 0, as t → ∞. From the second equation

of the chemotaxis model (1.5), using the Young inequality, we can obtain

∫

�

|∇v|2 dx = –
∫

�

(v – 1)2 dx +
∫

�

(
ur – 1

)
(v – 1) dx

≤ –
∫

�

(v – 1)2 dx +
1
2

∫

�

(v – 1)2 dx +
1
2

∫

�

(
ur – 1

)2 dx.
(4.22)

From this, it can be directly concluded that

∫

�

(v – 1)2 dx ≤
∫

�

(
ur – 1

)2 dx. (4.23)

From (4.15), the following formula can be obtained:

∫

�

(v – 1)2 dx ≤ 41–r
∫

�

(u – 1)2 dx → 0, as t → ∞. (4.24)

The following formula can be obtained from the Gagliardo–Nirenberg inequality and
(4.21):

‖ϕ‖L∞(�) ≤ CCN‖ϕ‖ 1
2
W 1,∞(�)‖ϕ‖ 1

2
L2(�), (4.25)

whenever ϕ ∈ W 1,∞(�) ∩ L2(�), in particular, if ϕ is taken to be u – 1 or v – 1, from (4.23)
to (4.25) we can get

‖u – 1‖L∞(�) → 0, ‖v – 1‖L∞(�) → 0, as t → ∞,

finishing the proof. �

Next, we shall show that the convergence rate is exponential.
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Lemma 4.4 Assume that μ ≥ K
41+r and (u, v) is the global classical solution of the system

(1.5). Then there exist two positive constants ε > 0, C > 0 such that for all t > T1 > 0,

‖u – 1‖L2(�) ≤ Ce–ε(t–T1), ‖v – 1‖L2(�) ≤ Ce–ε(t–T1). (4.26)

Proof By using L’Hôpital’s rule, we obtain

lim
u→1

u – 1 – ln u
(u – 1)2 = lim

u→1

1 – 1
u

2(u – 1)
=

1
2

,

thus,we can pick T1 > 0 such that

1
4

∫

�

(u – 1)2 dx ≤ A(t) ≤
∫

�

(u – 1)2 dx. (4.27)

According to (4.5) and (4.27), there exists ε > 0 such that

d
dt

A(t) ≤ –F(t) ≤ –εA(t), t > T1.

By the Grönwall inequality, we readily conclude that

A(t) ≤ A(T1)e–ε(t–T1), t > T1.

Therefore

∫

�

(u – 1)2 dx ≤ 4A(t) ≤ C1e–ε(t–T1), t > T1. (4.28)

Similarly, combining with (4.24), we can obtain

∫

�

(v – 1)2 dx ≤ C2e–ε(t–T1), t > T1, (4.29)

which finishes the proof of Lemma 4.4. �

Next, we shall show the boundedness of ‖∇u‖L4 to obtain the convergence rate with the
L∞(�)-norm. More precisely, we have the following result.

Lemma 4.5 There exists a constant C > 0 independent of t such that the solution (u, v) of
(1.5) satisfies

∥
∥∇u(·, t)

∥
∥

L4 ≤ C (4.30)

for all t ∈ (0, Tmax).
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Proof Using the first equation of (1.5), we obtain

1
4

d
dt

∫

�

|∇u|4 dx =
∫

�

|∇u|2∇u · ∇ut dx

=
∫

�

|∇u|2∇u · ∇(∇ · (γ (v)∇u
))

dx

+
∫

�

|∇u|2∇u · ∇(∇ · (γ ′(v)u∇v
))

dx

+ μ

∫

�

(
1 – uα – αuα

)|∇u|4 dx

=: J1 + J2 + J3.

(4.31)

Using the identity �|∇u|2 = 2∇u · ∇�u + 2|D2u|2, we can estimate the term J1 as follows:

J1 = –
∫

�

|∇u|2�u∇ · (γ (v)∇u
)

dx –
∫

�

∇|∇u|2 · ∇u∇ · (γ (v)∇u
)

dx

=
∫

�

γ (v)|∇u|2∇�u · ∇u dx –
∫

�

γ ′(v)∇|∇u|2 · ∇u∇u · ∇v dx

=
1
2

∫

�

γ (v)|∇u|2�|∇u|2 dx –
∫

�

γ (v)|∇u|2∣∣D2u
∣
∣2 dx

–
∫

�

γ ′(v)∇|∇u|2 · ∇u∇u · ∇v dx (4.32)

≤ 1
2

∫

∂�

γ (v)|∇u|2 ∂|∇u|2
∂ν

dS –
1
2

∫

�

γ (v)
∣
∣∇|∇u|2∣∣2 dx

–
∫

�

γ (v)|∇u|2∣∣D2u
∣
∣2 dx

+
3
2

∫

�

∣
∣γ ′(v)

∣
∣
∣
∣∇|∇u|2∣∣|∇u|2|∇v|dx.

Using the boundedness of ‖u‖L∞(�) and ‖v‖W 1,∞(�) obtained in Theorem 1.1, assumptions
(H), as well as the fact �v = v – ur , we have

∇ · (γ ′(v)u∇v
)

= γ ′′(v)u|∇v|2 + γ ′(v)∇u · ∇v + γ ′(v)u�v

= γ ′′(v)u|∇v|2 + γ ′(v)∇u∇v + γ ′(v)uv – γ ′(v)ur+1

≤ C1
(
1 + |∇u|),

(4.33)

which substituted into J2 gives

J2 = –
∫

�

∇|∇u|2 · ∇u∇ · (γ ′(v)u∇v
)

dx –
∫

�

|∇u|2�u∇ · (γ ′(v)u∇v
)

dx

≤ C1

∫

�

|∇u|∣∣∇|∇u|2∣∣(1 + |∇u|)dx + C1

∫

�

|∇u|2|�u|(1 + |∇u|)dx.
(4.34)

Moreover, the boundedness of ‖u‖L∞(�) directly gives

J3 ≤ C2

∫

�

|∇u|4 dx. (4.35)
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Substituting (4.32)–(4.35) into (4.31), and noting that 0 < γ1 ≤ γ (v) and |�u| ≤ √
2|D2u|,

we have

1
4

d
dt

∫

�

|∇u|4 dx +
γ1

2

∫

�

∣
∣∇|∇u|2∣∣2 dx + γ1

∫

�

|∇u|2∣∣D2u
∣
∣2 dx

≤ 1
2

∫

∂�

γ (v)|∇u|2 ∂|∇u|2
∂ν

dS +
3
2

∫

�

∣
∣γ ′(v)

∣
∣
∣
∣∇|∇u|2∣∣|∇u|2|∇v|dx

+ C1

∫

�

|∇u|∣∣∇|∇u|2∣∣(1 + |∇u|)dx

+ C1

∫

�

|∇u|2|�u|(1 + |∇u|)dx + C2

∫

�

|∇u|4 dx

≤ γ1

4

∫

�

∣
∣∇|∇u|2∣∣2 dx +

γ1

2

∫

�

|∇u|2∣∣D2u
∣
∣2 dx + C3

∫

�

|∇u|4 dx + C4,

(4.36)

which leads to

d
dt

∫

�

|∇u|4 dx + γ1

∫

�

∣
∣∇|∇u|2∣∣2 dx + 2γ1

∫

�

|∇u|2∣∣D2u
∣
∣2 dx

≤ 4C3

∫

�

|∇u|4 dx + 4C4.
(4.37)

On the other hand, using the boundedness of ‖u‖L∞(�) and the fact |�u| ≤ √
2|D2u| again,

we have
(

3
2

+ 4C3

)∫

�

|∇u|4 dx

=
(

3
2

+ 4C3

)∫

�

|∇u|2∇u · ∇u dx

= –
(

3
2

+ 4C3

)∫

�

u∇|∇u|2 · ∇u dx –
(

3
2

+ 4C3

)∫

�

u|∇u|2�u dx

≤ γ1

∫

�

∣
∣∇|∇u|2∣∣2 dx + 2γ1

∫

�

|∇u|2∣∣D2u
∣
∣2 dx +

1
2

∫

�

|∇u|4 dx + C6,

(4.38)

which substituted into (4.37) gives

d
dt

∫

�

|∇u|4 dx +
∫

�

|∇u|4 dx ≤ C7. (4.39)

Then applying the ODE comparison principle to (4.39) yields (4.30), and the proof is com-
pleted. �

Lemma 4.6 Suppose μ ≥ K
41+r . There exist constants ε > 0, C > 0 independent of t such that

the solution (u, v) of (1.5) satisfies

‖u – 1‖L∞(�) ≤ Ce– ε
6 (t–T1) (4.40)

and

‖v – 1‖L∞(�) ≤ Ce– ε
6 (t–T1). (4.41)
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Proof Using the Gagliardo–Nirenberg inequality, as well as (4.26) and (4.30), we have

‖u – 1‖L∞(�) ≤ C1‖∇u‖ 2
3
L4(�)‖u – 1‖ 1

3
L2(�) + C1‖u – 1‖L2(�)

≤ C2e– ε
6 (t–T1) + C2e–ε(t–T1)

≤ 2C2e– ε
6 (t–T1).

(4.42)

On the other hand, from the second equation of (1.5), we infer that ψ(x, t) := v(x, t) – 1
satisfies

⎧
⎨

⎩

–�ψ + ψ = ur – 1, x ∈ �, t > 0,
∂ψ

∂ν
= 0, x ∈ �, t > 0.

(4.43)

Then using the elliptic maximum principle, we obtain from (4.43) and (4.12), (4.14) that

‖v – 1‖L∞(�) = ‖ψ‖L∞(�) ≤ ∥
∥ur – 1

∥
∥

L∞(�) ≤ C3‖u – 1‖L∞(�) ≤ C4e– ε
6 (t–T1).

The proof is completed. �

Proof of Theorem 1.2 This is an immediate consequence of Lemmas 4.3 and 4.6. �
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