
Wang et al. Boundary Value Problems         (2023) 2023:79 
https://doi.org/10.1186/s13661-023-01767-6

R E S E A R C H Open Access

Dynamic of the nonclassical diffusion
equation with memory
Jing Wang1*, Qiaozhen Ma2, Wenxue Zhou1 and Xiaobin Yao3

*Correspondence:
wangjing@mail.lzjtu.cn
1School of Mathematics and
Physics, Lanzhou Jiaotong
University, Lanzhou, Gansu, China
Full list of author information is
available at the end of the article

Abstract
In this paper, we consider the nonclassical diffusion equation with memory and the
nonlinearity of the polynomial growth condition of arbitrary order in the
time-dependent space. First, the well-posedness of the solution for the equation is
obtained in the time-dependent space Ut . Then, we establish the existence and
regularity of the time-dependent global attractor. Finally, we also conclude that the
fractal dimension of the time-dependent attractor is finite.
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1 Introduction
In recent years, exploring the dynamic behavior of dissipative partial differential equa-
tions with time-dependent coefficients in the field of infinite-dimensional dynamical sys-
tems has attracted much attention. For this kind of problem, Plinio et al. [36] first put
forward the concept of the time-dependent global attractor in time-dependent space. Sub-
sequently, improved theoretical results and some applications have emerged widely, see
[12, 14, 16, 24, 25, 27–34, 37, 43, 50]. The main characteristic of this type of problem is
that the norm of space depends on time explicitly, which will lead to the fact that the con-
sidered problem is still nonautonomous even when the forcing term is independent of
time t.

In this paper, we are concerned with the following nonclassical diffusion equation with
memory

⎧
⎪⎪⎨

⎪⎪⎩

ut – ε(t)�ut – �u –
∫ ∞

0 κ(s)�u(t – s) ds + f (u) = g(x), x ∈ �, t ≥ τ ,

u|∂� = 0, t ≥ τ ,

u(x, t) = uτ (x), x ∈ �, t ≤ τ , τ ∈R

(1.1)

in time-dependent space, where � ⊂ R
N is a bounded smooth domain, u = u(x, t) : � ×

[τ ,∞) →R is an unknown function, uτ (x, r) : �× (–∞, τ ] is the initial value function that
characterizes the past time and g = g(x) ∈ H–1(�) is the external term. In addition, the
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time-dependent coefficient ε(t) ∈ C1(R) is a decreasing bounded function satisfying

lim
t→+∞ ε(t) = 0 (1.2)

and there is a constant L > 0 such that

sup
t∈R

(∣
∣ε(t)

∣
∣ +

∣
∣ε′(t)

∣
∣
) ≤ L. (1.3)

The nonlinearity f (s) ∈ C1(R) with f (0) = 0 satisfies the polynomial growth condition of
arbitrary order

γ1|s|p – β1 ≤ f (s)s ≤ γ2|s|p + β2, p ≥ 2, (1.4)

and the dissipation condition

f ′(s) ≥ –l, (1.5)

where γi, βi (i = 1, 2) and l are positive constants. Setting F(s) =
∫ s

0 f (y) dy, it follows from
(1.4) that there exist γ̃i, β̃i (i = 1, 2) such that

γ̃1|s|p – β̃1 ≤ F(s) ≤ γ̃2|s|p + β̃2. (1.6)

The memory kernel κ is a nonnegative summable function satisfying
∫ ∞

0 κ(s) ds = 1 and
having the following form

κ(s) =
∫ ∞

s
μ(r) dr, (1.7)

where μ ∈ L1(R+) is a decreasing piecewise absolutely continuous function and is allowed
to have infinitely many discontinuity points. We assume

κ(s) ≤ 	μ(s), ∀s ∈R
+,	 > 0. (1.8)

From [17], the above inequality (1.8) is equivalent to the following

μ(r + s) ≤ Me–δrμ(s), (1.9)

where M ≥ 1, δ > 0, r ≥ 0.
The nonclassical diffusion equation arising from several physical phenomena, a pseu-

doparabolic equation, was first proposed by Aifantis in [1]. Then, Jäckle [19] came up with
the diffusion equation with memory in the study of heat conduction and relaxation of
high-viscosity liquids. Gradually, the study of nonclassical diffusion equations with mem-
ory emerged in the time-dependent spaces.

The researches were first focused on the nonclassical diffusion equation with constant
coefficient. The kind of problem where the function ε(t) is a positive constant and the
case κ(s) = 0 or κ(s) �= 0 in equation (1.1) has been studied extensively, see, e.g., [2–7, 9–
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11, 20–22, 26, 39, 41, 42, 44–48] and the references therein. For the nonclassical diffusion
equation with memory (i.e., κ(s) �= 0 in (1.1)), the authors [46] first obtained the existence
and regularity of a uniform attractor in H1

0 (�) × L2
μ(R+, H1

0 (�)) (� ∈ R
N , N ≥ 3), when

the nonlinearity satisfies the critical exponential growth condition and the memory kernel
satisfies

μ′(s) + δμ(s) ≤ 0, δ, s ≥ 0,μ ∈ C1(
R

+) ∩ L1(
R

+)
. (1.10)

Since then, the condition (1.10) has been used for the nonclassical diffusion equation with
memory and constant coefficient. In 2014, Conti et al. [11] applied the memory kernel
condition (1.8) and proved the existence of global attractor in H1

0 (�)×L2
μ(R+, H1

0 (�)) (� ∈
R

3). Then, they also obtained the existence of the exponential attractor in [10]. In [2], the
authors obtained the existence of a global attractor for the nonclassical diffusion equation
with memory and a new class of nonlinearity. It is worth noting that (1.9) is weaker than
(1.10), which shows (1.8) is more general, see [10, 11] for details.

When the perturbed coefficient ε(t) is a decreasing function and satisfies (1.2) and (1.3),
there are some results for other equations, see [12, 24, 25, 27, 28, 30–32, 40]. For the non-
classical diffusion equation, the case κ(s) = 0 in equation (1.1) has been investigated by
some authors. When the forcing term g ∈ L2(�) (� ⊂R

3) and the nonlinearity f (u) satis-
fies |f ′(u)| ≤ C(1 + |u|), the authors [16] obtained the existence of a time-dependent global
attractor by using the decomposition technique. Using the same method, Ma et al. proved
the existence, regularity, and asymptotic structure of the time-dependent global attrac-
tor in [29], when the forcing term g ∈ H–1(�) (� ⊂ R

N , N ≥ 3) and the nonlinear term
f (u) satisfies the critical exponential growth condition. In [43, 50], in order to overcome
the difficulty caused by the nonlinearity with a polynomial growth condition of arbitrary
order, the authors applied the contractive function method and obtained the existence of
the time-dependent global attractor. However, we also proved the regularity and asymp-
totic structure of the time-dependent global attractor in [43]. However, we find that all
the articles mentioned above studied the nonclassical diffusion equations without mem-
ory. Recently, we submitted a new manuscript on the existence of the time-dependent
global attractor for the nonclassical diffusion equation with memory and the nonlinearity
of critical exponential growth. In summary, the researches of the nonclassical diffusion
equations are not abundant on time-dependent spaces.

Therefore, these discussions above motivate us to consider the dynamic behavior of
problem (1.1) in the time-dependent space in this paper. In contrast to the existing papers,
the nonlinear term satisfies the polynomial growth condition of arbitrary order and the
memory kernel condition is weaker in this paper, which is a highlight worth mentioning.

In order to obtain the corresponding results for problem (1.1), we follow the ideas from
[11, 43]. However, we also encountered some difficulties. First, a weaker memory kernel
condition (1.8) makes the directly obtained energy functional unavailable. Secondly, due
to the influence of the term –ε(t)�ut , the solution for the problem (1.1) does not have the
higher regularity. Finally, we can not apply the decomposition technique from [29, 36],
because of the particularity of the nonlinearity for a polynomial growth condition of arbi-
trary order. For these reasons, introducing a new function related to the memory kernel,
we construct a new energy functional and obtain the existence of the time-dependent ab-
sorbing sets. Then, we apply the contractive function method rather than the decomposi-
tion method to verify the asymptotic compactness. In addition, we apply a decomposition
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method from [43] and obtain the regularity of the time-dependent attractor, and we also
conclude that the fractal dimension of the time-dependent attractor is finite.

The paper is organized as follows. In Sect. 2, we introduce notations, function spaces
involved, some abstract results for the time-dependent global attractor, and some standard
conclusions. In Sect. 3, we will prove the well-posedness of the solution. Then, based on
the existence of the solution, we obtain the process generated by a weak solution. In Sect. 4,
we investigate the existence of the time-dependent global attractor in Ut . In Sect. 5, the
regularity of the time-dependent attractor is obtained in U 1

t . Finally, based on the previous
results in this paper, we find that the fractal dimension of the time-dependent attractor is
finite in Ut .

2 Preliminaries
As in [15], we introduce a variable that shows the past history of equation (1.1), that is

ηt(x, s) = η(x, t, s) =
∫ s

0
u(x, t – r) dr, s ≥ 0 (2.1)

and

ηt
t(x, s) = u(x, t) – ηt

s(x, s), s ≥ 0, (2.2)

where ηt = ∂η

∂t , ηs = ∂η

∂s .
Therefore, according to (1.7), (2.1), and (2.2), the problem (1.1) can be transformed into

the following system

⎧
⎨

⎩

ut – ε(t)�ut – �u –
∫ ∞

0 μ(s)�ηt(s) ds + f (u) = g(x),

ηt
t = –ηt

s + u,
(2.3)

with the corresponding initial conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) = 0, x ∈ ∂�, t ≥ τ ,

ηt(x, s) = 0, (x, s) ∈ ∂� ×R
+, t ≥ τ ,

u(x, τ ) = uτ (x), x ∈ �, τ ∈R,

η(x, τ , s) = ητ (x, s) =
∫ s

0 uτ (x, τ – r) dr, (x, s) ∈ � ×R
+, τ ∈R,

ηt(x, 0) = η(x, t, 0) = 0.

(2.4)

First, we give some spaces and the corresponding norms used in the remainder of the
paper. Usually, we set ‖ · ‖Lp(�) as the norm of Lp(�) (p ≥ 1). In particular, set 〈·, ·〉 and ‖ · ‖
as the scalar product and norm of H = L2(�), respectively. The Laplacian A = –� with
Dirichlet boundary conditions is a positive operator on H with domain H2(�) ∩ H1

0 (�).
Then, we consider the family of Hilbert spaces Hs = D(As/2), ∀s ∈ R, with the standard
inner products and norms, respectively,

〈·, ·〉s = 〈·, ·〉D(As/2) =
〈
As/2·, As/2·〉,‖ · ‖s =

∥
∥As/2·∥∥.

In particular, H–1 = H–1(�), H0 = H, H1 = H1
0 (�), H2 = H2(�) ∩ H1

0 (�).
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Hence, for any t ∈R, –1 ≤ s ≤ 1, we define the time-dependent spaces Hs
t with norms

‖u‖2
Hs

t
= ‖u‖2

s + ε(t)‖u‖2
s+1

and

Hs1
t ↪→↪→Hs2

t , ∀s2 < s1,

where the embedding constant is independent of t ∈R and the symbol s is always omitted
whenever zero. In particular,

‖u‖2
Ht = ‖u‖2 + ε(t)‖u‖2

1, ‖u‖2
H1

t
= ‖u‖2

1 + ε(t)‖u‖2
2.

According to the definition of the memory kernel, for any –1 ≤ s ≤ 1, we introduce the
Hilbert (history) spaces

Ms = L2
μ

(
R

+; Hs
)

=
{

ηt : R+ → Hs :
∫ ∞

0
μ(s)

∥
∥ηt(s)

∥
∥

s ds < ∞
}

,

with the corresponding inner products and norms

〈
ηt , ξ t〉

μ,s =
〈
ηt , ξ t〉

Ms =
∫ ∞

0
μ(s)

〈
ηt(s), ξ t(s)

〉

s ds,

∥
∥ηt∥∥2

μ,s =
∥
∥ηt∥∥2

Ms =
∫ ∞

0
μ(s)

∥
∥ηt(s)

∥
∥2

s ds.

We know that Ms1 ↪→Ms2 , ∀s1 > s2. Due to the lack of tightness in the memory space,
a new weighted space needs to be constructed. According to the literatures [13], let

Ls =
{
ηt ∈Ms : ηt

s ∈M, sup
y≥1

yTηt (y) < ∞
}

and

∥
∥ηt∥∥2

Ls =
∥
∥ηt∥∥2

Ms +
∥
∥ηt

s
∥
∥2
M + sup

y≥1
yTηt (y),

where Tηt is the tail function of ηt with the following form

Tηt (y) =
∫ 1/y

0
μ(s)

∥
∥A1/2ηt(s)

∥
∥2 ds +

∫ ∞

1/y
μ(s)

∥
∥A1/2ηt(s)

∥
∥2 ds, y ≥ 1.

Now, combining the above spaces, we give the following time-dependent space families

U s
t = Hs

t ×Ms+1,

Z s
t = Hs

t ×Ls+1,
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endowed with the inner products and norms, respectively,

‖z‖2
U s

t
=

∥
∥
(
u,ηt)∥∥2

U s
t

= ‖u‖2
s + ε(t)‖u‖2

s+1 +
∥
∥ηt∥∥2

μ,s+1,

‖z‖2
Z s

t
=

∥
∥
(
u,ηt)∥∥2

Z s
t

= ‖u‖2
s + ε(t)‖u‖2

s+1 +
∥
∥ηt∥∥2

Ls+1 .

In particular,

Ut = Ht ×M1, ‖z‖2
Ut = ‖u‖2 + ε(t)‖u‖2

1 +
∥
∥ηt∥∥2

μ,1,

U 1
t = H1

t ×M2, ‖z‖2
U 1

t
= ‖u‖2

1 + ε(t)‖u‖2
2 +

∥
∥ηt∥∥2

μ,2,

Z 1
t = H1

t ×L2, ‖z‖2
Z 1

t
= ‖u‖2

1 + ε(t)‖u‖2
2 +

∥
∥ηt∥∥2

L2 .

Note that the dual space of X is denoted as X∗. As a convenience, we choose C as the
positive constant depending on the subscript that may be different from line to line or in
the same line throughout the paper.

Secondly, we recall some notations, concepts, and abstract results, see, e.g., [14, 33, 36]
for more details. For every t ∈ R, let Xt be a family of normed spaces, we introduce the
R-ball of Xt

BXt (R) =
{

z ∈ Xt : ‖z‖2
Xt ≤ R

}
.

In addition, we denote the Hausdorff semidistance of two nonempty sets B, C ⊂ Xt by

distXt (B, C) = sup
x∈B

inf
y∈C

‖x – y‖Xt .

Definition 2.1 Let {Xt}t∈R be a family of normed spaces. A process is a two-parameter
family of mappings {U(t, τ ) : Xτ → Xt , t ≥ τ ∈R} with properties

(i) U(τ , τ ) = Id is the identity on Xτ , τ ∈R;
(ii) U(t, s)U(s, τ ) = U(t, τ ), ∀t ≥ s ≥ τ .

Definition 2.2 A family D = {Dt}t∈R of bounded sets Dt ⊂ Xt is called uniformly bounded
if there exist a constant R > 0 such that Dt ⊂ BXt (R), ∀t ∈R.

Definition 2.3 A time-dependent absorbing set for the process {U(t, τ )}t≥τ is a uniformly
bounded family B = {Bt}t∈R with the following property: for every R > 0 there exists a t0

such that

U(t, τ )BXτ (R) ⊂ Bt , for all τ ≤ t – t0.

Definition 2.4 We say that a process {U(t, τ )}t≥τ in a family of normed spaces {Xt}t∈R
is pullback asymptotically compact if and only if for any fixed t ∈ R, bounded sequence
{xn}∞n=1 ⊂ Xτn and any {τn}∞n=1 ⊂ R

–t with τn → –∞ as n → ∞, sequence {U(t, τn)xn}∞n=1

has a convergent subsequence, where R
–t = {τ : τ ∈R, τ ≤ t}.

Definition 2.5 The time-dependent global attractor for {U(t, τ )}t≥τ is the smallest family
A = {At}t∈R such that
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(i) each At is compact in Xt ;
(ii) A is pullback attracting, i.e., it is uniformly bounded and the limit

lim
τ→–∞ distXt

(
U(t, τ )Dτ , At

)
= 0

holds for every uniformly bounded family D = {Dt}t∈R and every fixed t ∈R.

Definition 2.6 We say A = {At}t∈R is invariant if

U(t, τ )Aτ = At , ∀t ≥ τ .

Definition 2.7 Let {Xt}t∈R be a family of Banach spaces and C = {Ct}t∈R be a family of
uniformly bounded subsets of {Xt}t∈R. We call a function ψ t

τ (·, ·), defined on Xt × Xt , a
contractive function on Cτ × Cτ if for any fixed t ∈ R and any sequence {xn}∞n=1 ⊂ Cτ ,
there is a subsequence {xnk }∞n=1 ⊂ {xn}∞n=1 such that

lim
k→∞

lim
l→∞

ψ t
τ (xnk , xnl ) = 0.

Theorem 2.8 Let {U(t, τ )}t≥τ be a process {Xt}t∈R and has a pullback absorbing family
B = {Bt}t∈R. Moreover, assume that for any ε > 0 there exists T = T(ε) ≤ t, ψ t

T ∈ C(BT )
such that

∥
∥U(t, T)x – U(t, T)y

∥
∥

Xt
≤ ε + ψ t

T (x, y), ∀x, y ∈ BT ,

for any fixed t ∈R. Then {U(t, τ )}t≥τ is pullback asymptotically compact.

Theorem 2.9 Let {U(t, τ )}t≥τ be a process in a family of Banach spaces {Xt}t∈R.
Then, U(·, ·) has a time-dependent global attractor A = {At}t∈R satisfying At =
⋂

s≤t
⋃

τ≤s U(t, τ )Bτ if and only if
(i) {U(t, τ )}t≥τ has a pullback absorbing family B = {Bt}t∈R;

(ii) {U(t, τ )}t≥τ is pullback asymptotically compact.

For the sake of estimation, we next recall some standard conclusions, see [18, 23, 35].

Lemma 2.10 Assume that the memory function κ satisfies (1.7) and (1.8), then for any
T > τ , ηt ∈ C([τ , T], L2

μ(R+; H1)) such that

–
〈
ηt

s ,η
t〉

μ,1 = –
1
2

∫ ∞

0
μ(s)

d
ds

∥
∥∇ηt(s)

∥
∥2 ds

=
[

–
1
2
μ(s)

∥
∥∇ηt(s)

∥
∥2

]∞

0
+

1
2

∫ ∞

0
μ′(s)

∥
∥∇ηt(s)

∥
∥2 ds

≤ 0.

Lemma 2.11 If K ⊂M satisfies
(i) supηt∈K ‖ηt‖M1 < ∞;

(ii) supηt∈K ‖ηt
s‖M < ∞;
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(iii) limy→∞[supηt∈K Tηt (y)] = 0,
then K is relatively compact in M.

Lemma 2.12 (Aubin–Lions Lemma). Assume that X, B, and Y are three Banach spaces
with X ↪→↪→ B and B ↪→ Y . Let fn be bounded in Lp([0, T], B) (1 ≤ p < ∞). If fn satisfies

(i) fn is bounded in Lp([0, T], X);
(ii) ∂fn

∂t is bounded in Lp([0, T], Y ),
then fn is relatively compact in Lp([0, T], B).

3 Well-posedness
Now, we give the definition of a weak solution and prove the well-posedness of the weak
solution for the problem (2.3) and (2.4) by using the Faedo–Galerkin method from [8, 23,
38].

Definition 3.1 The function z = (u,ηt) = (u(x, t),ηt(x, s)) defined in � × [τ , T] is said to
be a weak solution for the problem (2.3) and (2.4) with the initial data zτ ∈ BUτ (R0) ⊂ Uτ ,
–∞ < τ < T < +∞ if z satisfies

(i) z ∈ C([τ , T],Ut), (x, t) ∈ � × [τ , T];
(ii) for any θ = (v, ξ t) ∈ Ut , the equality

〈ut , v〉 + ε(t)〈∇ut ,∇v〉 + 〈∇u,∇v〉 +
〈
ηt , v

〉

μ,1 +
〈
f (u), v

〉
= 〈g, v〉

and

〈
ηt

t , ξ
t〉

μ,1 = –
〈
ηt

s , ξ
t〉

μ,1 +
〈
u, ξ t〉

μ,1

hold for a.e. [τ , T].

Theorem 3.2 Assume that (1.2)–(1.8) hold and g ∈ H–1(�), then for any initial data zτ =
(uτ ,ητ ) ∈ BUτ (R0) ⊂ Uτ and any τ ∈ R, there exists a unique solution z for the problem
(2.3) and (2.4) such that z = (u,ηt) ∈ C([τ , T],Ut) for any fixed T > τ . Furthermore, the
solution depends on the initial data continuously in Ut .

Proof Assume that ωk is the eigenfunction of A = –� with a Dirichlet boundary value in
H1, then {ωk}∞k=1 is a standard orthogonal basis of H and is also an orthogonal basis in H1.
The corresponding eigenvalues are denoted by 0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj → ∞ with
Aωk = λkωk , ∀k ∈N. Next, we will complete our proof.

♥ Faedo–Galerkin scheme. If we give an integer m, we denote by Pm the projec-
tion on the subspace span{ω1, . . . ,ωm} in H1

0 (�), and Qm the projection on the subspace
span{e1, . . . , em} ⊂ L2

μ(R+, H1) in L2
μ(R+, H1). For every fixed m, we look for the function

um(t) = Pmu =
∑m

k=1 ak
m(t)ωk and ηt,m(s) = Qmηt =

∑m
k=1 bk

m(t)ek(s), where ak
m(t) and bk

m(t)
satisfy

⎧
⎪⎪⎨

⎪⎪⎩

〈um
t ,ωk〉 + 〈ε(t)Aum

t ,ωk〉 + 〈Aum,ωk〉 + 〈ηt,m,ωk〉μ,1 = 〈g,ωk〉 – 〈f (um),ωk〉,
〈ηt,m

t , ek〉μ,1 = –〈ηt,m
s , ek〉μ,1 + 〈um, ek〉μ,1,

ak
m(τ ) = 〈uτ ,ωk〉, bk

m(τ ) = 〈ητ , ek〉μ,1.

(3.1)
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On account of the standard existence theory for ordinary differential equations, there
exists a continuous solution of the problem (2.3) and (2.4) on an interval [τ , T]. Then, we
will prove the convergence of zm(t) = (um,ηt,m).

♥ Energy estimates. Multiplying the first and the second equation of (3.1) by ak
m and bk

m,
respectively, and summing from 1 to m about k, we have

d
dt

(∥
∥um∥

∥2 + ε(t)
∥
∥um∥

∥2
1 +

∥
∥ηt,m∥

∥2
μ,1

)
+

(
2 – ε′(t)

)∥
∥um∥

∥2
1

= –2
〈
ηt,m,ηt,m

s
〉

μ,1 – 2
〈
f
(
um)

, um〉
+ 2

〈
g, um〉

.
(3.2)

By (1.4), Hölder’s inequality, and Young’s inequality, we obtain

〈
f
(
um)

, um〉 ≥ γ1

∫

�

∣
∣um∣

∣p dx – β1|�|, (3.3)

〈
g, um〉 ≤ ‖g‖2

–1 +
1
4
∥
∥um∥

∥2
1. (3.4)

According to Lemma 2.10 and (3.2)–(3.4), we have

d
dt

(∥
∥um∥

∥2 + ε(t)
∥
∥um∥

∥2
1 +

∥
∥ηt∥∥2

μ,1

)
+

(
1 – ε′(t)

)∥
∥um∥

∥2
1

+
1
2
∥
∥um∥

∥2
1 + 2γ1

∫

�

∣
∣um∣

∣p dx

≤ 2‖g‖2
–1 + 2β1|�|.

(3.5)

Applying the decreasing property of ε(t) and integrating from τ to t at the sides of (3.5)
we obtain

∥
∥zm∥

∥2
Ut

+
1
2

∫ t

τ

∥
∥um(s)

∥
∥2

1 ds + 2γ1

∫ t

τ

∫

�

∣
∣um(s)

∣
∣p dx ds ≤ R, (3.6)

where

R =
∥
∥zm

τ

∥
∥2

Uτ
+ (t – τ )

(
2‖g‖2

–1 + 2β1|�|).

Thereby, we infer from (3.6) that

{
um}∞

m is bounded in L∞(
[τ , T],Ht

)
) ∩ L2([τ , T], H1

) ∩ L2([τ , T], Lp(�)
)
, (3.7)

{
ηt,m}∞

m is bounded in L∞(
[τ , T], L2

μ

(
R

+, H1
))

, (3.8)

for any fixed T > t. It follows from (1.4) that

∫ t

τ

∫

�

∣
∣f

(
um)∣

∣q dx dt ≤Cq,γ2

∫ t

τ

∥
∥um(s)

∥
∥p

Lp(�) ds + Cq,β2,|�|,t–τ , (3.9)

where 1
p + 1

q = 1. Hence, we infer from (3.9) that

{
f
(
um)}∞

m=1 is bounded in Lq([τ , T], Lq(�)
)
. (3.10)
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Next, we verify the uniform estimate for um
t . Multiplying the first equation of (3.1) by

∂tak
m and summing from 1 to m yields

d
dt

E(t) +
〈
ηt,m, um

t
〉

μ,1 +
∥
∥um

t
∥
∥2 + ε(t)

∥
∥um

t
∥
∥2

1 = 0, (3.11)

where

E(t) =
1
2
∥
∥um∥

∥2
1 +

〈
F
(
um)

, 1
〉
–

〈
g, um〉

.

Applying (1.6) arrives at

〈F(
um)

, 1) ≥ γ̃1

∫

�

∣
∣um∣

∣p dx – β̃1|�|, (3.12)

〈F(
um)

, 1) ≤ γ̃2

∫

�

∣
∣um∣

∣p dx + β̃2|�|. (3.13)

Hence, combining with Poincaré’s inequality, (3.4), (3.12), and (3.13), we obtain

E(t) ≥ 1
4
∥
∥um∥

∥2
1 + γ̃1

∫

�

∣
∣um∣

∣p dx – β̃1|�| – ‖g‖2
–1, (3.14)

E(t) ≤ Cγ̃2

(∥
∥um∥

∥2
1 +

∥
∥um∥

∥p
Lp(�)

)
+ β̃2|�| + ‖g‖2

–1. (3.15)

In addition,

∣
∣
〈
ηt,m, um

t
〉

μ,1

∣
∣ ≤ κ(0)

2ε(t)
∥
∥ηt,m∥

∥2
μ,1 +

ε(t)
2

∥
∥um

t
∥
∥2

1. (3.16)

Then, it follows from (3.6), (3.11), and (3.16) that

d
dt

E(t) +
1
2
∥
∥um

t
∥
∥2 +

ε(t)
2

∥
∥um

t
∥
∥2

1 ≤ Rκ(0)
2ε(t)

≤ Rκ(0)
2ε(T)

, (3.17)

for t ∈ [τ , T]. Integrating from s to t at the sides of (3.17), for any s ∈ (τ , T], we obtain

E(t) ≤ E(s) +
Rκ(0)
2ε(T)

(t – s). (3.18)

Then, integrating from τ to T about variable s for (3.18), we have

E(t) ≤ 1
T – τ

∫ T

τ

E(r) dr +
Rκ(0)
2ε(T)

(T – τ ). (3.19)

From (3.6), (3.14), (3.15), and (3.19), then there exists ρ1 > 0 such that

∥
∥um∥

∥2
1 +

∥
∥um∥

∥p
Lp(�) ≤ ρ1, (3.20)

where

ρ1 = Cγ̃1

(

Cγ̃2,γ1,(T–τ )R + (β̃1 + β̃2)|�| + 2‖g‖2
–1 +

Rκ(0)
2ε(T)

(T – τ )
)

.
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Combining with (3.14), (3.15), and (3.20) as well as integrating from τ to t at the side of
(3.17), we obtain

∫ t

τ

(∥
∥um

t (r)
∥
∥2 + ε(r)

∥
∥um

t (r)
∥
∥2

1

)
dr ≤ 2E(τ ) + 2β̃1|�| + 2‖g‖2

–1 +
Rκ(0)
ε(T)

≤ ρ2, (3.21)

where

ρ2 = Cγ̃2ρ1 + 2(β̃1 + β̃2)|�| + 4‖g‖2
–1 +

Rκ(0)
ε(T)

.

Hence, we infer from (3.21) that

{
um

t
}∞

m=1 is bounded in L2([τ , T],Ht
)
. (3.22)

♥ Existence of solution. It follows from (3.7), (3.8), (3.10), and (3.22) that there ex-
ist u ∈ L∞([τ , T],Ht) ∩ L2([τ , T], H1) ∩ L2([τ , T], Lp(�)), ηt ∈ L∞([τ , T], L2

μ(R+, H1)),
χ ∈ Lq([τ , T], Lq(�)), ut ∈ L2([τ , T],Ht) and a subsequence of {um}∞m=1 (still denoted as
{um}∞m=1) such that

um → u weak-star in L∞(
[τ , T],Ht

)
), (3.23)

um → u weakly in L2([τ , T], H1
)
, (3.24)

um → u weakly in Lp([τ , T], Lp(�)
)
, (3.25)

ηt,m → ηt weak-star in L∞(
[τ , T],M1), (3.26)

f
(
um) → χ weakly in Lq([τ , t], Lq(�)

)
, (3.27)

um
t → ut weakly in L2([τ , T],Ht

)
. (3.28)

We find from (3.6), (3.21), and Lemma 2.12 that there is a subsequence of {um}∞m=1 (still
denoted as {um}∞m=1) such that

um → u in L2([τ , T], L2(�)
)
,

which shows that

um → u, a.e. in � × [τ , T]. (3.29)

Due to (3.29) and the continuity of f , we have

f
(
um) → f (u), a.e. in � × [τ , T],

which combines with the term-by-term of the integral theorem of Lebesgue and the
uniqueness of limit, we verify χ = f (u).

Moreover, we can obtain that z ∈ C([τ , T],Ut), the conclusion (ii) in Definition 3.1 and
z(τ ) = zτ hold. The proof of these conclusions is similar to Theorem 3.2 from [43] and also
trivial, hence, we will omit it.
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♥ Uniqueness and continuity of solution. Assume that (ui,ηt,i) (i = 1, 2) are two solutions
of the problem (2.3) and (2.4) with the initial data (ui

τ ,ητ ,i), respectively. For convenience,
define ū = u1 – u2, η̄t = ηt,1 – ηt,2, then (ū, η̄t) satisfies the following problem

⎧
⎪⎪⎨

⎪⎪⎩

ūt – ε(t)�ūt – �ū –
∫ ∞

0 μ(s)�η̄t(s) ds + f (u1) – f (u2) = 0,

η̄t
t = –η̄t

s + ū,

ū(x, τ ) = ūτ , η̄τ (x, s) = η̄τ .

(3.30)

Multiplying the first equation (3.30) by ū and integrating on �, we obtain

d
dt

(‖ū‖2 + ε(t)‖ū‖2
1 +

∥
∥η̄t∥∥2

μ,1

)
+

(
2 – ε′(t)

)‖ū‖2
1 = –2

〈
η̄t , η̄t

s
〉
– 2

〈
f
(
u1) – f

(
u2), ū

〉
.

In view of (1.2), (1.3), (1.5), and Lemma 2.10, then

d
dt

(‖ū‖2 + ε(t)‖ū‖2
1 +

∥
∥η̄t∥∥2

μ,1

) ≤ 2l‖ū‖2 ≤ 2l
(‖ū‖2 + ε(t)‖ū‖2

1 +
∥
∥η̄t∥∥2

μ,1

)
.

Then, by the Gronwall lemma, we obtain

∥
∥
(
ū, η̄t)∥∥2

Ut
≤ e2l(t–τ )∥∥

(
ūτ , η̄τ

)∥
∥2

Uτ
,

which shows the uniqueness and continuous dependence of the solution on the initial
value. �

According to Theorem 3.2, we can define a continuous process {U(t, τ )}t≥τ generated
by the solution of the problem (2.3) and (2.4), where the mapping

U(t, τ ) : Uτ → Ut , t ≥ τ ∈R

and U(t, τ )zτ = z(t), zτ ∈ Uτ .

4 The time-dependent global attractor
In this subsection, we first consider a time-dependent absorbing family for the solution
process to prove the existence of the time-dependent global attractor.

Theorem 4.1 Assume that (1.2)–(1.4), (1.6)–(1.8), g ∈ H–1(�) hold and zτ = (uτ ,ητ ) ∈
BUτ (R0) ⊂ Uτ , then there exists R1 > 0 such that B = {Bt}t∈R = {BUt (R1)}t∈R is a time-
dependent absorbing set in Ut for the process {U(t, τ )}t≥τ corresponding to the problem
(2.3) and (2.4).

Proof Multiplying (2.3) by z and repeating the estimates of Theorem 3.2, we can obtain

d
dt

E1(t) +
(
1 – ε′(t)

)‖u‖2
1 + 2γ1

∫

�

|u|p dx +
1
2
‖u‖2

1 ≤ 2‖g‖2
–1 + 2β1|�|, (4.1)

where

E1(t) = ‖u‖2 + ε(t)‖u‖2
1 +

∥
∥ηt∥∥2

μ,1.
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According to (1.2), (1.3), (4.1), and Poincaré’s inequality, we have

d
dt

E1(t) +
ε(t)

L
‖u‖2

1 +
1
4
‖u‖2

1 +
λ1

4
‖u‖2 ≤ 2‖g‖2

–1 + 2β1|�|. (4.2)

To reconstruct E1(t), we assume a new function

�1(t) =
∫ ∞

0
κ(s)

∥
∥ηt(s)

∥
∥2

1 ds. (4.3)

We find from (1.8) that

�1(t) ≤ 	
∥
∥ηt∥∥2

μ,1 ≤ 	E1(t). (4.4)

In addition, taking the derivative with respect to t at the side of (4.3) and combining with
(1.7) and (1.8), we obtain

d
dt

�1(t) = –
∥
∥ηt∥∥2

μ,1 + 2
∫ ∞

0
κ(s)

〈∇ηt(s),∇u(s)
〉
ds

≤ –
1
2
∥
∥ηt∥∥2

μ,1 + 2	2κ(0)‖u‖2
1.

(4.5)

Therefore, for fixed ν > 0, we definite the function

�1(t) = E1(t) +
ν

8	2κ(0)
�1(t). (4.6)

It follows from (4.2), (4.5), and (4.6) that

d
dt

�1(t) +
ε(t)

L
‖u‖2

1 +
λ1

4
‖u‖2 +

ν

16	2κ(0)
∥
∥ηt∥∥2

μ,1 +
1
4

(1 – ν)‖u‖2
1 ≤ 2‖g‖2

–1 + 2β1|�|.

Let σ1 = min{ 1
2L , λ1

8 , ν

32	2κ(0) } > 0, then

d
dt

�1(t) + 2σ1E1(t) ≤ 2‖g‖2
–1 + 2β1|�|, (4.7)

for small enough ν . By (4.6), we also yield

E1(t) ≤ �1(t) ≤ 2E1(t). (4.8)

It follows from (4.7) and (4.8) that

d
dt

�1(t) + σ1�1(t) ≤ 2‖g‖2
–1 + 2β1|�|. (4.9)

By the Gronwall lemma, we obtain

�1(t) ≤ e–σ1(t–τ )�1(τ ) +
2
σ1

(‖g‖2
–1 + β1|�|). (4.10)
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Hence, from (4.8) and (4.10), we conclude that

E1(t) ≤ 2e–σ1(t–τ )E1(τ ) +
2
σ1

(‖g‖2
–1 + β1|�|),

that is,

‖u‖2 + ε(t)‖u‖2
1 +

∥
∥ηt∥∥2

μ,1 ≤ R1

for any t ≥ t∗ = τ + 1
σ1

ln 4E1(τ )
R1

, where R1 = 4
σ1

(‖g‖2
–1 + β1|�|).

Therefore, Bt = {z = (u,ηt) ∈ Ut : ‖z(t)‖2
Ut

≤ R1} is a time-dependent absorbing set in Ut

for the solution process {U(t, τ )}t≥τ . �

We next verify the pullback asymptotically compact for the process {U(t, τ )}t≥τ corre-
sponding to the problem (2.3) and (2.4).

Theorem 4.2 Assume that (1.2), (1.3), (1.4), and (1.8) hold, then the process {U(t, τ )}t≥τ

of the problem (2.3) and (2.4) is pullback asymptotically compact in Ut .

Proof Assume that zn = (un,ηt,n), zm = (um,ηt,m) are two solutions of the problem (2.3) and
(2.4) with initial data zn

τ , zm
τ ∈ BUτ (R0), respectively. Without loss of generality, we assume

τ ≤ T1 < t for every fixed T1. As a convenience, let w(t) = un(t) – um(t), ζ t = ηt,n –ηt,m, then
(w(t), ζ t) satisfies the following system

⎧
⎪⎪⎨

⎪⎪⎩

wt – ε(t)�wt – �w –
∫ ∞

0 μ(s)�ζ t(s) ds + f (un) – f (um) = 0,

ζ t
t = –ζ t

s + w, t ≥ τ ,

w(x, T1) = wT1 = un
T1

– um
T1

, ζ T1 = ηT1,n – ηT1,m.

(4.11)

Taking w as a test function for the first equation of (4.11), we can obtain

d
dt

E2(t) +
(
1 – ε′(t)

)‖w‖2
1 + ‖w‖2

1 ≤ 2l‖w‖2, (4.12)

where

E2(t) = ‖w‖2 + ε(t)‖w‖2
1 +

∥
∥ζ t∥∥2

μ,1.

Combining with (1.2), (1.3), and Poincaré’s inequality, we have

d
dt

E2(t) +
ε(t)

L
‖w‖2

1 +
λ1

2
‖w‖2 +

1
2
‖w‖2

1 ≤ 2l‖w‖2. (4.13)

Let

�2(t) =
∫ ∞

0
κ(s)

∥
∥ζ t(s)

∥
∥2

1 ds,

�2(t) = E2(t) +
ν

4	2κ(0)
�2(t),
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then applying the similar arguments used in the proof of Theorem 4.1, we find that

d
dt

�2(t) + 2σ2E2(t) ≤ 2l‖w‖2, (4.14)

E2(t) ≤ �2(t) ≤ 2E2(t), (4.15)

where 0 < σ2 = min{ 1
2L , λ1

4 , ν

16	2κ(0) }, ν > 0 is small enough. It follows from (4.14) and (4.15)
that

d
dt

�2(t) + σ2�2(t) ≤ 2l‖w‖2. (4.16)

By the Gronwall lemma, we obtain

�2(t) ≤ e–(t–T1)�2(T1) + 2l
∫ t

T1

∥
∥w(r)

∥
∥2 dr. (4.17)

Hence, for any ε > 0 and some given t, set t > T1 ≥ τ such that t – T1 is enough large, we
can conclude from (4.15) and (4.17) that

E2(t) ≤ 2e–(t–T1)E2(T1) + ψ t
T1

(
un

T1 , um
T1

)

≤ ε + ψ t
T1

(
un

T1 , um
T1

)
,

(4.18)

where

ψ t
T1

(
un

T1 , um
T1

)
= 2l

∫ t

T1

∥
∥un(r) – um(r)

∥
∥2 dr.

Now, assume that zk = (uk ,ηt,k) is a solution of the problem (2.3) and (2.4) with ini-
tial data zk

τ ∈ BUτ (R0), then we find that uk
t ∈ L2([T1, t],Ht) and uk ∈ L2([T1, t], H1

0 (�)) for
some given t by applying the same arguments of Theorem 3.2. Thereby, we infer from
Lemma 2.12 that there exists a convergent subsequence of uk (denoted as uki ) such that

lim
i→∞ lim

j→∞ψ t
T1

(
un

T1 , um
T1

)
= 2l lim

i→∞ lim
j→∞

∫ t

T1

∥
∥uki (r) – ukj (r)

∥
∥2 dr = 0, (4.19)

which implies that ψ t
T1

∈ C(BT1 ). We conclude from (4.18), (4.19), and Theorem 2.8 that

∥
∥U(t, T1)un

T1 – U(t, T1)um
T1

∥
∥ ≤ ε + ψ t

T1

(
um

T1 , um
T1

)
.

This shows that the process {U(t, τ )}t≥τ is pullback asymptotic compact in Ut . �

Theorem 4.3 The process {U(t, τ )}t≥τ generated by the problem (2.3) and (2.4) has an
invariant time-dependent global attractor A = {At}t∈R in Ut .

Proof Combining with Theorem 4.1 and Theorem 4.2, we obtain easily the existence of the
invariant time-dependent global attractor A = {At}t∈R for the problem (2.3) and (2.4). �
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5 Regularity of the attractor
In this subsection, based on the ideas from [49], we obtain the uniform boundedness (i.e.,
regularity) of the attractor. Now, we resolve the solution U(t, τ )zτ = z(t) = (u(t),ηt) with
zτ ∈ Aτ into the sum

U(t, τ )zτ = U0(t, τ )zτ + U1(t, τ )zτ ,

where U0(t, τ )zτ = (v(t), ξ t), U1(t, τ )zτ = (y(t), ζ t) solve the following system, respectively,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt – ε(t)�vt – �v –
∫ ∞

0 μ(s)�ξ t(s) ds = g – g0, x ∈ �,

ξ t
t = –ξ t

s + v

v(x, t)|∂� = 0, v(x, τ ) = vτ (x), t ≥ τ , τ ∈R,

ξ t(x, s)|∂� = 0, ξ τ (x, s) =
∫ s

0 u(x, τ – r) dr, s ∈R
+

(5.1)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yt – ε(t)�yt – �y –
∫ ∞

0 μ(s)�ζ t(s) ds + f (u) = g0, x ∈ �,

ζ t
t = –ζ t

s + y

y(x, t)|∂� = 0, y(x, τ ) = 0, t ≥ τ , τ ∈R

ζ t(x, s)|∂� = 0, ζ τ (x, s) = 0, s ∈R
+.

(5.2)

Note that for every g ∈ H–1(�) and any ϑ > 0, there exists a g0 ∈ L2(�) such that

∥
∥g – g0∥∥

–1 < ϑ , (5.3)

as L2(�) ↪→ H–1(�) is dense.

Lemma 5.1 Assume that (1.2)–(1.8) hold and g ∈ H–1(�), then

∥
∥U0(t, τ )zτ

∥
∥2

Ut
≤ 2e–σ1(t–τ )‖zτ‖2

Ut +
2ϑ2

σ1
, (5.4)

where σ1 is given in Theorem 4.1.

Proof Similar to the proof of Theorem 4.1, we find easily that (5.4) holds. Therefore, the
proof is omitted. �

Lemma 5.2 Assume that (1.2)–(1.8) hold and g0 ∈ L2(�), then there exists R2 > 0 such that

sup
t≥τ

∥
∥U1(t, τ )zτ

∥
∥2

U 1
t

≤ R2.

Proof Taking the inner product of –�y with the first equation of (5.2) in L2(�), we obtain

d
dt

(‖y‖2
1 + ε(t)‖y‖2

2 +
∥
∥ζ t∥∥2

μ,2

)
+

(
2 – ε′(t)

)‖y‖2
2

= –2
〈
ζ t , ζ t

s
〉

μ,2 + 2
〈
f (u),�y

〉
+ 2

〈
g0, –�y

〉
.

(5.5)
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From (1.5) and Young’s inequality, then

〈
f (u),�y

〉
=

〈
f (u) – f (0),�y

〉 ≤ 2l2‖u‖2 +
1
8
‖y‖2

2, (5.6)

∣
∣
〈
g0, –�y

〉∣
∣ ≤ 2

∥
∥g0∥∥2 +

1
8
‖y‖2

2. (5.7)

Similar to Lemma 2.10, we also obtain

–
〈
ζ t , ζ t

s
〉

μ,2 ≤ 0. (5.8)

By (1.2), (1.3), and (5.5)–(5.8), we have

d
dt

(‖y‖2
1 + ε(t)‖y‖2

2 +
∥
∥ζ t∥∥2

μ,2

)
+

ε(t)
L

‖y‖2
2 +

λ1

4
‖y‖2

1 +
1
4
‖y‖2

2 ≤ 4l2‖u‖2 + 4
∥
∥g0∥∥2.

Set

�1(t) =
∫ ∞

0
κ(s)

∥
∥ζ t(s)

∥
∥2

μ,2 ds,

then it is easy to obtain that

‖y‖2
1 + ε(t)‖y‖2

2 +
∥
∥ζ t∥∥2

μ,2 ≤ 4
σ1

(
l2R1 +

∥
∥g0∥∥2),

by using the same discussion of Theorem 4.1. Further, we have

sup
t≥τ

∥
∥U1(t, τ )zτ

∥
∥2

U 1
t

≤ R2,

where σ1 is given in Theorem 4.1,

R2 =
4
σ1

(
l2R1 +

∥
∥g0∥∥2). �

Theorem 5.3 Assume that (1.2)–(1.8) hold and g ∈ H–1(�), then {At}t∈R is bounded in
U 1

t .

Proof Thanks to Lemma 5.1 and Lemma 5.2, then for any t ∈R, we have

distUt

(
At ,BU 1

t
(R2)

)
= distUt

(
U(t, τ )Aτ ,BU 1

t
(R2)

) ≤ Ce–σ3(t–τ ) → 0, τ → –∞,

where σ3 > 0,

BU 1
t

(R2) =
{

z(t) ∈ U 1
t :

∥
∥z(t)

∥
∥2

U 1
t

≤ R2
}

.

Thereby, the above conclusion holds. �



Wang et al. Boundary Value Problems         (2023) 2023:79 Page 18 of 22

6 Fractal dimension of the attractor
In what follows, in order to study the attractor further, we discuss the fractal dimension
of the time-dependent global attractor by Lemma 6.1 of [36].

We decompose the solution U(t, τ )zτ = z(t) = (u,ηt) with initial value zτ = (uτ ,ητ ) ∈ Uτ

into the sum

U(t, τ )zτ = D(t, τ )zτ + K(t, τ )zτ ,

then the corresponding solutions are U(t, τ )zi
τ = zi(t) for any initial value zi

τ ∈ Uτ (i = 1, 2),
respectively. Now, we split the solution z1 – z2 with initial value z1

τ – z2
τ into the following

form

U(t, τ )z1
τ – U(t, τ )z2

τ = D(t, τ )z1
τ – D(t, τ )z2

τ + K(t, τ )z1
τ – K(t, τ )z2

τ ,

where (ṽ, ζ̃ t) = D(t, τ )z1
τ – D(t, τ )z2

τ and (w̃, ξ̃ t) = K(t, τ )z1
τ – K(t, τ )z2

τ are the solutions of
the following problem, respectively,

⎧
⎪⎪⎨

⎪⎪⎩

ṽt – ε(t)�ṽt – �ṽ –
∫ ∞

0 �μ(s)ζ̃ t(s) ds = 0,

ζ t
t = –ζ t

s + ṽ,

(ṽτ , ζ̃ τ ) = z1
τ – z2

τ , ṽ|∂� = 0, ζ̃ |∂�×R+ = 0

(6.1)

and

⎧
⎪⎪⎨

⎪⎪⎩

w̃t – ε(t)�w̃t – �w̃ –
∫ ∞

0 �μ(s)ξ̃ t(s) ds + f (u1) – f (u2) = 0,

ξ̃ t
t = –ξ̃ t

s + w̃,

(w̃τ , ξ̃ τ ) = 0, w̃|∂� = 0, ξ̃ |∂�×R+ = 0.

(6.2)

Lemma 6.1 Assume that the process {U(t, τ )}t≥τ is broken down into

U(t, τ ) = D(t, τ ) + K(t, τ ), zτ ∈ Aτ , τ ≤ t,

then for every τ ∈R, z1
τ , z2

τ ∈ Aτ there exists t� > 0 such that

∥
∥D(τ + t�, τ )z1

τ – D(τ + t�, τ )z2
τ

∥
∥2

Uτ+t�
≤ ρ

∥
∥z1

τ – z2
τ

∥
∥2

Uτ
, (6.3)

∥
∥K(τ + t�, τ )z1

τ – K(τ + t�, τ )z2
τ

∥
∥2

Z 1
τ+t�

≤ Qt�
∥
∥z1

τ – z2
τ

∥
∥2

Uτ
, (6.4)

where Qt� > 0 only depends on t� and 0 ≤ ρ < 1
4 .

Proof Taking the inner product of ṽ with the first equation of (6.1) in L2(�), we arrive at

d
dt

(‖ṽ‖2 + ε(t)‖ṽ‖2
1 +

∥
∥ζ̃ t∥∥

μ,1

)
+

ε(t)
L

‖ṽ‖2
1 + ‖ṽ‖2

1 ≤ 0.

Similar to the proof of Theorem 4.2, we infer that

‖ṽ‖2 + ε(t)‖ṽ‖2
1 +

∥
∥ζ̃ t∥∥

μ,1 ≤ 2e–σ2(t–τ )(‖ṽτ‖2 + ε(τ )‖ṽτ‖2
1 +

∥
∥ζ̃ τ

∥
∥

μ,1

)
,
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where σ2 is given in Theorem 4.2. That is,

∥
∥D(t, τ )z1

τ – D(t, τ )z2
τ

∥
∥2

Ut
≤ e–σ2(t–τ )∥∥z1

τ – z2
τ

∥
∥2

Uτ
.

For any z1
τ , z2

τ ∈ Aτ , choose t� = 3 ln 2
σ2

> 0 such that

∥
∥D(τ + t�, τ )z1

τ – D(τ + t�, τ )z2
τ

∥
∥2

Uτ+t�
≤ 1

8
∥
∥z1

τ – z2
τ

∥
∥2

Uτ
.

Thereby, (6.3) holds.
Taking the inner product of –�w̃ with the first equation of (6.2) in L2(�), we have

d
dt

(‖w̃‖2
1 + ε(t)‖w̃‖2

2 +
∥
∥ξ̃ t∥∥2

μ,2

)
+

ε(t)
L

‖w̃‖2
2 +

1
2
‖w̃‖2

1 ≤ 2l2∥∥u1 – u2∥∥2. (6.5)

Combining with (1.3), (6.5), and the continuous dependence of the solution on the initial
value, we obtain

d
dt

(‖w̃‖2
1 + ε(t)‖w̃‖2

2 +
∥
∥ξ̃ t∥∥2

μ,2

) ≤ 2l2∥∥z1 – z2∥∥2
Ut

≤ 2l2e2l(t–τ )∥∥z1
τ – z2

τ

∥
∥2

Uτ
. (6.6)

Integrating both sides of (6.6) from τ to t, we see that

‖w̃‖2
1 + ε(t)‖w̃‖2

2 +
∥
∥ξ̃ t∥∥2

μ,2 ≤ le2l(t–τ )∥∥z1
τ – z2

τ

∥
∥2

Uτ
, (6.7)

for any zi
τ ∈ BUτ (R0). Hence,

∥
∥K(t, τ )z1

τ – K(t, τ )z2
τ

∥
∥2

U 1
t

≤ le2l(t–τ )∥∥z1
τ – z2

τ

∥
∥2

Uτ
. (6.8)

Thanks to Lemma 3.3 and Lemma 3.4 from [13], then

∥
∥ξ̃ t

s
∥
∥2
M + xTξ̃ t (x) ≤ C, (6.9)

where C is a positive constant. By (6.8) and (6.9), we have

∥
∥K(t, τ )z1

τ – K(t, τ )z2
τ

∥
∥2

Z 1
t

≤ ∥
∥K(t, τ )z1

τ – K(t, τ )z2
τ

∥
∥2

U 1
t

+
∥
∥ξ̃ t

s
∥
∥2
M + xTξ̃ t (x)

≤ Cle2l(t–τ )∥∥z1
τ – z2

τ

∥
∥2

Uτ
.

(6.10)

It follows from (6.10) that for any z1
τ , z2

τ ∈ Aτ there exists t� > 0 such that

∥
∥K(τ + t�, τ )z1

τ – K(τ + t�, τ )z2
τ

∥
∥2

Z 1
τ+t�

≤ Cle2lt�
∥
∥z1

τ – z2
τ

∥
∥2

Ut
, (6.11)

where Q� = Cle2lt� . Hence, (6.11) holds. �

Theorem 6.2 Assume that (1.2), (1.3), (1.5), (1.7), and (1.8) hold, then the time-dependent
global attractor A = {At}t∈R has a finite fractal dimension in Ut , i.e.,

dimUt At ≤ log2 κ(8Q�)–1 ,
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where

dimX Y = lim sup
q→0+

log2 Nq(X, Y )
log2

1
q

,

Nq(X, Y ) is the minimum number of the q-ball of Y that covers K .

Proof Repeating the similar proof of Lemma 5.2 for (6.5), we can obtain that ‖ξ̃ t‖2
μ,1 is

bounded. Then, combining with (6.9) and Lemma 2.11, we find that L2 ↪→↪→M1. Hence,
Z 1

τ+t� ↪→↪→ Uτ+t� . Then, we conclude from Lemma 6.1 ([36]) that

dimUt At ≤ log2 κρQ–1
�

log2(4ρ)–1 = log2 κ(8Q�)–1 ,

where κq = supt≥0 Nq(BZ 1
t

(1), Y ) < ∞. �
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