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1 Introduction and main results
This paper focuses on the two-dimensional magnetohydrodynamic (MHD) system

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + (u · ∇)u = –∇p + B · ∇B – ν£1u,

∂tB + (u · ∇)B = B · ∇u – κ£2B,

divu = divB = 0,

(1.1)

where u = (u1(x, t), u2(x, t)) denotes the velocity, p = p(x, t) the scalar pressure, and B =
(B1(x, t), B2(x, t)) the magnetic field of the fluid. u0(x) and B0(x) are the given initial data
satisfying ∇ · u0 = 0 and ∇ · B0 = 0. The operators £1, £2 are general negative-definite
multipliers with symbol h(ξ ), namely

̂£1u(ξ ) = |ξ |2h(ξ )û(ξ ), ̂£2B(ξ ) = |ξ |2h(ξ )B̂(ξ ). (1.2)

We note the convention that by ν = 0 we mean that there is no velocity dissipation in (1.1)1

and similarly κ = 0 represents that there is no magnetic diffusion in (1.1)2. It is well known
that the 2D MHD equations with both Laplacian dissipation �u and magnetic diffusion
�B have the global smooth solution [1]. In the case without velocity dissipation and mag-
netic diffusion (ν = κ = 0), the question of whether a smooth solution of the 2D MHD
equations develops a singularity in finite time is open [2, 3]. Therefore, more researches
focus on the MHD equations with fractional dissipation and partial dissipation (see e.g.,
[4–7]) and the references cited therein, the issue of global regularity for 2D MHD (ν = 0,

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-023-01768-5
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-023-01768-5&domain=pdf
mailto:linrui020213@163.com
http://creativecommons.org/licenses/by/4.0/


Li and Hong Boundary Value Problems         (2023) 2023:76 Page 2 of 12

κ = 1 or ν = 1, κ = 0) has attracted much interest from many mathematicians and has
motivated a large number of research papers concerning various generalizations and im-
provements (see [8–12]). Recent important progress has been obtained by Ren et al. [13],
who prove the global existence and the decay estimates of a small smooth solution for the
2D MHD equations without magnetic diffusion, and these results confirm the numerical
observation that the energy of the MHD equations is dissipated at a rate independent of
the ohmic resistivity, the main tools used in [13] are the anisotropic Littlewood–Paley de-
composition and the anisotropic Besov spaces. More recently, Yuan and Ye [11, 14] studied
separately the global regularity of solutions to the 2D incompressible MHD equations with
almost Laplacian magnetic diffusion in the whole space. Furthermore, Lei [15] studied the
global regularity for the axially symmetric MHD equations with nontrivial magnetic fields.

Inspired by the previous works, the aim of this paper is to weaken the operator $ as
possible as one can, then the global H1-bound of the solution can be achieved as long as
the fractional dissipation power of the velocity field is positive without losing the global
regularity of the system (1.1), we obtained the global regularity of solutions requiring the
velocity dissipative operators to be weaker than any power of the fractional Laplacian, the
result can be regarded as a further improvement and generalization of previous works [3].
More precisely, the main result in this article reads as follows.

Theorem 1.1 Let u0, B0 ∈ Hs(R2) × Hs(R2) for any s > 2 and satisfy ∇ · u0 = ∇ · B0 = 0,
where ν > 0 and κ > 0, assume that h(ξ ) = h(|ξ |) is a radial nondecreasing smooth function
satisfying the following conditions:

(1) h is a nonnegative function for all ξ �= 0;
(2) there exists a constant C̃ > 0 such that

∣
∣∂k

ξ h(ξ )
∣
∣ ≤ C̃|ξ |–k∣∣h(ξ )

∣
∣, k ∈ {1, 2, 3},∀ξ �= 0;

(3) for any given T ∈ (0,∞) such that

∫ ∞

T

ds
sh(s)

= CT < ∞,

where BT > 0 is the unique solution of the following equation

x2h(x) =
1
T

,

then for the MHD equations (1.1) there exists a unique global solution such that

u, B ∈ L∞(
[0, T]; Hs(R2)), u ∈ L2([0, T]; Hs+1(R2)).

Remark 1.2 By virtue of the expression in (1.2), the dissipative operator £ in Theorem 1.1
is weaker than any power of the fractional Laplacian. Thus, we improve the results in [3]
for system (1.1) in which ν > 0 and κ > 0.

Remark 1.3 For the 2D generalized MHD equations, it remains an open problem whether
there exists a global smooth solution without the dissipative operator £.
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2 The proof of Theorem 1.1
In this section, we will give the global existence and uniqueness of the smooth solution
to the system (1.1). By the classical hyperbolic method, there exists a finite time T0 such
that the system (1.1) is local well-posed in the interval [0, T0] in Hs with s > 2. Therefore,
it is sufficient to establish a priori estimates in the interval [0, T] for the given T > T0. We
shall prove Theorem 1.1 by adapting the elaborate nonlinear energy method. Furthermore,
throughout this paper, we use C to denote the positive constants that may vary from line
to line.

2.1 L2 estimate for (u, B)
Lemma 2.1 Assume that the conditions in Theorem 1.1 hold, then it holds that

∥
∥u(t)

∥
∥2

L2 +
∥
∥B(t)

∥
∥2

L2 + 2
∫ t

0

∥
∥£

1
2 u(τ )

∥
∥2

L2 dτ = ‖u0‖2
L2 + ‖B0‖2

L2 . (2.1)

Proof Taking the inner products of (1.1)1 with u and (1.1)2 with B, adding the results and
utilizing the following cancelation identity:

∫

R2
(B · ∇)B · u dx +

∫

R2
(B · ∇)u · B dx = 0, (2.2)

we have

1
2

d
dt

(∥
∥u(t)

∥
∥2

L2 +
∥
∥B(t)

∥
∥2

L2
)

+
∥
∥£

1
2 u

∥
∥2

L2 = 0. (2.3)

Thanks to the Plancherel theorem
∫

R2
£u · u dx =

∫

R2
̂£u(ξ )û(ξ ) dξ =

∫

R2
|ξ |2g(ξ )

∣
∣û(ξ )

∣
∣2 dξ (2.4)

=
∫

R2

∣
∣ ̂£ 1

2 u(ξ )
∣
∣2 dξ =

∥
∥£

1
2 u

∥
∥2

L2 , (2.5)

then integrating the above inequality we obtain

∥
∥u(t)

∥
∥2

L2 +
∥
∥B(t)

∥
∥2

L2 + 2
∫ t

0

∥
∥£

1
2 u(τ )

∥
∥2

L2 dτ = ‖u0‖2
L2 + ‖B0‖2

L2 . (2.6)�

2.2 H1 estimate for (u, B)
Lemma 2.2 Assume that the conditions in Theorem 1.1 hold, then there exists a positive
constant C dependent on T , u0 and B0, such that

∥
∥ω(t)

∥
∥2

L2 +
∥
∥j(t)

∥
∥2

L2 +
∫ t

0

∥
∥£

1
2 ω

∥
∥2

L2 dτ ≤ C(T , u0, B0). (2.7)

Proof First, we obtain the vorticity equation by applying ∇× to the MHD equations (1.1),
where the vorticity ω = ∇ × u = ∂x1 u2 – ∂x2 u1 and the current j = ∇ × B = ∂x1 B2 – ∂x2 B1,
the corresponding vorticity equation:

∂tω + (u · ∇)ω + ν£ω = (B · ∇)j, (2.8)
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∂t j + (u · ∇)j = (B · ∇ω) + T(∇u,∇B), (2.9)

where T(∇u,∇B) = 2∂xB1(∂x2 u1 + ∂x2 u1) – 2∂x1 u1(∂x2 b1 + ∂x1 b2).
Taking the inner products of the first equation in (2.8) with ω, the second equation in

(2.8) with j, adding them up and using the incompressible condition as well as the following
fact

∫

R2
(B · ∇j)ω dx +

∫

R2
(B · ∇ω)j dx = 0, (2.10)

then we easily obtain

1
2

d
dt

(‖ω‖2
L2 +

∥
∥j(t)

∥
∥2

L2
)

+
∥
∥£

1
2 ω

∥
∥2

L2 =
∫

R2
T(∇u,∇B)j dx. (2.11)

For the arbitrary function

‖∇u‖2
L2 = C

∥
∥ξ û(ξ )

∥
∥2

L2

= C
∫

R2
|ξ |2∣∣û(ξ )

∣
∣2 dξ

= C
∫

|ξ |≤1
|ξ |2∣∣û(ξ )

∣
∣2 dξ + C

∫

|ξ |≥1
|ξ |2∣∣û(ξ )

∣
∣2 dξ

= C
∫

|ξ |≤1
|̂u(ξ )|2 dξ + C

∫

|ξ |≥1

1
m(ξ )

|ξ |2m(ξ )
∣
∣û(ξ )

∣
∣2 dξ

≤ C
∫

R2

∣
∣û(ξ )

∣
∣2 dξ + C

∫

|ξ |≥1

1
m(1)

|ξ |2m(ξ )
∣
∣û(ξ )

∣
∣2 dξ

≤ C1‖u‖2
L2 + C2

∥
∥£

1
2 u

∥
∥2

L2 , (2.12)

we obtain finally

‖∇u‖L2 ≤ C1‖u‖L2 + C2
∥
∥£

1
2 u

∥
∥

L2 . (2.13)

Utilizing the estimate of ‖∇u‖L2 in (2.13) and the interpolation inequality, we obtain

∫

R2
T(∇u,∇B)j dx

≤ C‖∇u‖L2‖∇B‖L4‖j‖L4

≤ C‖ω‖L2‖j‖2
L4

≤ C‖ω‖L2‖j‖L2‖∇j‖L2

≤ C‖ω‖L2‖∇B‖L2‖∇j‖L2

≤ C‖ω‖L2
(‖B‖L2 +

∥
∥£

1
2 B

∥
∥

L2
)(‖j‖L2 +

∥
∥£

1
2 j

∥
∥

L2
)

≤ 1
2
∥
∥£

1
2 ω

∥
∥2

L2 + C
(
1 + ‖B‖2

L2 +
∥
∥£

1
2 B

∥
∥2

L2
)(‖ω‖2

L2 + ‖j‖2
L2

)
. (2.14)
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Hence, combined with (2.14) and (2.11) this implies that

d
dt

(∥
∥ω(t)

∥
∥2

L2 +
∥
∥j(t)

∥
∥2

L2
)

+
∥
∥£

1
2 ω

∥
∥2

L2

≤ C
(
1 + ‖B‖2

L2 +
∥
∥£

1
2 B

∥
∥2

L2
)(‖ω‖2

L2 + ‖j‖2
L2

)
. (2.15)

The Gronwall lemma provides us with

∥
∥ω(t)

∥
∥2

L2 +
∥
∥j(t)

∥
∥2

L2 +
∫ t

0

∥
∥£

1
2 ω

∥
∥2

L2 dτ ≤ C(T , u0, B0). (2.16)�

2.3 L∞
t L∞ estimate for u

Lemma 2.3 Assume that the conditions in Theorem 1.1 hold, then it holds that

‖u‖L∞
t L∞ ≤ C(t, u0, B0), for any t ∈ [0, T]. (2.17)

Proof By the classical hyperbolic theory, the system (1.1) is local well-posed in the interval
[0, T0] in Hs with s > 2, we have the estimate

‖u‖L∞
T0

Hs + ‖B‖L∞
T0

Hs ≤ C(u0, B0). (2.18)

Hence, by the embedding theorem,

‖u‖L∞
T0

L∞ ≤ C(u0, B0). (2.19)

Thus, it is sufficient to establish that an a priori estimate (2.19) is valid for t > T0. We
rewrite the first equation in system (1.1) as

∂tu + ν£u = ∇ · (B ⊗ B) – ∇ · (u ⊗ u) – ∇p. (2.20)

According to the solution of the linear inhomogeneous equation, the solution of (2.20) can
be explicitly given by

u(t) = K(t) ∗ u0 +
∫ t

0
K(t – τ ) ∗ [∇ · (B ⊗ B) – ∇ · (u ⊗ u) – ∇p

]
dτ . (2.21)

Taking L∞ norm in terms of space variables and using the Young inequality, we obtain

∥
∥u(t)

∥
∥

L∞ =
∥
∥K(t) ∗ u0

∥
∥

L∞ +
∫ t

0

∥
∥∇K(t – τ ) ∗ [

(B ⊗ B) – (u ⊗ u)
]
(τ )

∥
∥

L∞ dτ

+
∫ t

0

∥
∥div

(
K(t – τ )

)
p
∥
∥

L∞ dτ (2.22)

≤ C
∥
∥K(t)

∥
∥

L1‖u0‖L∞ + C
∫ t

0

∥
∥∇K(t – τ )

∥
∥

L2

∥
∥
[
(B ⊗ B)

– (u ⊗ B)
]
(τ )

∥
∥

L2 dτ +
∫ t

0

∥
∥div

(
K(t – τ )

)∥
∥

L2‖p‖L2 dτ

≤ C
∥
∥K(t)

∥
∥

L1‖u0‖L∞ + C
∫ t

0

∥
∥∇K(t – τ )

∥
∥

L2

∥
∥B(τ )

∥
∥

L4

∥
∥B(τ )

∥
∥

L4 dτ
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≤ C
∥
∥K(t)

∥
∥

L1‖u0‖L∞ + C
∥
∥∇K(τ )

∥
∥

L1
t L2

∥
∥u(τ )

∥
∥

L∞
t L4

∥
∥B(τ )

∥
∥

L∞
t L4

≤ C
(
1 + t–1 + t3)‖u0‖L∞ + C(t, u0, B0)

≤ C
(
1 + t3)‖B0‖L∞ + C(t, u0, B0), (2.23)

where we have used the inequality ‖K(t)‖L1 ≤ C(1 + t–1 + t3), which is the property of the
operator £ proved in Lemma 2.5 [14], hence we obtain

‖u‖L∞
t L∞ ≤ C(t, u0, B0), for t > T0. (2.24)

Combining (2.19) and (2.24), we have

‖u‖L∞
t L∞ ≤ C(t, u0, B0), for any t ∈ [0, T]. (2.25)�

2.4 L2
t L∞ estimate for ω

Lemma 2.4 Assume that the conditions in Theorem 1.1 hold, then it holds that

∫ t

0

∥
∥ω(τ )

∥
∥2

L∞ dτ ≤ C(T , u0, B0). (2.26)

Proof We write the first equation of (2.8) as

∂tω + ν£ω = (B · ∇)j – (u · ∇)ω = ∇ · (B ⊗ j) – ∇ · (u ⊗ ω). (2.27)

According to the solution of the linear inhomogeneous equation, the solution of (2.27) can
be explicitly written as

ω = K(t) ∗ ω0 +
∫ t

0
K(t – τ ) ∗ [∇ · (B ⊗ j) – ∇ · (u ⊗ ω)

]
(τ ) dτ . (2.28)

Taking L∞ norm in terms of space variables and utilizing the Young inequality, we have

‖ω‖L∞ =
∥
∥K(t) ∗ ω0

∥
∥

L∞ +
∫ t

0

∥
∥∇K(t – τ ) ∗ [

(B ⊗ j) – (u ⊗ j)
]
(τ )

∥
∥

L∞ dτ

≤ C
∥
∥K(t)

∥
∥

L2‖ω0‖L2 + C
∫ t

0

∥
∥∇K(t – τ )

∥
∥

L2 (
∥
∥(B ⊗ j)(τ )

∥
∥

L2

+
∥
∥(u ⊗ j)(τ )

∥
∥

L2 dτ . (2.29)

In order to obtain the L2
t L∞ estimate on ω, we take the L2 norm on the time variable and

use the convolution Young inequality as well as the estimate (2.25) to obtain

‖ω‖L2
t L∞ ≤ C

∥
∥K(t)

∥
∥

L2
t L2‖ω0‖L2 + C

∥
∥∇K(t)

∥
∥

L1
t L2

(‖B ⊗ j‖L2
t L2 +

∥
∥(u ⊗ j)

∥
∥

L2
t L2

)

≤ C
∥
∥K(t)

∥
∥

L2
t L2‖ω0‖L2 + C

∥
∥∇K(t)

∥
∥

L1
t L2

(‖B‖L2
t L∞‖j‖L∞

t L2

+ ‖u‖L4
t L4‖j‖L4

t L4
)

≤ C(T , u0, B0), (2.30)
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where we have used the following known estimates due to the linear inhomogeneous equa-
tion:

∫ t

0

∥
∥K(τ )

∥
∥2

L2 dτ ≤ C(T , u0, B0),
∫ t

0

∥
∥K(τ )

∥
∥

L∞ dτ ≤ C(T , u0, B0). (2.31)

On the other hand,we also used the fact that

‖u‖L4
t L4 ≤ C‖u‖ 1

2
L∞

t L2‖ω‖ 1
2
L2

t L2 ≤ C(T , u0, B0) (2.32)

and

‖ω‖L4
t L4 ≤ C‖ω‖ 1

2
L∞

t L2‖∇ω‖ 1
2
L2

t L2

≤ C‖ω‖ 1
2
L∞

t L2

(‖ω‖ 1
2
L2

t L2 +
∥
∥£

1
2 ω

∥
∥

1
2
L2

t L2

)

≤ C(T , u0, B0). (2.33)

As a result, one has

∫ t

0

∥
∥ω(τ )

∥
∥2

L∞ dτ ≤ C(T , u0, B0). (2.34)�

2.5 The key estimates of
∫ t

0 ‖∇j(τ )‖L∞ dτ

Lemma 2.5 Assume that the conditions in Theorem 1.1 hold, then it holds that

∥
∥ω(t)

∥
∥

L∞ ≤ C(T , u0, B0), (2.35)

‖∇u‖L∞ ≤ C‖∇u‖ 1
2
L2‖∇ω‖ 1

2
L∞ , (2.36)

∫ t

0
‖∇u‖2

L∞ dτ ≤ C(T , u0, B0). (2.37)

Proof By (2.28), we can check that

ω = K(t) ∗ ω0 +
∫ t

0
K(t – τ ) ∗ [∇ · (B ⊗ j) – ∇ · (u ⊗ ω)

]
(τ ) dτ . (2.38)

Taking the operation ∇ to both sides of the above equality, and then taking the L∞ norm
in terms of space variables and using the Young inequality, we have

‖∇ω‖L∞

≤ ∥
∥∇K(t) ∗ ω0

∥
∥

L∞ +
∫ t

0

∥
∥∇2K(t – τ ) ∗ [

(B ⊗ j) – (u ⊗ ω)
]
(τ )

∥
∥

L∞ dτ

≤ C
∥
∥∇K(t)

∥
∥

L2‖ω0‖L2 + C
∫ t

0

∥
∥∇2K(t – τ )

∥
∥

L1
(∥
∥(B ⊗ j)(τ )

∥
∥

L∞

+
∥
∥(u ⊗ ω)(τ )

∥
∥

L∞
)

dτ . (2.39)
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Then, we obtain by taking the L1 norm in terms of time variables and utilizing the convo-
lution Young inequality

∥
∥∇ω(t)

∥
∥

L1
t L∞

≤ C
∥
∥∇K(t)

∥
∥

L1
t L2‖ω0‖L2 + C

∥
∥∇2K(t)

∥
∥

L1
t L1

(‖B ⊗ j‖L1
t L∞ + ‖u ⊗ ω‖L1

t L∞
)

≤ C
∥
∥∇K(t)

∥
∥

L1
t L2‖ω0‖L2 + C

∥
∥∇2K(t)

∥
∥

L1
t L1

(‖Bj‖L1
t L∞ + ‖u‖L2

t L∞‖ω‖L2
t L∞

)

≤ C
∥
∥∇K(t)

∥
∥

L1
t L2‖ω0‖L2 + C

∥
∥∇2K(t)

∥
∥

L1
t L1

(‖B‖L∞
t L∞‖j‖L1

t L∞ + ‖u‖ 1
2
L∞

t L2‖ω‖ 1
2
L1

t L∞‖ω‖L2
t L∞

)
. (2.40)

By the previous estimates on ‖∇K‖L1
t L2 , it is easy to show that ‖∇K‖L1

t L2‖j0‖L2 are nonde-
creasing functions satisfying

∥
∥∇K(t)

∥
∥

L1
t L2‖ω0‖L2 ≤ C(T , u0, B0), (2.41)

∥
∥∇2K(t)

∥
∥

L1
t L1‖B‖L∞

t L∞ ≤ C(T , u0, B0). (2.42)

Therefore, it follows from (2.40) that

∫ t

0

∥
∥∇ω(τ )

∥
∥

L∞ dτ

≤ C
∥
∥∇K(t)

∥
∥

L1
t L2‖ω0‖L2 +

(
C

∥
∥∇2K(t)

∥
∥

L1
t L1 + ‖u‖ 1

2
L∞

t L2‖ω‖L2
t L∞

+ C‖B‖L∞
t L∞

∥
∥∇2K(t)

∥
∥

L1
t L1

)
∫ t

0

∥
∥ω(τ )

∥
∥

L∞ dτ . (2.43)

Multiplying both sides of the vorticity equation by |ω|p–2ω and integrating over R2, we
obtain

1
p

d
dt

∥
∥ω(t)

∥
∥p

Lp =
∫

R2
(B · ∇j)ω|ω|p–2 dx – ν

∫

R2
£ω|ω|p–2ω dx

≤ ‖B‖L∞‖∇j‖Lp‖ω‖p–1
Lp , (2.44)

where we have used the nonnegativity of the almost Laplacian velocity dissipation, then
we have

d
dt

∥
∥ω(t)

∥
∥

Lp ≤ ‖B‖L∞‖∇j‖Lp . (2.45)

Integrating over time, we have

∥
∥ω(t)

∥
∥

Lp ≤ ∥
∥ω(0)

∥
∥

Lp +
∫ t

0

∥
∥B(τ )

∥
∥

L∞
∥
∥∇j(τ )

∥
∥

Lp dτ . (2.46)

Letting p → ∞, this yields

∥
∥ω(t)

∥
∥

L∞ ≤ ∥
∥ω(0)

∥
∥

L∞ +
∫ t

0

∥
∥B(τ )

∥
∥

L∞
∥
∥∇j(τ )

∥
∥

L∞ dτ . (2.47)
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Due to the previous estimate, we obtain

∥
∥ω(t)

∥
∥

L∞ ≤ ∥
∥ω(0)

∥
∥

L∞ + C(T)
∫ t

0

∥
∥∇j(τ )

∥
∥

L∞ dτ . (2.48)

Now, suppose that

H(t) = h1(T) + h2(T)
∫ t

0

∥
∥ω(τ )

∥
∥

L∞ dτ , (2.49)

it follows from (2.43) that

∫ t

0

∥
∥∇ω(τ )

∥
∥

L∞ dτ ≤ H(t). (2.50)

Due to (2.48), we easily obtain

d
dt

H(t) = H2(T)
∥
∥ω(t)

∥
∥

L∞

≤ H2(T)
(

∥
∥ω(0)

∥
∥

L∞ + C(T)
∫ t

0

∥
∥∇ω(τ )

∥
∥

L∞ dτ

)

≤ H2(T)
(∥
∥ω(0)

∥
∥

L∞ + C(T)H(t)
)
. (2.51)

The Gronwall lemma provides us with

G(t) ≤ C(T , u0, B0), (2.52)

which further implies that

∫ t

0

∥
∥∇j(τ )

∥
∥

L∞ dτ ≤ C(T , u0, B0). (2.53)

Combing (2.53) and (2.48), we obtain

∥
∥ω(t)

∥
∥

L∞ ≤ C(T , u0, B0). (2.54)

According to the interpolation inequality

‖∇u‖L∞ ≤ C‖∇u‖ 1
2
L2‖∇ω‖ 1

2
L∞ (2.55)

and (2.16), we obtain

∫ t

0
‖∇u‖2

L∞ dτ ≤ C(T , u0, B0). (2.56)�

2.6 Global Hs(s > 2) estimates of (u, B)
Lemma 2.6 Assume that the conditions in Theorem 1.1 hold, then it holds that

∥
∥u(t)

∥
∥

Hs +
∥
∥B(t)

∥
∥

Hs +
∫ t

0

∥
∥£

1
2 u(t)

∥
∥2

Hs dτ ≤ C(t). (2.57)
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Proof To obtain the global bound for (u, B) in Hs(s > 2), we apply 	s with 	 = (I – �) 1
2

to the original equation u and B, and take the L2 inner product of the resulting equations
with (	su,	sB) to obtain the energy inequality.

1
2

d
dt

(∥
∥u(t)

∥
∥2

Hs +
∥
∥B(t)

∥
∥2

Hs
)

+
∥
∥£

1
2 u

∥
∥2

Hs

= –
∫

R2

[
	s, u · ∇]

u · 	su dx +
∫

R2

[
	s, B · ∇]

B · 	su dx

–
∫

R2

[
	s, u · ∇]

B · 	sB dx +
∫

R2

[
	s, B · ∇]

u · 	sB

= I1 + I2 + I3 + I4, (2.58)

where [m, n] is the standard commutator notation, namely [a, b] = ab – ba. Utilizing the
following Kato–Ponce inequality [16].

∥
∥
[
	s, f

]
g
∥
∥

Lp ≤ C
(‖∇f ‖L∞

∥
∥	s–1g

∥
∥

Lp + ‖g‖L∞
∥
∥	sf

∥
∥

Lp
)
, 1 < p < ∞. (2.59)

Then, we estimate the energy terms as follows:

I1 ≤ C‖∇u‖L∞‖u‖2
Hs , I2 ≤ C‖∇B‖L∞

(‖u‖2
Hs + ‖B‖2

Hs
)
, (2.60)

I3 + I4 ≤ C
(‖∇u‖L∞ + ‖∇B‖L∞

)(‖u‖2
Hs + ‖B‖2

Hs
)
. (2.61)

Finally,we obtain

d
dt

(∥
∥u(t)

∥
∥2

Hs +
∥
∥B(t)

∥
∥2

Hs
)

+
∥
∥£

1
2 u

∥
∥2

Hs

≤ C
(‖∇u‖L∞ + ‖∇B‖L∞

)(‖u‖2
Hs + ‖B‖2

Hs
)
. (2.62)

We need to estimate the bounds on ‖∇u‖L∞ and ‖ω‖L∞ , according to the following
Sobolev extrapolation inequality with logarithmic correction [17].

‖∇u‖L∞ ≤ C
(
1 + ‖u‖L2(R2) + ‖ω‖L∞(R2)

)
ln

(
e + ‖u‖Hs(R2)

)
, (s > 2). (2.63)

Collecting the above estimate, we have

d
dt

(∥
∥u(t)

∥
∥2

Hs +
∥
∥B(t)

∥
∥2

Hs
)

+
∥
∥£

1
2 u

∥
∥2

Hs

≤ C
(
1 + ‖ω‖L∞ + ‖∇B‖L∞

)
ln

(
e + ‖u‖2

Hs + ‖B‖2
Hs

)

(‖u‖2
Hs + ‖B‖2

Hs
)
. (2.64)

Utilizing the log-Gronwall-type inequality and estimates (2.34) and (2.41), we obtain

∥
∥u(t)

∥
∥

Hs +
∥
∥B(t)

∥
∥

Hs +
∫ t

0

∥
∥£

1
2 u(t)

∥
∥2

Hs dτ ≤ C(t). (2.65)
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Combining (2.13) we obtain

∫ t

0

∥
∥u(t)

∥
∥2

Hs+1 dτ ≤ C(t). (2.66)

According to the six steps priori estimates in previous results, we give the proof of Theo-
rem 1.1. We introduce the mollification of 
N f given by

(
N f )(x) = N2
∫

R2
η
(
N(x – y)

)
f (y) dy, (2.67)

where 0 < η(|x|) ∈ C∞
0 (R2) satisfies

∫

R2 η(y) dy = 1. We regularize the system (1.1) as fol-
lows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tuN + P
N ((
N uN · ∇)
N uN ) + νJ£1
N uN = P
N (
N BN · ∇)
N BN ,

∂tBN + 
N (
N u · ∇)
N B = 
N ((
N BN · ∇)
N uN ),

∇ · uN = ∇ · uN = 0,

uN (x, 0) = 
N u0(x), BN (x, 0) = ρN B0(x),

where P denotes the Leray projection operator. For any fixed N > 0, using the properties
of mollifiers and the priori estimates obtained in proving the global bounds, for any t ∈
(0,∞),

∥
∥uN (t)

∥
∥

Hs +
∥
∥BN (t)

∥
∥

Hs +
∫ t

0

∥
∥£

1
2 uN (τ )

∥
∥2

Hs dτ ≤ C(t), (2.68)

∫ t

0

∥
∥uN (τ )

∥
∥2

Hs+1 dτ ≤ C(t), (2.69)

which are uniform in N , according to the standard Alaogu theorem and compactness
arguments, we can extract a subsequence (uNi , BNi ) and pass to the limit as N → ∞ to
obtain the fact that the limit function (u, B) is indeed a global classical solution of the
problem (1.1). The uniqueness can also be easily obtained. This completes the proof of
Theorem 1.1. �
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