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Abstract
In this article, we use coupled boundary conditions on a nonlinear system with
ψ -Caputo fractional derivatives to derive new conclusions on the solution’s existence,
uniqueness, and stability. We use the well-known tools of fixed-point theory to
establish the proposed results. We give an example to verify the theoretical findings.
The proposed existence, uniqueness, and stability analyses considering theψ -Caputo
fractional derivative are the novelty of this article.
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1 Introduction
Differential and integral operators are highly useful operators to deal with physical prob-
lems [1–3]. Nowadays, fractional calculus [4–7] is one of the highly emerging fields of
applied mathematics. Several applications of fractional-order operators (integrals and
derivatives) have been recorded in various branches of science and engineering [8–
12]. The literature on fractional calculus is increasing day-by-day with theoretical and
application-oriented simulations.

Boundary value problems with fractional-order operators are also of interest to several
researchers. Fractional derivatives and integrals incorporate memory in the system, which
makes a physical phenomenon more realistic than the classical ones. There are several
studies proposed to prove the existence, uniqueness, and stability of the solutions of var-
ious types of fractional boundary value problems (FBVPs) in terms of different fractional
derivatives.

In [13], the authors derive existence results for nonlinear impulsive hybrid FBVPs. In
[14], Erturk et al. proposed the existence and stability analysis for FBVPs. In [15], the au-
thors derived existence, uniqueness, and stability analyses of the generalized Caputo-type
FBVPs. In [16], Zhang and Liu provided the existence and Hyers–Ulam stability for a class
of FBVPs on a star graph. In [17], an iterative two-point FBVP was considered to prove
the existence, uniqueness, and Hyers–Ulam stability. The authors in [18] analyzed an
Ulam–Hyers–Rassias-stable multiorder FBVP of the generalized Caputo type with mixed
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integroderivative conditions at four points. In [19], the authors proved the stability of a
coupled system of nonlinear implicit antiperiodic FBVP. In [20], the authors derived the
Ulam–Hyers–Rassias stability of a Caputo-type FBVP. In [21], the authors used a nonlin-
ear fractional differential equation for a coupled system of boundary value problems. In
[22], the analyses of the existence and stability of a coupled system of implicit-type impul-
sive FBVPs were proposed. In [23], Khan et al. proposed Ulam-type stability for a coupled
system of nonlinear FBVPs. In [24], the authors analyzed the FBVPs with a ψ-Caputo
fractional derivative.

In [25], the authors derived novel existence and uniqueness results for the following
Caputo-type nonlinear coupled system with a new kind of coupled boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

cDρ l(x) = η(x, l(x), m(x)), x ∈ J := [0,� ],
cDτ m(x) = ζ (x, l(x), m(x)), x ∈ J := [0,� ],

(l + m)(0) = –(l + m)(� ),
∫ ς

	
(l – m)(g) dg = B, 0 < 	 < ς < � .

(1)

In this case, operator CD
 is the 
 ∈ {ρ, τ }-order Caputo fractional derivative, where
ρ, τ ∈ (0, 1]. B is a nonnegative constant and η, ζ : [0,� ] ×R2 → R are continuous func-
tions.

The existence and stability of solutions in terms of a ψ-Caputo-type derivative is still not
studied for the FBVP (1). Therefore, we deal with the existence and Hyers–Ulam stability
of the solution for the following ψ-Caputo-type FBVP:

⎧
⎪⎪⎨

⎪⎪⎩

cD(ρ,ψ(x))l(x) = η(x, l(x), m(x)), x ∈ J := [0,� ],
cD(τ ,ψ(x))m(x) = ζ (x, l(x), m(x)), x ∈ J := [0,� ],

(l + m)(0) = –(l + m)(� ),
∫ ς

	
(l – m)(g) dg = B, 0 < 	 < ς < � .

(2)

In this case, the operator CD
,ψ is the 
 ∈ {ρ, τ }-order ψ-Caputo fractional derivative
and ψ(x) is the unknown function, where ρ, τ ∈ (0, 1]. B is a nonnegative constant and
η, ζ : [0,� ] ×R2 →R are continuous functions.

The scientific contribution of this manuscript is to extend the dynamics of the pro-
posed Caputo-type BVP into ψ-Caputo fractional-order sense because fractional deriva-
tives contain memory in the system that defines real-life dynamics in a better way. The
rest of this article is organized as follows: in Sect. 2, the necessary definitions and lemmas
are provided. In Sect. 3, we derive the existence and uniqueness analysis on the proposed
ψ-Caputo-type FBVP (2). In Sect. 4, the Hyers–Ulam stability of the proposed system is
derived. In Sect. 5, we verify the proposed theoretical results by implementing them on a
problem. Finally, we conclude our observations in Sect. 6.

2 Preliminaries
Here, we recall the following preliminaries:

Definition 1 [26] For, ρ > 0, we have a function u, which is integrable on [ν1,ν2] along
with an increasing differentiable function ψ ∈ Cn[ν1,ν2] such that ψ ′(x) �= 0 for every x ∈
[ν1,ν2]. The left-sided ψ-Riemann–Liouville integral of order ρ of the function u is given
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by,

Iρ,ψ
ν+

1
u(x) =

1
�(ρ)

∫ x

ν1

ψ ′(g)
(
ψ(x) – ψ(g)

)ρ–1u(g) dg,

with �(.) being the gamma function.

Definition 2 [26] Assume that, n – 1 < ρ < n, and u : [ν1,ν2] → R is a function that can
be integrated and let ψ be defined according to Definition 1. The left-sided fractional
derivative of order ρ of the function h in the ψ-Riemann–Liouville sense is defined by:

Dρ,ψ
ν+

1
u(x) =

[
1

ψ ′(x)
d

dx

]n

In–ρ,ψ
ν+

1
u(x),

with n = [ρ + 1], along with [ρ] denoting the integer component of a real number.

Definition 3 [26] Consider n – 1 < ρ < n, the function u ∈ Cn–1[ν1,ν2] with ψ from the
preceding definition 1, then the left-side Caputo fractional derivative of ρth order of the
function u is given by:

cDρ,ψu(x) = Dρ,ψ
ν+

1

{

u(x) –
n–1∑

δ=0

u[δ]
ψ (ν1)
δ!

(
ψ(x) – ψ(ν1)

)δ

}

,

with u[δ]
ψ (x) = [ 1

ψ ′(x)
d

dx ]δu(x), n = ρ for ρ ∈ N, and n = [ρ] + 1 for ρ /∈ N, respectively. In
addition, if u ∈ Cn[ν1,ν2] and ρ /∈N, then

Dρ,ψ
ν+

1
u(x) = In–ρ,ψ

ν+
1

[
1

ψ ′(x)
d

dx

]n

u(x)

=
1

�(n – ρ)

∫ x

ν1

ψ ′(g)
(
ψ(x) – ψ(g)

)n–ρ–1u[n]
ψ (g) dg.

Also, if ρ = n ∈ N, one has

cDρ,ψ
ν+

1
u(x) = u[n]

ψ (x).

Lemma 1 [26] Assume that u : [ν1,ν2] →R and ρ > 0. Then, the following assertions hold:
(i) If u ∈ C[ν1,ν2], subsequently cDρ,ψ

ν+
1

Iρ,ψ
ν+

1
u(x) = u(x);

(ii) If u ∈ Cn–1[ν1,ν2], subsequently Iρ,ψ
ν+

1
cDρ,ψ

ν+
1

u(x) = u(x) –
∑n–1

δ=0 Cδ[ψ(x) – ψ(ν1)]δ ,

where Cδ =
u[δ]
ψ (a)
δ! .

Lemma 2 [26] Let u,ψ ∈ C[ν1,ν2] and ρ > 0. Then,
(i) Iρ,ψ

ν+
1

(.) is bounded linearly from C[ν1,ν2] to C[ν1,ν2];

(ii) Iρ,ψ
ν+

1
u(ν1) = limx→ν+

1
u(x) = 0.

Lemma 3 [26] Let us consider the mapping u : [ν1,ν2] →R and ρ, τ > 0. Then,
(i) Iρ,ψ

ν+
1

[ψ(x) – ψ(ν1)]τ–1 = �(τ )
�(ρ+τ ) [ψ(x) – ψ(ν1)]ρ+τ–1;

(ii) cDρ,τ
ν+

1
[ψ(x) – ψ(ν1)]τ–1 = �(τ )

�(τ–ρ) [ψ(x) – ψ(ν1)]τ–ρ–1;
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(iii) cDρ,τ
ν+

1
[ψ(x) – ψ(ν1)]δ = 0, ∀δ ∈ {0, 1, . . . , n – 1}, where n ∈N;

(iv) Iρ,ψ
ν+

1
Iτ ,ψ
ν+

1
u(x) = Iρ+τ

ν+
1

u(x).

Lemma 4 Let H , Z ∈ C[0,� ] and l, m ∈ BC(J). Then, this coupled linear system

⎧
⎪⎪⎨

⎪⎪⎩

cDρ,ψ(x)l(x) = H(x), x ∈ J := [0,� ],
cDτ ,ψ(x)m(x) = Z(x), x ∈ J := [0,� ],

(l + m)(0) = –(l + m)(� ),
∫ ς

	
(l – m)(g) dg = B,

(3)

has the following solution:

l(x) =
1
2

{
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
H(g) dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
Z(g) dg

)

–
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
Z(μ) dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
H(μ) dμ

)

dg
}

–
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))ρ–1

�(ρ)
H(g) dg, (4)

m(x) =
1
2

{

–
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
H(g) dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
Z(g) dg

)

+
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
Z(μ) dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
H(μ) dμ

)

dg
}

–
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))τ–1

�(τ )
Z(g) dg. (5)

Proof To solve the FDE in (3), we apply the operators Iρ and Iτ to both sides of the equa-
tions, respectively, and using Lemma 1, we obtain

l(x) = c0 –
1

�(ρ)

∫ x

0
ψ ′(g)

(
ψ(x) – ψ(g)

)ρ–1H(g) dg, (6)

m(x) = c1 –
1

�(τ )

∫ x

0
ψ ′(g)

(
ψ(x) – ψ(g)

)τ–1Z(g) dg. (7)

Using the boundary conditions of the problem (3) in (6) and (7), respectively, we obtain
the values of c0, c1 ∈R.

c0 + c1 =
1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
H(g) dg (8)
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+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
Z(g) dg

)

,

c0 – c1 =
1

ς – 	

(

B –
∫ ς

	

{∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
Z(μ) dg

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
H(μ) dμ

})

. (9)

Solving (8) and (9) together for c0 and c1, it is found that

c0 =
1
2

{
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
H(g) dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
Z(g) dg

)

–
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
Z(μ) dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
H(μ) dμ

)

dg
}

,

c1 =
1
2

{

–
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
H(g) dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
Z(g) dg

)

+
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
Z(μ) dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
H(μ) dμ

)

dg
}

.

In (6) and (7), substituting the values of c0 and c1 yields the solutions of (3). The converse
of this lemma can be computed directly. The proof is concluded. �

3 Existence and uniqueness analysis
ξ = C([0, 1],R) × C([0, 1],R) represents the Banach space endowed with the norm
‖(l, m)‖ = ‖l‖ + ‖m‖ = supx∈[0,1] |l(x)| + supx∈[0,1] |m(x)|, for (l, m) ∈ ξ . In light of Lemma
4, we introduce the following operator � : ξ → ξ for the problem (2) using Eqs. (4) and
(5):

�(l, m)(x) :=
(
�1(l, m)(x),�2(l, m)(x)

)
, (10)

�1(l, m)(x) =
1
2

{
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
η
(
g, l(g), m(g)

)
dg (11)

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
ζ
(
g, l(g), m(g)

)
dg

)

–
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
ζ
(
μ, l(μ), m(μ)

)
dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
η
(
μ, l(μ), m(μ)

)
dμ

)

dg
}
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–
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))ρ–1

�(ρ)
ζ
(
g, l(g), m(g)

)
dg,

�2(l, m)(x) =
1
2

{

–
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
η
(
g, l(g), m(g)

)
dg (12)

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
ζ
(
g, l(g), m(g)

)
dg

)

+
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
ζ
(
μ, l(μ), m(μ)

)
dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
η
(
μ, l(μ), m(μ)

)
dμ

)

dg
}

–
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))τ–1

�(τ )
ζ
(
g, l(g), m(g)

)
dg.

Next, we present the assumptions required to establish the paper’s primary findings.
(M1) Existence of nonnegative functions κi,κi ∈ C([0, 1],R+), i = 1, 2, 3, that are contin-

uous such that

∣
∣η(x, l, m)

∣
∣ ≤ κ1(x) + κ2(x)|l| + κ3(x)|m|, ∀(x, l, m) ∈ J ×R

2,
∣
∣ζ (x, l, m)

∣
∣ ≤ κ1(x) + κ2(x)|l| + κ3(x)|m|, ∀(x, l, m) ∈ J ×R

2.

(M2) There exist positive constants Ui, Vi, i = 1, 2, such that

∣
∣η(x, l, h1) – η(x, m, h2)

∣
∣ ≤ U1|l – m| + U2|h1 – h2|, ∀x ∈ J , Ui, Vi ∈R, i = 1, 2,

∣
∣ζ (x, l, h1) – ζ (x, m, h2)

∣
∣ ≤ V1|l – m| + V2|h1 – h2|, ∀x ∈ J , Ui, Vi ∈R, i = 1, 2.

We propose the following notation for computational convenience.

σ1 =
(ψ(� ) – ψ(0))ρ

4�(ρ + 1)
+

(ψ(ς ) – ψ(0))(ρ+1)ψ ′(	) – ψ ′(ς )(ψ(	) – ψ(0))(ρ+1)

2(ς – 	)(ρ + 2)ψ ′(	)ψ ′(ς )
, (13)

σ2 =
(ψ(� ) – ψ(0))τ

4�(τ + 1)
+

(ψ(ς ) – ψ(0))τ+1ψ ′(	) – ψ ′(ς )(ψ(	) – ψ(0))(τ+1)

2(ς – 	)(τ + 2)ψ ′(	)ψ ′(ς )
(14)

and

ω = min

{

1 –
(

‖κ2‖
[

2σ1 +
(ψ(� ) – ψ(0))ρ

�(ρ + 1)

]

+ ‖κ2‖
[

2σ2 +
(ψ(� ) – ψ(0))τ

�(τ + 1)

])

,

1 –
(

‖κ3‖
[

2σ1 +
(ψ(� ) – ψ(0))ρ

�(ρ + 1)

]

+ ‖κ3‖
[

2σ2 +
(ψ(� ) – ψ(0))τ

�(τ + 1)

])}

.

To derive the first existence proof for the problem (2), we use the following fixed-point
theorem [27].

Lemma 5 In the Banach space A, let the operator H : A → A be completely continuous
and assume the set � = {μ ∈ A|μ = κHμ; 0 < κ < 1} is bounded. Consequently, H holds a
fixed point in A.
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Theorem 1 Let η, ζ : J × R
2 → R be two continuous functions, satisfying the assumption

(M1). Then, there exists at least one solution on J for problem (2).

‖κ2‖
[

2σ1 +
(ψ(� ) – ψ(0))ρ

�(ρ + 1)

]

+ ‖κ2‖
[

2σ2 +
(ψ(� ) – ψ(0))τ

�(τ + 1)

]

< 1, (15)

‖κ3‖
[

2σ1 +
(ψ(� ) – ψ(0))ρ

�(ρ + 1)

]

+ ‖κ3‖
[

2σ2 +
(ψ(� ) – ψ(0))τ

�(τ + 1)

]

< 1, (16)

where σi (i = 1, 2) are defined by (13) and (14)

Proof We have an operator � : ξ → ξ determined by (10) to be completely continuous.
Clearly, � is a continuous mapping between two subsets of ξ that are bounded and com-
pact, respectively. Note that the continuity of functions η and ζ implies that the operator
� : ξ → ξ is continuous. Let �s ⊂ ξ be bounded. Then, there exist positive constants Iη ,
Iζ such that

∣
∣η

(
x, l(x), m(x)

)∣
∣ ≤ Iη,

∣
∣ζ

(
x, l(x), m(x)

)∣
∣ ≤ Iζ , ∀(l, m) ∈ �s.

Hence, for any (l, m) ∈ �s, x ∈ J , we obtain

∣
∣�1(l, m)(x)

∣
∣ ≤ Iη

(
(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ σ1

)

+ Iζ σ2 +
B

ς – 	
,

∣
∣�2(l, m)(x)

∣
∣ ≤ Iζ

(
(ψ(� ) – ψ(0))τ

�(τ + 1)
+ σ2

)

+
B

ς – 	
+ Iησ1.

Thus,

∥
∥�(l, m)

∥
∥ =

∥
∥�1(l, m)

∥
∥ +

∥
∥�2(l, m)

∥
∥

≤ Iη
(

(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ 2σ1

)

+ Iζ
(

(ψ(� ) – ψ(0))τ

�(τ + 1)
+ 2σ2

)

+
2B

ς – 	
.

The operator � is consequently uniformly bounded from the inequality given above. Let
x1, x2 ∈ [0,� ], x1 < x2, and (l, m) ∈ �s to show the mapping of � from bounded sets to
equicontinuous sets of ξ . Then,

∣
∣�1(l, m)(x2) – �1(l, m)(x1)

∣
∣

≤
∣
∣
∣
∣
ψ ′(g)
�(ρ)

(∫ x1

0

[(
ψ(x2) – ψ(g)

)ρ–1 –
(
ψ(x1) – ψ(g)

)ρ–1]
)

× η
(
g, l(g), m(g)

)
dg +

∫ x2

x1

(
ψ(x2) – ψ(g)

)ρ–1
η
(
g, l(g), m(g)

)
dg

∣
∣
∣
∣

≤ Iη
(

2(ψ(x2 – ψ(x1)))ρ + (ψ(x2) – ψ(0))ρ – (ψ(x1) – ψ(0))ρ

�(ρ + 1)

)

.

In a similar manner, we can obtain

∣
∣�2(l, m)(x2) – �2(l, m)(x1)

∣
∣



R et al. Boundary Value Problems         (2023) 2023:75 Page 8 of 18

≤ Iζ
(

2(ψ(x2) – ψ(x1))τ + (ψ(x2) – ψ(0))τ – (ψ(x1) – ψ(0))τ

�(τ + 1)

)

.

In the limit of x1 → x2, the right-hand sides of the above inequality tend to zero based
on (l, m). As a result, � : ξ → ξ is completely continuous, as shown by the Arzelá–Ascoli
theorem.

Next, we prove the set ϑ = {(l, m) ∈ ξ |(l, m) = λ�(l, m), 0 < λ < 1} is bounded. Let (l, m) ∈
ϑ , then (l, m) = λ�(l, m), 0 < λ < 1. For any x ∈ J , we have

l(x) = λ�1(l, m)(x), m(x) = λ�2(l, m)(x).

Using σi (i = 1, 2) given by (13) and (14), we find that

∣
∣l(x)

∣
∣ = λ

∣
∣�1(l, m)(x)

∣
∣

≤ (‖κ1‖ + ‖κ2‖‖l‖ + ‖κ3‖‖m‖)
(

(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ σ1

)

+
(‖κ1 + ‖κ2

∥
∥‖l‖+

∥
∥κ3‖‖m‖)σ2 +

B
	 – ς

,

∣
∣m(x)

∣
∣ = λ

∣
∣�2(l, m)(x)

∣
∣

≤ (‖κ1‖ + ‖κ2‖‖l‖ + ‖κ3‖‖m‖)σ1

+
(‖κ1‖ + ‖κ2‖‖l‖ + ‖κ3‖‖m‖)

(
(ψ(� ) – ψ(0))τ

�(τ + 1)
+ σ2

)

+
B

ς – 	
.

As a result, we obtain

‖l‖ + ‖m‖

≤ ‖κ1‖
(

2σ1 +
(ψ(� ) – ψ(0))ρ

�(ρ + 1)

)

+ ‖κ1‖
(

2σ2 +
(ψ(� ) – ψ(0))τ

�(τ + 1)

)

+
2B

ς – 	

+
[

‖κ3‖
(

2σ1 +
(ψ(� ) – ψ(0))ρ

�(ρ + 1)

)

+ ‖κ3‖
(

2σ2 +
(ψ(� ) – ψ(0))ρ

�(ρ + 1)

)]

‖m‖

+
[

‖κ2‖
(

2σ1 +
(ψ(� ) – ψ(0))ρ

�(ρ + 1)

)

+ ‖κ2‖
(

2σ2 +
(ψ(� ) – ψ(0))τ

�(τ )

)]

‖l‖.

Thus, by condition (15) and (16), we obtain

∥
∥(l, m)

∥
∥ ≤ ‖κ1‖(2σ1 + (ψ(� )–ψ(0))ρ

�(ρ+1) ) + ‖κ1‖(2σ2 + (ψ(� )–ψ(0))τ
�(τ+1) ) + 2B

ς–	

ω
,

which proves ‖(l, m)‖ is bounded. Since x ∈ J , we conclude the set ϑ is bounded. From
Lemma 5, the conclusion holds, and there is at least one fixed point of the operator �,
which solves the problem (2). �

Suppose κ2(x) = κ3(x) ≡ 0 and κ2(x) = κ3(x) ≡ 0. In this case, we obtain the following
specific form of Theorem 1:
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Corollary 1 Consider two continuous functions η, ζ : J ×R
2 → R and assume there exist

nonnegative continuous functions κ1,κ1 ∈ C([0,� ],R+), such that

∣
∣η(x, l, m)

∣
∣ ≤ κ1(x),

∣
∣ζ (x, l, m)

∣
∣ ≤ κ1(x), ∀(x, l, m) ∈ J ×R

2.

Thus, the set J has at least one solution to problem (2).

Corollary 2 In the Theorem 1 statement, if κi(t) = λi, κi(t) = ξi, i = 1, 2, 3 (λi, ξi are exam-
ined positive constants), then the functions’ conditions η, ζ yield the form:

(M′
1)

∣
∣η(x, l, m)

∣
∣ ≤ λ1 + λ2|l| + λ3|m|, ∀(x, l, m) ∈ J ×R

2,
∣
∣η(x, l, m)

∣
∣ ≤ ξ1 + ξ2|l| + ξ3|m|, ∀(x, l, m) ∈ J ×R

2

and (15) and (16) become

λ2

(

2σ1 +
(ψ(� ) – ψ(0))ρ

�(ρ + 1)

)

+ ξ2

(

2σ2 +
(ψ(� ) – ψ(0))τ

�(τ + 1)

)

< 1,

λ3

(

2σ1 +
(ψ(� ) – ψ(0))ρ

�(ρ + 1)

)

+ ξ3

(

2σ2 +
(ψ(� ) – ψ(0))τ

�(τ + 1)

)

< 1.

Applying Banach’s contraction mapping principle, we express the existence of a unique
solution for problem (2) in the next result.

Theorem 2 Consider two continuous functions η, ζ : [0, 1]×R
2 →R and the presumption

(M2) holds. Subsequently, the problem (2) has a unique solution on J if

U�η + V�ζ < 1, (17)

where U = max{U1, U2}, V = max{V1, V2}, �η = ( (ψ(� )–ψ(0))ρ
�(ρ+1) + 2σ1) and �ζ = (2σ2 +

(ψ(� )–ψ(0))τ
�(τ+1) ), and σi, i = 1, 2 are defined by (13) and (14).

Proof Let us consider the operator � : ξ → ξ defined by (10) and fix

r >
Q1( (ψ(� )–ψ(0))ρ

�(ρ+1) + 2σ1) + Q2( (ψ(� )–ψ(0))τ
�(τ+1) + 2σ2)

1 – (U ( (ψ(� )–ψ(0))ρ
�(ρ+1) + 2σ1) + V( (ψ(� )–ψ(0))τ

�(τ+1) + 2σ2))
,

where Q1 = supx∈[0,� ] |η(x, 0, 0)|, and Q2 = supx∈[0,� ] |ζ (x, 0, 0)|. Then, we show that �Ar ⊂
Ar , where Ar = {(l, m) ∈ ξ : ‖(l, m)‖ ≤ t}. For (l, m) ∈ Ar , we have

∣
∣�1(l, m)(x)

∣
∣

≤ 1
2

{
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
[∣
∣η

(
g, l(g), m(g)

)
– η(g, 0, 0)

∣
∣ + Q1

]
dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
[∣
∣ζ

(
g, l(g), m(g)

)
– ζ (g, 0, 0)

∣
∣ + Q2

]
dg

)

+
1

ς – 	

∫ ς
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×
(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
[∣
∣ζ

(
μ, l(μ), m(μ)

)
– ζ (μ, 0, 0)

∣
∣ + Q2

]
dμ

+
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
[∣
∣η

(
μ, l(μ), m(μ)

)
– η(μ, 0, 0)

∣
∣ + Q1

]
dμ

)

dg
}

+
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))ρ–1

�(ρ)
[∣
∣η

(
g, l(g), m(g)

)
– η(g, 0, 0)

∣
∣ + Q1

]
dg

≤
(

U
(

(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ σ1

)

+ Vσ2

)
(‖l‖ + ‖m‖)

+ Q1

(
(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ σ1

)

+ Q2σ2.

Hence, when taking the norm for x ∈ J , we arrive at

∥
∥�1(l, m)

∥
∥ ≤

(

U
(

(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ σ1

)

+ Vσ2

)
(‖l‖ + ‖m‖) (18)

+ Q1

(
(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ σ1

)

+ Q2σ2.

Similar to this, given (l, m) ∈ Ar , one can obtain

∥
∥�2(l, m)

∥
∥ ≤

(

Uσ1 + V
(

(ψ(� ) – ψ(0))τ

�(τ + 1)
+ σ2

))
(‖l‖ + ‖m‖)

+ Q2

(
(ψ(� ) – ψ(0))τ

�(τ + 1)
+ σ2

)

+ Q1σ1.

Consequently, we have for any (l, m) ∈ Ar

∥
∥�(l, m)

∥
∥ =

∥
∥�1(l, m)

∥
∥ +

∥
∥�2(l, m)

∥
∥

≤
(

U
(

(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ 2σ1

)

+ V
(

(ψ(� ) – ψ(0))τ

�(τ + 1)
+ 2σ2

))
(‖l‖ + ‖m‖)

+ Q1

(
(ψ(� ) – ψ(0)ρ

�(ρ + 1)
+ 2σ1

)

+ Q2

(
(ψ(� ) – ψ(0))τ

�(τ + 1)
+ 2σ2

)

< r,

proving that � maps Ar into itself.
Let (l1, m1), (l2, m2) ∈ ξ , x ∈ [0, 1] to prove the operator � is a contraction. Then, in view

of (M2), we have

∣
∣�1(l1, m1)(x) – �1(l2, m2)(x)

∣
∣

≤ 1
2

{
1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
∣
∣η

(
g, l1(g), m1(g)

)
– η

(
g, l2(g), m2(g)

)∣
∣dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
∣
∣ζ

(
g, l1(g), m1(g)

)
– ζ

(
g, l2(g), m2(g)

)∣
∣dg

)

+
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )

× ∣
∣ζ

(
μ, l1(μ), m1(μ)

)
– ζ

(
μ, l2(μ), m2(μ)

)∣
∣dμ
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+
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
∣
∣η

(
μ, l1(μ), m1(μ)

)
– η

(
μ, l2(μ), m2(μ)

)∣
∣dμ

)

dg
}

+
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))ρ–1

�(ρ)
∣
∣η

(
g, l1(g), m1(g)

)
– η

(
g, l2(g), m2(g)

)∣
∣dg

≤
(

U
(

(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ σ1

)

+ Vσ2

)
(‖l‖ + ‖m‖).

Also, we have

∣
∣�2(l1, m1)(x) – �2(l2, m2)(x)

∣
∣

≤ 1
2

{
1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
∣
∣η

(
g, l1(g), m1(g)

)
– η

(
g, l2(g), m2(g)

)∣
∣dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
∣
∣ζ

(
g, l1(g), m1(g)

)
– ζ

(
g, l2(g), m2(g)

)∣
∣

)

+
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )

× ∣
∣ζ

(
μ, l1(μ), m1(μ)

)
– ζ

(
μ, l2(μ), m2(μ)

)∣
∣dμ

+
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
∣
∣η

(
μ, l1(μ), m1(μ)

)
– η

(
μ, l2(μ), m2(μ)

)∣
∣dμ

)

dg
}

+
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))τ–1

�(τ )
∣
∣ζ

(
g, l1(g), m1(g)

)
– ζ

(
g, l2(g), m2(g)

)∣
∣dg

≤
(

Uσ1 + V
(

(ψ(� ) – ψ(0))τ

�(τ + 1)
+ σ2

))
(‖l‖ + ‖m‖).

It follows from the preceding inequalities that

∥
∥�(l1, m1)(x) – �(l2, m2)(x)

∥
∥

=
∥
∥�1(l1, m1) – �1(l2, m2)

∥
∥ +

∥
∥�2(l1, m1) – �2(l2, m2)

∥
∥

≤
{

U
(

(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ 2σ1

)

+ V
(

(ψ(� ) – ψ(0))τ

�(τ + 1)
+ 2σ2

)}

× ∥
∥(l1 – l2, m1 – m2)

∥
∥.

In this manner, � is a contraction mapping based on (17). As a result, according to the
Banach contraction mapping, � possesses a unique fixed point. Hence, we may conclude
that there is unique solution to problem (2) on J . The proof is concluded. �

4 Hyers–Ulam stability of the coupled system
Definition 4 If there exist positive constants Fi > 0 (i = 1, 2), then the coupled system of
Hammerstein-type integral equations is Hyers–Ulam stable. Also, the following assertions
hold: for �i > 0, i = 1, 2, if

∣
∣
∣
∣l(x) –

1
2

{
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
H(g) dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
Z(g) dg

)
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–
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
Z(μ) dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
H(μ) dμ

)

dg
}

+
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))ρ–1

�(ρ)
H(g) dg

∣
∣
∣
∣ ≤ �1, (19)

∣
∣
∣
∣m(x) –

1
2

{

–
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
H(g) dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
Z(g) dg

)

+
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
Z(μ) dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
H(μ) dμ

)

dg
}

+
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))τ–1

�(τ )
H(g) dg

∣
∣
∣
∣ ≤ �2, (20)

then there exist (l∗(x), m∗(x)), satisfying

l∗(x) =
1
2

{
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
H(g) dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
Z(g) dg

)

–
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
Z(μ) dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
H(μ) dμ

)

dg
}

–
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))ρ–1

�(ρ)
H(g) dg,

m∗(x) =
1
2

{

–
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
H(g) dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
Z(g) dg

)

+
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
Z(μ) dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
H(μ) dμ

)

dg
}

–
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))τ–1

�(τ )
H(g) dg,

such that

∣
∣l(x) – l∗(x)

∣
∣ ≤ F1�1, x ∈ [0,� ], (21)
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∣
∣m(x) – m∗(x)

∣
∣ ≤ F2�2, x ∈ [0,� ]. (22)

Based on our observations, Hyers–Ulam stability of the solution to the problem is deter-
mined in this section.

Theorem 3 By the assumption that η, ζ : [0, 1] × R
2 → R are continuous functions and

there exist constants Ui, Vi, i = 1, 2 such that for all x ∈ [0,� ] and l, m, h1, h2 ∈R,

∣
∣η(x, l, h1) – η(x, m, h2)

∣
∣ ≤ U1|l – m| + U2|h1 – h2|, ∀x ∈ J , Ui ∈ R, i = 1, 2, (23)

∣
∣ζ (x, l, h1) – ζ (x, m, h2)

∣
∣ ≤ V1|l – m| + V2|h1 – h2|, ∀x ∈ J , Vi ∈ R, i = 1, 2 (24)

system (2) is Hyers–Ulam stable.

Proof Consider (l(x), m(x)) to be the exact solution and (l∗(x), m∗(x)) to be any other solu-
tion of system (3) according to Theorem 2 and Definition 4. Following that, using (6) and
(7), we have

∣
∣l(x) – l∗(x)

∣
∣ ≤

∣
∣
∣
∣
1
2

{
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
η
(
g, l(g), m(g)

)
dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
ζ
(
g, l(g), m(g)

)
dg

)

–
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
ζ
(
μ, l(μ), m(μ)

)
dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
η
(
μ, l(μ), m(μ)

)
dμ

)

dg
}

–
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))ρ–1

�(ρ)
η
(
g, l(g), m(g)

)
dg

–
1
2

{
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
η
(
g, l∗(g), m∗(g)

)
dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
ζ
(
g, l∗(g), m∗(g)

)
dg

)

–
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
ζ
(
μ, l∗(μ), m∗(μ)

)
dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
η
(
μ, l∗(μ), m∗(μ)

)
dμ

)

dg
}

+
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))ρ–1

�(ρ)
η
(
g, l∗(g), m∗(g)

)
dg

∣
∣
∣
∣

≤ 1
4

∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)

× [∣
∣η

(
g, l(g), m(g)

)
– η

(
g, l∗(g), m∗(g)

)∣
∣
]

dg

+
1
4

∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )

× [∣
∣ζ

(
g, l(g), m(g)

)
– ζ

(
g, l∗(g), m∗(g)

)∣
∣
]

dg
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+
1

2(ς – 	)

∫ ς

	

{∫ r

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )

× [∣
∣ζ

(
μ, l(μ), m(μ)

)
– ζ

(
μ, l∗(μ), m∗(μ)

)∣
∣
]

dμ

}

dg

+
1

2(ς – 	)

∫ ς

	

{∫ r

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)

× [
∣
∣η

(
μ, l(μ), m(μ)

)
– η

(
μ, l∗(μ), m∗(μ)

)∣
∣dμ

}

dg

+
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))ρ–1

�(ρ)
dg

[∣
∣η

(
g, l(g), m(g)

)
– η

(
g, l∗(g), m∗(g)

)∣
∣
]

≤ �η

{
(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ 2σ1

}
[∣
∣l(x) – l∗(x)

∣
∣ +

∣
∣m(x) – m∗(x)

∣
∣
]
, (25)

which implies that

∥
∥l – l∗

∥
∥ ≤ �η

{
(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ 2σ1

}

× [∥
∥l(x) – l∗(x)

∥
∥ +

∥
∥m(x) – m∗(x)

∥
∥
]

≤ F1�1, (26)

where F1 = { (ψ(� )–ψ(0))(ρ)�η

�(ρ+1) + 2σ1}.
Similarly, we further have

∣
∣m(x) – m∗(x)

∣
∣ ≤

∣
∣
∣
∣
1
2

{

–
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
η
(
g, l(g), m(g)

)
dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
ζ
(
g, l(g), m(g)

)
dg

)

+
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
ζ
(
μ, l(μ), m(μ)

)
dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
η
(
μ, l(μ), m(μ)

)
dμ

)

dg
}

–
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))τ–1

�(τ )
η
(
g, l(g), m(g)

)
ds

–
1
2

{

–
B

ς – 	
+

1
2

(∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
η
(
g, l∗(g), m∗(g)

)
dg

+
∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )
ζ
(
g, l∗(g), m∗(g)

)
dg

)

+
1

ς – 	

∫ ς

	

(∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )
ζ
(
μ, l∗(μ), m∗(μ)

)
dμ

–
∫ g

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)
η
(
μ, l∗(μ), m∗(μ)

)
dμ

)

dg
}

+
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))τ–1

�(τ )
ζ
(
g, l∗(g), m∗(g)

)
dg

∣
∣
∣
∣

≤ 1
4

∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))ρ–1

�(ρ)
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× [∣
∣η

(
g, l(g), m(g)

)
– η

(
g, l∗(g), m∗(g)

)∣
∣
]

dg

+
1
4

∫ �

0

ψ ′(g)(ψ(� ) – ψ(g))τ–1

�(τ )

× [∣
∣ζ

(
g, l(g), m(g)

)
– ζ

(
g, l∗(g), m∗(g)

)∣
∣
]

dg

+
1

2(ς – 	)

∫ ς

	

{∫ r

0

ψ ′(μ)(ψ(g) – ψ(μ))τ–1

�(τ )

× [∣
∣ζ

(
μ, l(μ), m(μ)

)
– ζ

(
μ, l∗(μ), m∗(μ)

)∣
∣
]

dμ

}

dg +
1

2(ς – 	)

×
∫ ς

	

{∫ r

0

ψ ′(μ)(ψ(g) – ψ(μ))ρ–1

�(ρ)

× [
∣
∣η

(
μ, l(μ), m(μ)

)
– η

(
μ, l∗(μ), m∗(μ)

)∣
∣dμ

}

dg

+
∫ x

0

ψ ′(g)(ψ(x) – ψ(g))ρ–1

�(ρ)
ds

× [∣
∣η

(
g, l(g), m(g)

)
– η

(
g, l∗(g), m∗(g)

)∣
∣
]

≤ �ζ

{
(ψ(� ) – ψ(0))τ

�(τ + 1)
+ 2σ2

}
[∣
∣l(x) – l∗(x)

∣
∣ +

∣
∣m(x) – m∗(x)

∣
∣
]
, (27)

which implies that

∥
∥m – m∗∥∥ ≤ �ζ

{
(ψ(� ) – ψ(0))τ

�(τ + 1)
+ 2σ2

}

× [∥
∥l(x) – l∗(x)

∥
∥ +

∥
∥m(x) – m∗(x)

∥
∥
]

≤ F2�2, (28)

where F2 = �ζ { (ψ(� )–ψ(0))τ
�(τ+1) + 2σ2}.

As a result, considering (25) and (27), the system of integral equations (3) is Hyers–Ulam
stable, and as a result, the solution of system (2) is also Hyers–Ulam stable. �

5 Illustrative example
Here, we verify the proposed theoretical results by implementing them on a problem.

Example 1 Consider the following problem

⎧
⎪⎪⎨

⎪⎪⎩

cD(2/3:x2)l(x) = η(x, l, m), x ∈ [0, 2],
cD(4/5:x2)l(x) = ζ (x, l, m), x ∈ [0, 2],

(l + m)(0) = –(l + m)(2),
∫ 3/2

1/2 (l – m)(r) dg = 3,

(29)

where ρ = 2/3, τ = 4/5, ψ(x) = x2, 	 = 1/2, ς = 3/2, B = 3, � = 2, and η(x, l, m) and ζ (x, l, m)
will be fixed later.

The data we have available lead us to the conclusion that σ1 = 0.9881225695, σ2 =
1.000470521, where σ1 and σ2 are in (13) and (14).

To illustrate Theorem 1, we take η(x, l, m) = e–x

2(
√

6+x2)
(xl + m + cos t) and ζ (x, l, m) =

1
(2+x)2 (l + tm + e–t).
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It is clear that η and ζ are continuous and satisfy the condition (M1) with

κ1(x) =
cos xe–x

2
√

(6 + x2)
; κ2(x) =

xe–x

2
√

(6 + x2)
; κ3(x) =

e–x

2
√

(6 + x2)
;

κ1 =
e–x

(2 + x)2 ; κ2 =
x

(2 + x)2 ; κ3 =
1

(2 + x)2 .

Furthermore, we have

‖κ2‖
(

2σ1 +
(ψ(� ) – ψ(0))ρ

�(ρ + 1)

)

+ ‖κ2‖
(

2σ2 +
(ψ(� ) – ψ(0))τ

�(τ + 1)

)

≈ 0.8689

and

‖κ3‖
(

2σ1 +
(ψ(� ) – ψ(0))ρ

�(ρ + 1)

)

+ ‖κ3‖
(

2σ2 +
(ψ(� ) – ψ(0))τ

�(τ + 1)

)

≈ 0.5336.

Therefore, the criterion provided in Theorem 1 applies, and the problem (29) has a unique
solution with η(x, l, m) and ζ (x, l, m) given by (30) and (31).

To illustrate the application of Theorem 2, we choose

η
(
x, l(x), m(x)

)
=

1
18(1 + x2)

{
l

1 + |l| + tan–1(m)
}

, (30)

ζ
(
x, l(x), m(x)

)
=

1
2
√

6 + x2

(
2 tan–1(l) + sin(m)

)
.

Then,

∣
∣η(x, l, h1) – η(x, m, h2)

∣
∣ ≤ 1

40
|l – m| +

1
30

|h1 – h2|,
∣
∣ζ (x, l, h1) – ζ (x, m, h2)

∣
∣ ≤ 1

30
|l – m| +

1
40

|h1 – h2|. (31)

Therefore, (M2) holds and we have U = 0.0333; V = 0.0333.
Then,

max(U1, U2)�η + max(V1, V2)�ζ

= 0.0333
{

(ψ(� ) – ψ(0))ρ

�(ρ + 1)
+ 2σ1

}

+ 0.0333
{

(ψ(� ) – ψ(0))τ

�(τ + 1)
+ 2σ2

}

= 0.1544 + 0.1788

= 0.3333

< 1.

Consequently, the coupled system (29) has a unique solution and is Hyers–Ulam stable,
as it satisfies all the conditions of Theorem 2.
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6 Conclusion
We have derived some novel results on the existence, uniqueness, and stability of the so-
lution for a nonlinear coupled system with ψ-Caputo fractional derivatives. We have used
the features of fixed-point theory to establish the proposed results. We have provided an
illustrative example to verify the theoretical findings. The proposed analyses of existence,
uniqueness, and stability in terms of the ψ-Caputo fractional derivative are novel and pro-
vide further insights into the theory of coupled FBVPs. In the future, the results will be
helpful to check the qualitative behavior of the proposed types of problems. This work can
be extended to any other fractional derivative.
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