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Abstract
Establishing financial models or economic models to describe economic phenomena
in real life has become a heated discussion in society at present. From a mathematical
point of view, the exploration on dynamics of financial models or economic models is
a valuable work. In this study, we build a new delayed finance model and explore the
dynamical behavior containing existence and uniqueness, boundedness of solution,
Hopf bifurcation, and Hopf bifurcation control of the considered delayed finance
model. By virtue of fixed point theorem, we prove the existence and uniqueness of
the solution to the considered delayed finance model. Applying a suitable function,
we obtain the boundedness of the solutions for the considered delayed finance
model. Taking advantage of the stability criterion and bifurcation argument of
delayed differential equation, we establish a delay-independent condition ensuring
the stability and generation of Hopf bifurcation of the involved delayed finance
model. Exploiting hybrid controller including state feedback and parameter
perturbation, we efficaciously adjust the stability region and the time of occurrence
of Hopf bifurcation of the involved delayed finance model. The study manifests that
time delay is a fundamental parameter in controlling stability region and the time of
onset of Hopf bifurcation of the involved delayed finance model. To examine the
soundness of established key results, computer simulation figures are concretely
displayed. The derived conclusions of this study are perfectly new and has
momentous theoretical value in economical operation.
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1 Introduction
Economic activity is kind of complex behavior of human beings. In many cases, economic
activity displays lots of indeterminacies in our life [1]. In mathematics, nonlinear differen-
tial equation is a suitable tool to describe this complex phenomenon in economic activity.
Thus setting up differential dynamical models to reflect the relationship among variables
of economic activity has become a very main task. During the past decades, there are many
preeminent works on finance models. For example, Ma and Chen [2, 3] investigated the
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bifurcation problem and the complicated global behavior of the following finance model.

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = u3(t) + (u2(t) – α)u1(t),

u̇2(t) = 1 – βu2(t) – u2
1(t),

u̇3(t) = –u1(t) – γ u3(t),

(1)

where u1(t) stands for the interest rate at time t, u2(t) stands for the investment demand
at time t, and u3(t) stands for the price index at time t. α represents the savings amount, β
represents the cost per investment, γ represents the elasticity of demand of commercial
market. α, β , γ are all positive constants. In 2012, Ma and Wang [4] studied the onset of
both Hopf bifurcation and topological horseshoe of model (1). In 2009, Gao and Ma [5]
dealt with the chaos phenomenon and Hopf bifurcation control of model (1). Yusuf et al.
[6] explored the existence and uniqueness of the solutions for the fractional-order version
of model (1).

Here we point out that in economic activity the change of the interest rate, the invest-
ment demand, and the price index not only depend on the current time, but also depend
on the past time. For example, in some cases, the change of the interest rate u1(t) is af-
fected by u2(t) and u2(t –σ ), where σ is a positive constant. Thus time delay often arises in
economic activity. Based on this viewpoint, many scholars pay much attention to delayed
finance models and have achieved many outstanding achievements. For instance, Zhang
and Zhu [7] studied the Hopf bifurcation and chaos of the following finance system with
single delay:

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = u3(t – σ ) + (u2(t) – α)u1(t),

u̇2(t) = 1 – βu2(t) – u2
1(t),

u̇3(t) = –u1(t) – γ u3(t),

(2)

where σ is a delay. In 2011, Wang et al. [8] explored the single-periodic, multiple-periodic,
and chaotic motions of the following fractional-order financial model:

⎧
⎪⎪⎨

⎪⎪⎩

Dp1
t u1(t) = u3(t) + (u2(t – σ ) – α)u1(t),

Dp2
t u2(u) = 1 – βu2(t) – u2

1(t – σ ),

Dp3
t u3(t) = –u1(t – σ ) – γ u3(t),

(3)

where p1, p2, p3 ∈ (0, 1] are constants. In 2014, Chen et al. [9] discussed the stability of
the unique equilibrium and Hopf bifurcations problem of the following delayed finance
model:

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = u3(t) + (u2(t – σ ) – α)u1(t),

u̇2(t) = 1 – βu2(t) – u2
1(t – σ ),

u̇3(t) = –u1(t – σ ) – γ u3(t).

(4)

In this paper, based on the previous publications and considering that the interest rate and
the investment demand are affected by the feedback time of the investment demand, we
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propose the following delayed finance model:

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = u3(t) + (u2(t – σ ) – α)u1(t),

u̇2(t) = 1 – βu2(t – σ ) – u2
1(t),

u̇3(t) = –u1(t) – γ u3(t),

(5)

where σ is a time delay that stands for the feedback time of the investment demand. The
model (5) plays a vital role in investment field of financial industry.

Delay-induced Hopf bifurcation is a vital dynamical phenomenon in nonlinear dynam-
ical systems [10–25]. In economics, delay-induced Hopf bifurcation can commendably
portray the economic phenomenon. Thus we think that it is very meaningful to study
delay-induced Hopf bifurcation of finance models. In addition, to control the stability re-
gion and the onset of Hopf bifurcation to serve human beings, in some cases we need
to enlarge or narrow the stability region, delay, or advance the time of the onset of Hopf
bifurcation of finance models. Stimulated by this viewpoint, we are to explore the Hopf
bifurcation and Hop bifurcation control issue of model (5). In particular, we will explore
the following topics: (i) Prove the existence, uniqueness, and boundedness of the solution
to model (5). (ii) Analyze the stability and Hopf bifurcation of model (5). (iii) Explore Hopf
bifurcation control issue of model (5) by utilizing hybrid controller.

The primary highlights of this article are stated as follows: • On the basis of the previ-
ous publications, we build a new fractional-order delayed finance model. • The sufficient
condition to guarantee the stability and the onset of Hopf bifurcation of model (5) is es-
tablished. • Taking advantage of hybrid control strategy, the stability region and the time
of the onset of Hopf bifurcation of model (5) are effectively controlled. • The influence
of delay on the stability and the occurrence of Hopf bifurcation of model (5) has been re-
vealed. • The control idea can be utilized to explore the bifurcation control issue of plenty
of differential dynamical models in many fields.

This work is planned as follows: Segment 2 proves the existence and uniqueness, bound-
edness of the solution of system (5). Segment 3 discusses the stability and the creation of
Hopf bifurcation of system (5). Segment 4 explores the Hopf bifurcation control issue of
system (5) via a hybrid controller that includes state feedback and parameter perturba-
tion. Segment 5 carries out numerical simulations to verify the correctness of the derived
assertions. Segment 6 completes the article.

2 Dynamics analysis on the solution of system (5)
In this part, we will discuss the existence, uniqueness, and boundedness of the solution of
system (5) by utilizing fixed-point theorem and a suitable function.

Theorem 1 Denote � = {(u1, u2, u3) ∈ R3 : max{|u1|, |u2|, |u3|} ≤ U}, where U > 0 repre-
sents a constant. For every (u10, u20, u30) ∈ �, system (5) with the initial value (u10, u20, u30)
has a unique solution U = (u1, u2, u3) ∈ �.

Proof We construct a mapping as follows:

g(U) =
(
g1(U), g2(U), g3(U)

)
, (6)



Liu et al. Boundary Value Problems         (2023) 2023:82 Page 4 of 24

where

⎧
⎪⎪⎨

⎪⎪⎩

g1(U) = u3(t) + (u2(t – σ ) – α)u1(t),

g2(U) = 1 – βu2(t – σ ) – u2
1(t),

g3(U) = –u1(t) – γ u3(t).

(7)

For every U , Ũ ∈ �, one derives

∥
∥g(U) – g(Ũ)

∥
∥

=
∣
∣u3(t) +

(
u2(t – σ ) – α

)
u1(t) –

[
ũ3(t) +

(
ũ2(t – σ ) – α

)
ũ1(t)

]∣
∣

+
∣
∣1 – βu2(t – σ ) – u2

1(t) –
[
1 – βũ2(t – σ ) – ũ2

1(t)
]∣
∣

+
∣
∣–u1(t) – γ u3(t) –

[
–ũ1(t) – γ ũ3(t)

]∣
∣

≤ ∣
∣u3(t) – ũ3(t)

∣
∣ + α

∣
∣u1(t) – ũ1(t)

∣
∣ + U

∣
∣u2(t) – ũ2(t)

∣
∣

+ U
∣
∣u1(t) – ũ1(t)

∣
∣ + β

∣
∣u2(t) – ũ2(t)

∣
∣ + 2U

∣
∣u1(t) – ũ1(t)

∣
∣

+
∣
∣u1(t) – ũ1(t)

∣
∣ + γ

∣
∣u3(t) – ũ3(t)

∣
∣

= (1 + α + 3U )
∣
∣u1(t) – ũ1(t)

∣
∣

+ (β + U )
∣
∣u2(t) – ũ2(t)

∣
∣

+ (1 + γ )
∣
∣u3(t) – ũ3(t)

∣
∣

≤A‖U – Ũ‖, (8)

where

A = max{1 + α + 3U ,β + U , 1 + γ }. (9)

Then g(U) satisfies Lipschitz condition with respect to U (see [26]). By virtue of fixed-
point theorem, we can easily conclude that Theorem 1 is correct. �

Theorem 2 If 2β > α holds, then all solutions to system (5) beginning with R3
+ are uniformly

bounded.

Proof Define

W (t) = u2
1(t) + u2

2(t) + u2
3(t). (10)

Then

Ẇ (t) + αW (t) = 2u̇1(t)u1(t) + 2u̇2(t)u2(t) + 2u̇3(t)u3(t)

+ αu1(t) + αu2(t) + αu3(t)

= 2u1(t)
[
u3(t) +

(
u2(t – σ ) – α

)
u1(t)

]

+ 2u2(t)
[
1 – βu2(t – σ ) – u2

1(t)
]
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+ 2u3(t)
[
–u1(t) – γ u3(t)

]
+ αu1(t) + αu2(t) + αu3(t)

≤ –αu2
1(t) – (2β – α)u2

2(t) + 2u2(t) – (2γ – α)u2
3(t)

≤ 1
2β – α

. (11)

Then

W (t) → 1
α(2β – α)

, as t → ∞. (12)

The proof of Theorem 2 is completed. �

3 Bifurcation investigation of system (5)
Assume that

(C1) γ – αβγ – β > 0,

then it is easy to derive that system (5) has the following two equilibrium points:

U1(u1�, u2�, u3�), U2(–u1�, u2�, –u3�),

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1� =
√

γ –αβγ –β

γ
,

u2� = αγ +1
γ

,

u3� = – 1
γ

√
γ –αβγ –β

γ
.

(13)

In this paper, we only deal with the equilibrium point U1(u1�, u2�, u3�). For the equilibrium
point U2(–u1�, u2�, –u3�), we can deal with it in a similar method. The linear system of
model (5) around U1(u1�, u2�, u3�) takes the following expression:

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = (u2� – α)u1(t) + u3(t) + u1�u2(t – σ ),

u̇2(t) = –2u1�u1(t) – βu2(t – σ ),

u̇3(t) = –u1(t) – γ u3(t).

(14)

The characteristic equation of system (14) owns the following expression:

det

⎡

⎢
⎣

λ – (u2� – α) –u1�e–λσ –1
2u1� λ + βe–λσ 0

1 0 λ + γ

⎤

⎥
⎦ = 0, (15)

which generates

λ3 + a1λ
2 + a2λ +

(
a3λ

2 + a4λ + a5
)
e–λσ = 0, (16)
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where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = γ – u2� + α,

a2 = 1 – γ (u2� – α),

a3 = β ,

a4 = 2u2
1� – (u2� – α)β + βγ ,

a5 = 2u2
1�γ – γβ(u2� – α).

(17)

When σ = 0, then Eq. (16) becomes:

λ3 + (a1 + a3)λ2 + (a2 + a4)λ + a5 = 0, (18)

If

(C2)

⎧
⎪⎪⎨

⎪⎪⎩

A1 = a1 + a3 > 0,

A2 = det
[ a1+a3 1

a5 a2+a4

]
> 0,

A3 = a5A2 > 0

is fulfilled, then the three roots λ1, λ2, λ3 of Eq. (18) have negative real parts. Thus the
equilibrium point U1(u1�, u2�, u3�) of system (5) with σ = 0 is locally asymptotically stable.

Suppose that λ = iζ is the root of Eq. (16). Then Eq. (16) becomes:

(iζ )3 + a1(iζ )2 + a2iζ +
[
a3(iζ )2 + a4iζ + a5

]
e–iζσ = 0, (19)

which generates

–iζ 3 – a1ζ
2 + a2ζ i +

[
–a3ζ

2 + a4ζ i + a5
]
e–iζσ = 0. (20)

It follows from (20) that

⎧
⎨

⎩

(a5 – a3ζ
2) cos ζσ + a4ζ sin ζσ = a1ζ

2,

a4ζ cos ζσ – (a5 – a3ζ
2) sin ζσ = ζ 3 – a2ζ ,

(21)

By (21), we have

(
a5 – a3ζ

2)2 + (a4ζ )2 =
(
a1ζ

2)2 +
(
ζ 3 – a2ζ

)2, (22)

which means

ζ 6 +
(
a2

1 – a2
3 – 2a2

)
ζ 4 +

(
a2

2 – a2
4 + 2a3a5

)
ζ 2 – a2

5 = 0. (23)

Let


(ζ ) = ζ 6 +
(
a2

1 – a2
3 – 2a2

)
ζ 4 +

(
a2

2 – a2
4 + 2a3a5

)
ζ 2 – a2

5. (24)
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Since 
(0) = –a2
5 < 0 and limζ→+∞ 
(ζ ) = +∞ > 0, then we know that Eq. (23) has at least

one positive real root. Thus Eq. (16) has at least one pure root pair. Without loss of gen-
erality, we assume that Eq. (23) has six positive real roots (say ζj, j = 1, 2, . . . , 6). According
to (21), we have

σ
(h)
j =

1
ζj

[

arccos

(a1ζ
2
j (a5 – a3ζ

2
j ) + a4ζj(ζ 3

j – a2ζj)
(a5 – a3ζ

2
j )2 + a2

4ζ
2
j

)

+ 2hπ

]

, (25)

where j = 1, 2, 3, 4, 5, 6; h = 0, 1, 2, . . . . Denote σ0 = min{j=1,2,3,4,5,6;h=0,1,2,...}{σ (h)
j } and assume

that when σ = σ0, (16) has a pair of imaginary roots ±iζ0.
Now we give the following hypothesis:

(C3) G1RG2R + G1IG2I > 0,

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G1R = a2 + a4 cos ζ0σ0 + 2a3ζ0 sin ζ0σ0,

G1I = 2a1ζ0 – 3ζ 2
0 + 2a3ζ0 cos ζ0σ0 – a4 sin ζ0σ0,

G2R = (a5 – a3ζ
2
0 )ζ0 sin ζ0σ0 – a4ζ0 cos ζ0σ0,

G2I = (a5 – a3ζ
2
0 )ζ0 cos ζ0σ0 + a4ζ0 sin ζ0σ0.

(26)

Lemma 1 Suppose that s(σ ) = ε1(σ ) + iε2(σ ) is the root of Eq. (16) at σ = σ0 such that
ε1(σ0) = 0, ε2(σ0) = ζ0, then Re( ds

dσ
)|σ=σ0,ζ=ζ0 > 0.

Proof By Eq. (16), one gets

(
3λ2 + 2a1λ + a2

) dλ

dσ
+ (2a3λ + a4)e–λσ ds

dσ

– e–λσ

(
ds
dσ

σ + λ

)
(
a3λ

2 + a4λ + a5
)

= 0, (27)

which implies

(
dλ

dσ

)–1

=
G1(λ)
G2(λ)

–
σ

s
, (28)

where

⎧
⎨

⎩

G1(λ) = 3λ2 + 2a1λ + a2 + (2a3λ + a4)e–λσ ,

G2(λ) = λe–λσ (a3λ
2 + a4λ + a5).

(29)

Hence

Re

[(
dλ

dσ

)–1]

σ=σ0,ζ=ζ0

= Re

[G1(λ)
G2(λ)

]

σ=σ0,ζ=ζ0

=
G1RG2R + G1IG2I

G2
2R + I2

2I
. (30)
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Taking advantage of (C3), one gets

Re

[(
dλ

dσ

)–1]

σ=σ0,ζ=ζ0

> 0, (31)

which ends the proof. �

Based on the exploration above, then the following assertion can be easily derived.

Theorem 3 If (C1)–(C3) holds, then the equilibrium point U1(u1�, u2�, u3�) of model (5) is
locally asymptotically stable if σ ∈ [0,σ0) and a Hopf bifurcation of model (5) happens near
the equilibrium point U1(u1�, u2�, u3�) when σ = σ0.

4 Bifurcation control of system (5) via hybrid control strategy
In this part, we will deal with the Hopf bifurcation problem of system (5) via a suitable hy-
brid controller consisting of state feedback and parameter perturbation. Taking advantage
of the idea from [27, 28], we obtain the following controlled finance model:

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = ρ1[u3(t) + (u2(t – σ ) – α)u1(t)] + ρ2[u1(t) – u1(t – σ )],

u̇2(t) = ρ1[1 – βu2(t – σ ) – u2
1(t)] + ρ2[u2(t) – u2(t – σ )],

u̇3(t) = ρ1[–u1(t) – γ u3(t)] + ρ2[u3(t) – u3(t – σ )],

(32)

where ρ1, ρ2 represent feedback gain parameters. System (32) and system (5) have the
same equilibrium points. If (C1) holds, then it is easy to derive that system (32) has the
following two equilibrium points:

U1(u1�, u2�, u3�), U2(–u1�, u2�, –u3�),

In this paper, we only deal with the equilibrium point U1(u1�, u2�, u3�). For the equilibrium
point U2(–u1�, u2�, –u3�), we can deal with it in a similar method. The linear system of
model (32) around U1(u1�, u2�, u3�) takes the following expression:

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = [ρ1(u2� – α) + ρ2]u1(t) + ρ1u3(t) – ρ2u1(t – σ ) + ρ1u1�u2(t – σ ),

u̇2(t) = –2ρ1u1�u1(t) + ρ2u2(t) – (ρ1β + ρ2)u2(t – σ ),

u̇3(t) = –ρ1u1(t) – (γρ1 – ρ2)u3(t) – ρ2u3(t – σ ).

(33)

The characteristic equation of system (33) owns the following expression:

det

⎡

⎣
λ – [ρ1(u2� – α) + ρ2] + ρ2e–λσ –ρ1u1�e–λσ –ρ1

2ρ1u1� λ – ρ2 + (ρ1β + ρ2)e–λσ 0
ρ1 0 λ + (γρ1 – ρ2) + ρ2e–λσ

⎤

⎦

= 0, (34)

which generates

λ3 + b1λ
2 + b2λ + b3 +

(
b4λ

2 + b5λ + b6
)
e–λσ + (b7λ + b8)e–2λσ + b9e–3λσ = 0, (35)
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where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = (γ – 1)ρ1 – 2ρ2 – ρ1(u2� – α),

b2 = ρ2[ρ1(u2� – α) + ρ2] + ρ2
1

– (γρ1 – ρ2)[ρ1(u2� – α) + ρ1 + ρ2],

b3 = ρ1(γρ1 – ρ2)[ρ1(u2� – α) + ρ2] – ρ2
1ρ2,

b4 = 2ρ2 + ρ1β + ρ2,

b5 = (2ρ2 + ρ1β)(γρ1 – ρ2) – ρ2
2 + 2ρ2

1 u2
1�

– [ρ1(u2� – α) + ρ2](ρ1β + ρ2)

– ρ2[ρ1(u2� – α) + ρ1 + ρ2],

b6 = ρ2
2 [ρ1(u2� – α) + ρ2] + ρ2

1 (ρ1β + ρ2)

– {ρ2
2 + [ρ1(u2� – α) + ρ2](ρ1β + ρ2)}

× (γρ1 – ρ2) + 2ρ2
1 u2

1�(γρ1 – ρ2),

b7 = ρ2(ρ1β + ρ2) + ρ2(2ρ2 + ρ1β),

b8 = ρ2(γρ1 – ρ2)(ρ1β + ρ2) + 2ρ2ρ
2
1 u2

1�

– ρ1{ρ2
2 + [ρ1(u2� – α) + ρ2](ρ1β + ρ2)},

b9 = ρ2
2 (ρ1β + ρ2).

(36)

When σ = 0, then Eq. (35) becomes:

λ3 + (b1 + b4)λ2 + (b2 + b5 + b7)λ + b3 + b6 + b9 = 0, (37)

If

(C4)

⎧
⎪⎪⎨

⎪⎪⎩

B1 = b1 + b4 > 0,

B2 = det
[ b1+b4 1

b3+b6+b9 b2+b5+b7

]
> 0,

B3 = (b3 + b6 + b9)B2 > 0

is fulfilled, then the three roots λ1, λ2, λ3 of Eq. (37) have negative real parts. Thus the
equilibrium point U1(u1�, u2�, u3�) of system (32) with σ = 0 is locally asymptotically stable.

Equation (35) can be rewritten in the following form:

(
λ3 + b1λ

2 + b2λ + b3
)
eλσ +

(
b4λ

2 + b5λ + b6
)

+ (b7λ + b8)e–λσ + b9e–2λσ = 0. (38)

Suppose that λ = iς is the root of Eq. (38). Then Eq. (38) becomes:

[
(iς )3 + b1(iς )2 + b2iς + b3

]
eiςσ +

[
b4(iς )2 + b5iς + b6

]

+ (b7iς + b8)e–iςσ + b9e–2iςσ = 0, (39)

which generates

⎧
⎨

⎩

(b3 + b8 – b1ς
2) cosςσ + (b7ς – b2ς + ς3) sinςσ + b6 – b4ς

2 = –b9 cos 2ςσ ,

(b2ς + b8 – ς3 + b7ς ) cosςσ + (b3 – b8 – b1ς
2) sinςσ + b5ς = b9 sin 2ςσ .

(40)
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By (40), we have

[(
b3 + b8 – b1ς

2) cosςσ +
(
b7ς – b2ς + ς3) sinςσ + b6 – b4ς

2]2

+
[(

b2ς + b8 – ς3 + b7ς
)

cosςσ +
(
b3 – b8 – b1ς

2) sinςσ + b5ς
]2 = b2

9, (41)

which means

[(
b3 + b8 – b1ς

2)2 +
(
b2ς + b8 – ς3 + b7ς

)2]
cos2 ςσ

+
[(

b7ς – b2ς + ς3)2 +
(
b3 – b8 – b1ς

2)2]
sin2 ςσ

+ 2
[(

b3 + b8 – b1ς
2)(b7ς – b2ς + ς3)

+
(
b2ς + b8 – ς3 + b7ς

)(
b3 + b8 – b1ς

2)]

× sinςσ cosςσ + 2
[
b5ς

(
b2ς + b8 – ς3 + b7ς

)
– b4ς

2(b3 + b8 – b1ς
2)] cosςσ

+ 2
[(

b6 – b4ς
2)(b7ς – b2ς + ς3) + b5ς

(
b3 + b8 – b1ς

2)] sinςσ

+
(
b6 – b4ς

2)2 + (b5ς )2 – b2
9 = 0. (42)

It follows from (42) that

[(
b3 + b8 – b1ς

2)2 +
(
b2ς + b8 – ς3 + b7ς

)2

+
(
b3 + b8 – b1ς

2)(b7ς – b2ς + ς3)

+
(
b2ς + b8 – ς3 + b7ς

)(
b3 + b8 – b1ς

2)] cos2 ςσ

+
[(

b7ς – b2ς + ς3)2 +
(
b3 – b8 – b1ς

2)2

–
(
b3 + b8 – b1ς

2)(b7ς – b2ς + ς3)

–
(
b2ς + b8 – ς3 + b7ς

)(
b3 + b8 – b1ς

2)] sin2 ςσ

+ 2
[
b5ς

(
b2ς + b8 – ς3 + b7ς

)
– b4ς

2(b3 + b8 – b1ς
2)] cosςσ

+ 2
[(

b6 – b4ς
2)(b7ς – b2ς + ς3) + b5ς

(
b3 + b8 – b1ς

2)] sinςσ

+
(
b6 – b4ς

2)2 + (b5ς )2 – b2
9 = 0. (43)

In view of sinςσ = ±√
1 – cos2 ςσ , (43) takes the form:

[(
b3 + b8 – b1ς

2)2 +
(
b2ς + b8 – ς3 + b7ς

)2

+
(
b3 + b8 – b1ς

2)(b7ς – b2ς + ς3)

+
(
b2ς + b8 – ς3 + b7ς

)(
b3 + b8 – b1ς

2)] cos2 ςσ

+
[(

b7ς – b2ς + ς3)2 +
(
b3 – b8 – b1ς

2)2

–
(
b3 + b8 – b1ς

2)(b7ς – b2ς + ς3)

–
(
b2ς + b8 – ς3 + b7ς

)(
b3 + b8 – b1ς

2)] sin2 ςσ

+ 2
[
b5ς

(
b2ς + b8 – ς3 + b7ς

)
– b4ς

2(b3 + b8 – b1ς
2)] cosςσ
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+ 2
[(

b6 – b4ς
2)(b7ς – b2ς + ς3) + b5ς

(
b3 + b8 – b1ς

2)](±
√

1 – cos2 ςσ
)

+
(
b6 – b4ς

2)2 + (b5ς )2 – b2
9 = 0. (44)

In (44), we denote

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = (b3 + b8 – b1ς
2)2 + (b2ς + b8 – ς3 + b7ς )2

+ (b3 + b8 – b1ς
2)(b7ς – b2ς + ς3)

× (b2ς + b8 – ς3 + b7ς )(b3 + b8 – b1ς
2),

c2 = (b7ς – b2ς + ς3)2 + (b3 – b8 – b1ς
2)2

– (b3 + b8 – b1ς
2)(b7ς – b2ς + ς3)

– (b2ς + b8 – ς3 + b7ς )(b3 + b8 – b1ς
2),

c3 = 2[b5ς (b2ς + b8 – ς3 + b7ς ) – b4ς
2(b3 + b8 – b1ς

2)],

c4 = 2[(b6 – b4ς
2)(b7ς – b2ς + ς3) + b5ς (b3 + b8 – b1ς

2)],

c5 = (b6 – b4ς
2)2 + (b5ς )2 – b2

9,

(45)

then (44) becomes

c1 cos2 ςσ + c2 sin2 ςσ + c3 cosςσ + c4
(±

√
1 – cos2 ςσ

)
+ c5 = 0. (46)

Then

(c1 – c2) cos2 ςσ + c3 cosςσ + c2 + c5 = c4
(±

√
1 – cos2 ςσ

)
, (47)

which leads to

d1 cos3 ςσ + d2 cos3 ςσ + d3 cos2 ςσ + d4 cosςσ + d5 = 0, (48)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1 = (c1 – c – 2)2,

d2 = 2c3(c1 – c2),

d3 = 2(c1 – c2)(c2 – c5) + c2
3 + c2

4,

d4 = 2c3(c2 + c5),

d5 = (c2 + c4)2 – c2
4.

(49)

By virtue of computer software, we can solve the value of cosςσ . Here we assume that

cosςσ = f1(ς ). (50)

Then we can solve the value of sinςσ . Here we assume that

sinςσ = f2(ς ). (51)
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Using (50) and (51), we have

f 2
1 (ς ) + f 2

2 (ς ) = 1. (52)

By virtue of (52), we can easily obtain the value of ς (say ς0). According to (50), we get

σk =
1
ς0

[
arccos f1(ς0) + 2kπ

]
, k = 0, 1, 2, . . . . (53)

Denote

σ� = min
{k=0,1,2,...}

{σk}. (54)

Now we know that when σ = σ�, (35) has a pair of imaginary roots ±iς0.
Now we give the following hypothesis:

(C5) H1RH2R + H1IH2I > 0,

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1R = b2 – 3ς2
0 + b5 cosς0σ� + 2b4 sinς0σ� + b7 cos 2ς0σ�,

H1I = 2b1ς0 – b5 sinς0σ� + 2b4 cosς0σ� – b7 sin 2ς0σ�,

H2R = (b5 – b4ς
2
0 )ς0 sinς0σ� – b5ς

2
0 cosς0σ� + 3b9ς0 sin 3ς0σ�

+ 2b8ς0 sin 2ς0σ� – 2b7ς0 cos 2ς0σ�,

H2I = (b5 – b4ς
2
0 )ς0 cosς0σ� + b5ς

2
0 sinς0σ� + 3b9ς0 cos 3ς0σ�

+ 2b7ς0 sin 2ς0σ� + 2b8ς0 cos 2ς0σ�.

(55)

Lemma 2 Suppose that s(σ ) = ε1(σ ) + iε2(σ ) is the root of Eq. (35) at σ = σ� such that
ε1(σ�) = 0, ε2(σ�) = ς0, then Re( ds

dσ
)|σ=σ� ,ς=ς0 > 0.

Proof By Eq. (35), one gets

(
3λ2 + 2b1λ + b2

) dλ

dσ
+ (2b4λ + b5)e–λσ ds

dσ

– e–λσ

(
ds
dσ

σ + λ

)
(
b4λ

2 + b5λ + b6
)

+ b7e–2λσ ds
dσ

– 2e–2λσ

(
ds
dσ

σ + λ

)

(b7λ + b8) – 3b9e–3λσ

(
ds
dσ

σ + λ

)

= 0, (56)

which implies

(
dλ

dσ

)–1

=
H1(λ)
H2(λ)

–
σ

s
, (57)

where
⎧
⎨

⎩

H1(λ) = 3λ2 + 2b1λ + b2 + (2b4λ + b5)e–λσ + b7e–2λσ ,

H2(λ) = λe–λσ (b4λ
2 + b4λ + b6) + 2λe–2λσ (b7λ + b8) + 3λb9e–3λσ .

(58)
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Hence

Re

[(
dλ

dσ

)–1]

σ=σ� ,ς=ς0

= Re

[H1(λ)
H2(λ)

]

σ=σ� ,ς=ς0

=
H1RH2R + H1IH2I

H2
2R + H2

2I
. (59)

Taking advantage of (C5), one gets

Re

[(
dλ

dσ

)–1]

σ=σ� ,ς=ς0

> 0, (60)

which ends the proof. �

Based on the exploration above, the following assertion can be easily derived.

Theorem 4 If (C1), (C4), (C5) holds, then the equilibrium point U1(u1�, u2�, u3�) of model
(32) is locally asymptotically stable if σ ∈ [0,σ�) and a Hopf bifurcation of model (32) hap-
pens near the equilibrium point U1(u1�, u2�, u3�) when σ = σ�.

Remark 1 In 2011, Wang et al. [8] explored the single-period, multiple-period, and chaotic
motions of a fractional-order delayed finance model. In 2014, Chen et al. [9] discussed
the stability of the unique equilibrium and Hopf bifurcation problem of another delayed
finance model. In this work, we establish a new delayed finance model, which is differ-
ent from the delayed finance models in [8, 9]. We explore the existence, uniqueness, and
boundedness of the solution, Hopf bifurcation, and Hopf bifurcation control aspect of the
established the delayed finance model (5). The research method in [8, 9] cannot be applied
to model (5) to derive the results of this article. Based on this fact, we think that our studies
supplement the works of [8, 9] to some degree.

Remark 2 In model (5), there is only one delay. If there exist two different delays, we can
also deal with the bifurcation issue of this model. We leave this topic for future research
direction.

Remark 3 In this paper, we deal with Hopf bifurcation control via hybrid control strategy.
Of course, there are many other control techniques for the model (5), for example, delayed
feedback control, state feedback control, PD control and so on. We will explore this aspect
in near future.

Remark 4 In this paper, there are some very complex assumptions(for example, (C5), etc.).
We can check the correctness of these assumptions via computer.

Remark 5 In Sect. 4, the hybrid control strategy is applied to control Hopf bifurcation of
model (5). In (32), there are two same parameters in three controllers in three equations.
Also we can use different parameters in three controllers in three equations.

Remark 6 Although there have been many works on Hopf bifurcation and control aspect
of delayed dynamical models in past decades, the three hybrid controllers (consisting of
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state feedback and parameter perturbation) applied to the dynamical model are very few.
Thus this controller is new.

5 Two illustrated examples
In this section, we will carry out numerical simulations via Matlab software.

Example 1 Consider the following delayed finance model:

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = u3(t) + (u2(t – σ ) – 0.6)u1(t),

u̇2(t) = 1 – 0.2u2(t – σ ) – u2
1(t),

u̇3(t) = –u1(t) – 6u3(t).

(61)

Clearly, system (61) has the equilibrium point (0.9202, 0.7667, –0.1534). One can easily
verify that the conditions (C1)–(C3) of Theorem 3 are fulfilled. By virtue of computer, we
can determine that ζ0 = 3.0092, σ0 ≈ 0.08. To verify the right of the main results of The-
orem 3, we choose both time delay values. One is σ = 0.06 and the other is σ = 0.11. For
σ = 0.06 < σ0 ≈ 0.08, we get numerical simulation results which are presented in Fig. 1. In
Fig. 1, we can see that u1 → 0.9202, u2 → 0.7667, u2 → –0.1534 when t → +∞. That is to
say, the equilibrium point (0.9202, 0.7667, –0.1534) of system (61) is locally asymptotically
stable. For σ = 0.11 > σ0 ≈ 0.08, we get numerical simulation results which are presented
in Fig. 2. In Fig. 2, we can see that u1 will keep periodic vibration around the value 0.9202,
u2 will keep periodic vibration around the value 0.7667 and u2 will keep periodic vibration
around the value –0.1534. That is to say, a Hopf bifurcation appears near the equilibrium
point (0.9202, 0.7667, –0.1534). Moreover, the bifurcation plots, which clearly display the
bifurcation value of system (61), are presented in Figs. 3–5. In Figs. 3–5, we can see that
the bifurcation value of system (61) σ0 ≈ 0.08.

Example 2 Consider the following controlled delayed finance model:

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = 0.4[u3(t) + (u2(t – σ ) – 0.6)u1(t)] + 0.2[u1(t) – u1(t – σ )],

u̇2(t) = 0.4[1 – 0.2u2(t – σ ) – u2
1(t)] + 0.2[u2(t) – u2(t – σ )],

u̇3(t) = 0.4[–u1(t) – 6u3(t)] + 0.2[u3(t) – u3(t – σ )].

(62)

Figure 1 Computer simulation figures of system (61) with σ = 0.06 < σ0 ≈ 0.08. The equilibrium point
(0.9202, 0.7667, –0.1534) is locally asymptotically stable state.
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Figure 1 Continued

Clearly, system (62) has the equilibrium point (0.9202, 0.7667, –0.1534). One can easily
verify that the conditions (C1), (C4), (C5) of Theorem 4 are fulfilled. By virtue of computer,
we can determine that ς0 = 2.1165, σ� ≈ 0.04. To verify the correctness of the main results
of Theorem 4, we choose both time delay values. One is σ = 0.03 and the other is σ = 0.6.
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Figure 2 Computer simulation figures of system (61) with σ = 0.11 > σ0 ≈ 0.08. A Hopf bifurcation takes
place around the equilibrium point (0.9202, 0.7667, –0.1534).

For σ = 0.03 < σ� ≈ 0.04, we get numerical simulation results which are presented in Fig. 6.
In Fig. 6, we can see that u1 → 0.9202, u2 → 0.7667, u2 → –0.1534 when t → +∞. That
is to say, the equilibrium point (0.9202, 0.7667, –0.1534) of system (62) is locally asymp-
totically stable. For σ = 0.06 > σ� ≈ 0.04, we get numerical simulation results which are
presented in Fig. 7. In Fig. 7, we can see that u1 will keep periodic vibration around the
value 0.9202, u2 will keep periodic vibration around the value 0.7667 and u2 will keep peri-
odic vibration around the value –0.1534. That is to say, a Hopf bifurcation appears near the
equilibrium point (0.9202, 0.7667, –0.1534). Moreover, the bifurcation plots, which clearly
display the bifurcation value of system (62), are presented in Figs. 8–10. In Figs. 8–10, we
can see that the bifurcation value of system (62) σ0 ≈ 0.04.

Remark 7 In system (61), we obtain the bifurcation value σ0 ≈ 0.08. In system (62), we
obtain bifurcation value σ� ≈ 0.04. We can easily see that the stability region of system
(61) is narrowed and the time of onset of Hopf bifurcation of system (61) is advanced.

6 Conclusions
In recent years, the investigation on financial models or economic models has attracted
much interest from mathematical and financial circles. Mathematically speaking, reveal-
ing the effect of time delay on the dynamics of financial models or economic models has
become a vital topic. In this article, we build a new delayed finance model. The existence,
uniqueness, and boundedness of solution to the established delayed finance model are
analyzed in detail. By selecting the time delay as bifurcation parameter, we derive a delay-
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Figure 2 Continued

independent condition guaranteeing the stability and creation of Hopf bifurcation of the
established delayed finance model. By designing a suitable hybrid controller that includes
state feedback and parameter perturbation, we can efficaciously control the stability region
and the time of occurrence of Hopf bifurcation of the established delayed finance model.
The results derived from this article have important theoretical significance in managing
economic operation for some related economic sectors. We can effectively control the the
interest rate, the investment demand and the price index in finance via adjusting the delay.
Also, the study idea can be applied to explore the bifurcation control issue of lots of other
differential systems. In this paper, we controlled the Hopf bifurcation via hybrid control
strategy. Of course, we can control Hopf bifurcation of model (5) via other hybrid control
strategies. We will explore this aspect in near future.
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Figure 3 Bifurcation diagram of system (61): t-u1. The bifurcation value σ0 ≈ 0.08.

Figure 4 Bifurcation diagram of system (61): t-u2. The bifurcation value σ0 ≈ 0.08.

Figure 5 Bifurcation diagram of system (61): t-u3. The bifurcation value σ0 ≈ 0.08.
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Figure 6 Computer simulation figures of system (62) with σ = 0.03 < σ0 ≈ 0.04. The equilibrium point
(0.9202, 0.7667, –0.1534) is locally asymptotically stable state.
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Figure 6 Continued

Figure 7 Computer simulation figures of system (62) with σ = 0.06 > σ� ≈ 0.04. A Hopf bifurcation takes
place around the equilibrium point (0.9202, 0.7667, –0.1534).



Liu et al. Boundary Value Problems         (2023) 2023:82 Page 21 of 24

Figure 7 Continued
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Figure 8 Bifurcation diagram of system (62): t-u1. The bifurcation value σ� ≈ 0.04.

Figure 9 Bifurcation diagram of system (62): t-u2. The bifurcation value σ� ≈ 0.04.

Figure 10 Bifurcation diagram of system (62): t-u3. The bifurcation value σ� ≈ 0.04.
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