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Abstract
In this study, we consider a prey–predator model with prey refuge and intraspecific
competition between predators using the Crowley–Martin functional response and
investigate the dynamic characteristics of spatial and nonspatial prey–predator
systems via both analytical and numerical methods. The local stability of nontrivial
interior equilibrium, the existence of a Hopf bifurcation, and the stability of bifurcating
periodic solutions are obtained in the absence of diffusion. For the spatial system, the
Turing and non-Turing patterns are evaluated for some set of parametric belief
functions, and we obtain some interesting results in terms of prey and predator
inhabitants. We present the results of numerical simulations that demonstrate that
both prey and predator populations do not converge to a stationary equilibrium state
at any foreseeable future time when the parametric values are processed in the
Turing domain.
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1 Introduction
Understanding the dynamics of interacting prey–predator models is of paramount im-
portance for gaining insights into the long-term behavior of species in ecological sys-
tems. Over the years, researchers have extensively investigated various nonlinear cou-
pled ordinary differential equations to model the complex interactions among prey and
their potential predators. Among the classical models, the Lotka–Volterra model, intro-
duced independently by Lotka and Volterra in the early twentieth century, has served as a
fundamental basis for studying predator–prey interactions. Subsequent advancements by
Holling [18] in the form of the Rosenzweig–MacArthur model [33] incorporated density-
dependent prey growth and functional response.

While these classical models have provided valuable insights into the general charac-
teristics of prey–predator populations, recent research has shown that incorporating ad-
ditional factors can better reflect the intricacies of natural ecosystems. Consequently, re-
searchers have introduced various functional responses to represent the feeding rates of
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predators [5, 49, 50]. Notably, the Lotka–Volterra and Holling types have been widely used
in this context.

Additionally, the most crucial concept in prey–predator models is the ‘functional re-
sponse’, which describes the rate at which a predator attacks a given number of prey. The
Lotka–Volterra and Holling types are the most commonly used functional responses to
represent the average feeding rate of a predator.

Lotka–Volterra type : f1(u) = δu,

Holling Type-II : f2(u) = δu/(1 + αu),

Holling Type-III : f3(u) = δu2/
(
1 + αu2),

Holling Type-IV : f4(u) = δu/
(
1 + αu2),

where u denotes the density of the prey population, and δ and α are positive constants that
respectively represent the effects of capture rate and handling time. Notably, these four
functional response features are prey-dependent and generally not influenced by preda-
tor inhabitants. However, a crucial aspect often overlooked in these models is the con-
sideration of mutual interference among potential predators. To address this limitation,
Beddington [2] and DeAngelis [11] proposed a functional response

f (u, v) = δu/(1 + αu + βv)

that accounts for predator (v) interference β , while Crowley and Martin [10] introduced
a similar response, taking into account both searching and handling interference:

f (u, v) = δu/
(
(1 + αu)(1 + βv)

)
,

which is referred to as the Crowley–Martin functional response. These modifications have
proven essential in understanding the dynamics of real-world predator–prey systems, and
they offer a more accurate representation of their behavior [38].

In recent years, the study of prey–predator models has witnessed significant devel-
opments, with researchers incorporating various factors such as the Allee effect, prey
refuge, interference among predators, and harvesting [6, 15, 25–27, 29, 36, 37, 47, 48].
These enhancements have allowed for a more detailed reflection of the behavior of natural
ecosystems, leading to a growing interest in the dynamic characteristics of these models
[3, 4, 7, 8, 14, 19, 20, 22–24, 30, 31, 35, 39–46].

In light of these considerations, the present study focuses on formulating a prey–
predator model that accounts for prey refuge and intraspecific competition among preda-
tors using the Crowley–Martin functional response. The inclusion of prey refuge and com-
petition among predators in the model is crucial as it addresses important ecological as-
pects that have significant implications for species coexistence and ecosystem stability.

The rest of this paper is organized as follows: Sect. 2 presents the mathematical formu-
lation of the prey–predator model with prey refuge and intraspecific competition among
predators using the Crowley–Martin functional response. In Sect. 3, we analyze the ex-
istence and local and global dynamics of equilibria. Subsequently, in Sect. 4, we discuss
the presence of Hopf bifurcation and its periodic solution behaviors. Section 5 focuses
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on the occurrence of Turing instability in the interior equilibrium point under the influ-
ence of diffusion. Theoretical results are verified through numerical simulations in Sect. 6,
where we also uncover additional meaningful phenomena. Finally, Sect. 7 offers conclud-
ing remarks and highlights the significance of our findings within the broader context of
ecological research.

By comprehensively investigating the dynamic behavior of this extended prey–predator
model, we aim to contribute to a deeper understanding of ecological interactions and en-
hance the applicability of predator–prey models in real-world scenarios.

2 Mathematical model and analysis
Bazykin [1] introduced a prey–predator model based on the Crowley–Martin (C-M) func-
tional response, which considers the simultaneous involvement of potential predators in
various activities, including searching and handling prey as well as interacting with other
predators. The C-M functional response is described by the total instantaneous per capita
feeding rate equation

f (X, Y ) :=
ãXY

1 + b̃X + c̃(Y – 1)
.

Here, X denotes the prey population, Y denotes the predator population, and c̃ (units:
1/predator) represents the magnitude of interference among predators. The term Y – 1
is used to account for the mechanistic nature of predator dependence, indicating that a
predator does not interfere with itself in these models. When Y = 1, the equation reduces
to the traditional Holling Type II response.

Prey refuge, a significant concept in prey–predator models, plays a crucial role in sup-
porting a constant proportion of prey through predation [16, 17]. It profoundly influences
the coexistence of predators and prey. In theoretical ecology, understanding the impact
of prey refuge on the dynamics of prey–predator interactions has been a topic of interest.
Many authors [9, 12, 21, 34] have found that prey refuge stabilizes prey–predator dynam-
ics, preserving prey biomass and preventing extinction due to predation. Therefore, the
strength of prey refuges affects the foraging efficiency of predators.

To incorporate the effect of prey refuge, we integrate it into the C-M functional response
term. As a result, we arrive at the nonautonomous C-M type prey–predator model, ac-
counting for prey refuge and intraspecific competition among predators for prey:

⎧
⎪⎪⎨

⎪⎪⎩

dX(t)
dt = X(r1 – ρX) – δ1(1–m)XY

χ1+χ2(1–m)X+χ3((1–m)X)(Y –1) ,
dY (t)

dt = r2Y – δ2Y 2

χ4+(1–m)X – δ3Y ,

X(0) = X0 > 0, Y (0) = Y0 > 0.

(2.1)

In this model, X(t) represents the biomass of the prey population, and Y (t) denotes the
biomass of the predator population at time t. The refuge protects a population of prey
denoted by mX, where m ∈ [0, 1) is a constant, making (1 – m)X the only prey available to
predators. The parameters r1, r2, ρ , δ1, δ2, δ3, χ1, χ2, χ3, and χ4 are all positive constants
with ecological meaning as follows in Table 1.

Assuming a biological perspective, we confirm that χ1 + χ2(1 – m)X + χ3((1 – m)X)(Y –
1) �= 0, ensuring the well-posedness of our system (2.1).
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Table 1 Ecological meaning

Parameter Biological/ecological meaning

r1 Growth rate of prey population in the absence of predators,
r2 Growth rate of predators (based on the convention coefficients from prey individuals to predator

individuals),
ρ Strength of competition among individuals of prey species,
δ1 Maximum value of per capita reduction rate of prey,
δ2 Maximum value of per capita predator consumption rate,
δ3 Death rate of predators,
χ1 Half saturation constant of prey in absence of refuge,
χ2 Measures the handling time of prey on the feeding rate,
χ3 Coefficient of interference (disturbance) among predators,
χ4 Measures the extent to which the environment provides protection to a predator.

For simplicity, we proceed to nondimensionalize (2.1) using the following scaling:

u �→ ρX, v �→ Y , t �→ t.

This leads us to the following form of the model:

⎧
⎪⎪⎨

⎪⎪⎩

u̇(t) = u(r – u) – δ(1–m)uv
1+α(1–m)u+β((1–m)u)(v–1) ,

v̇(t) = ξ (ζv – v2

η+(1–m)u – σv),

u(0) = u0 > 0, v(0) = v0 > 0.

(2.2)

In this formulation, we define dimensionless constants as follows: r = r1, δ = δ1
χ1

, α = χ2
ρχ1

,
β = χ3

ρχ1
, ξ = δ2

ρ
, ζ = r2ρ

δ2
, η = ρχ4, and σ = δ3ρ

δ2
.

Our physical world exists within a spatial universe, where environmental interactions
play a vital role in shaping ecological communities. Various aspects, such as the atmo-
sphere, geological materials, and biological frameworks, differ significantly across the
planet. Consequently, population dynamics depend on both space and time, incorporat-
ing spatial movement. To analyze the spatial dynamics of prey–predator models, we con-
sider the following system of partial differential equations with homogeneous Neumann
boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = u(r – u) – δ(1–m)uv

1+α(1–m)u+β((1–m)u)(v–1) + D1∇2u, x ∈ �, t > 0,
∂v(x,t)

∂t = ξ (ζv – v2

η+(1–m)u – σv) + D2∇2v, x ∈ �, t > 0,

∂νu = ∂νv = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ �.

(2.3)

In this spatial extension, u(x, t) and v(x, t) represent the densities of prey and predators,
respectively, in the fixed open bounded domain � ⊂ R

N at time t. The diffusion coeffi-
cients D1 and D2 account for the spatial movement of prey and predators, respectively.
The Laplacian operator ∇2 = ∂2

∂u2 + ∂2

∂v2 describes spatial interactions in a two-dimensional
space.

The boundary ∂� of the domain � is smooth, and ν represents the outward unit normal
vector of the boundary. The homogeneous Neumann boundary conditions indicate that
the prey–predator system is self-contained with no population flux across the boundary.
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3 Equilibrium points and stability analysis
3.1 Equilibria
System (2.2) has trivial and axial equilibrium points where E0, E1, E2 always exist, where
the following occur:

(i) Trivial equilibrium point: E0 = (0, 0), both prey and predator are extinct.
(ii) Axial equilibrium points: E1 = (r, 0), only prey survives; E2 = (0, ζη – ησ ), if ζ > σ ,

only predators survive.
The nontrivial interior equilibrium point E∗(u∗, v∗) ∈ R

2
+ can be obtained by solving the

following system of equations:

u(r – u) –
δ(1 – m)uv

1 + α(1 – m)u + β((1 – m)u)(v – 1)
= 0,

ξ

(
ζv –

v2

η + (1 – m)u
– σv

)
= 0.

Solving these nullclines, we obtain a cubic equation in u:

Δ1u3 + Δ2u2 + Δ3u + Δ4 = 0, (3.1)

where (H): Δ1 = –(m – 1)2β(ζ – σ ) < 0, Δ2 = (m – 1)(α + β(–1 + ((m – 1)r + η)(ζ – σ ))) < 0,
Δ3 = –1 – (m – 1)2δ(ζ –σ ) – (m – 1)r(α +β(–1 +η(ζ –σ ))) > 0, Δ4 = r + (m – 1)δη(ζ –σ ) > 0,
provided the cubic equation (3.1) has at most one positive solution u∗ (say). Using the value
of u∗, we obtain the value of v∗ as follows:

v∗ = (ζ – σ )
(
η + (1 – m)u∗),

ζ > σ provided v∗ is also positive.
Below we assume that all E∗(u∗, v∗) ensure the above conditions (H) and ζ > σ .

3.2 Local stability analysis
The dynamic behavior of the equilibrium points can be studied by computing the eigen-
values of the Jacobian matrix J of system (2.2), namely,

J =

(
r – 2u – δ(1–m)v

((m–1)u(α+(v–1)β)–1)2
δ(1–m)(–1+(m–1)u(α–β))u

((m–1)u(α+(v–1)β)–1)2
–ξ (m–1)v2

(η+(1–m)u)2 ξ (ζ – 2v
η+(1–m)u – σ )

)

. (3.2)

The existence and local stability of the equilibrium solutions can be stated as follows.

Theorem 3.1
(i) The trivial equilibrium point E0 = (0, 0) is always unstable.

(ii) If ζ < σ , then the axial equilibrium point E1 = (r, 0) is locally asymptotically stable.
(iii) The axial equilibrium point E2 = (0,η(ζ – σ )) is always unstable.

Proof (i) The Jacobian matrix of system (2.2) evaluated at the equilibrium point E0 = (0, 0)
is given by

J|E0 =

(
r 0
0 ξ (ζ – σ )

)

,
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tr J|E0 = r + ξ (ζ – σ ) and det J|E0 = rξ (ζ – σ ). The eigenvalues corresponding to J|E0 are
λ1 = r (> 0) and λ2 = ξ (ζ – σ ). Thus E0 is unstable when ζ > σ (λ2 > 0), and E0 is a saddle
point when ζ < σ (λ2 < 0). Therefore, E0 = (0, 0) is always unstable.

(ii) The Jacobian matrix of system (2.2) evaluated at the axial equilibrium point E1 = (r, 0)
is given by

J|E1 =

(
–r –(m–1)rδ

(m–1)(α–β)r–1
0 ξ (ζ – σ )

)

,

tr J|E1 = –r + ξ (ζ – σ ) and det J|E1 = –rξ (ζ – σ ). When ζ < σ , det J|E1 > 0 and tr J|E1 < 0.
Therefore, E1 is locally asymptotically stable when ζ < σ .

(iii) The Jacobian matrix of system (2.2) evaluated at the axial equilibrium point E2 =
(0,η(ζ – σ )) is given by

J|E2 =

(
r + δη(m – 1)(ζ – σ ) 0
–ξ (m – 1)(ζ – σ )2 –ξ (ζ – σ )

)

.

Then the eigenvalues of the above Jacobi matrix J|E2 are μ1 = r + δη(1 – m)(ζ – σ ) and
μ2 = –ξ (ζ – σ ). When ζ < σ (μ2 < 0) and r < δη(1 – m)(ζ – σ ) (μ1 < 0), both eigenvalues
are negative. Hence, the axial equilibrium point E2 is locally asymptotically stable when
ζ < σ and r < δη(1 – m)(ζ – σ ). This is not possible because ζ < σ 
⇒ δη(1 – m)(ζ – σ ) < 0
and because of our assumption that r > 0. This shows that the locally asymptotically stable
situation never occurs. Therefore, E2 is always unstable. Also note that ζ < σ 
⇒ E2 < 0
(i.e., when E2 /∈ {{0} ∪R}2

+, the predators also die out). �

3.3 Interior equilibrium qualitative behaviors
The Jacobian matrix evaluated at the coexistence equilibrium point E∗(u∗, v∗) is

J|E∗ =

(
a11 a12

a21 a22

)

, (3.3)

where a11 = r – 2u∗ – δ(1–m)v∗
((m–1)u∗(α+(v∗–1)β)–1)2 , a12 = δ(1–m)(–1+(m–1)u∗(α–β))u∗

((m–1)u∗(α+(v∗–1)β)–1)2 , a21 = –ξ (m–1)v∗2

(η+(1–m)u∗)2 ,
a22 = ξ (ζ – 2v∗

η+(1–m)u∗ – σ ) .
Then the trace and determinant of the Jacobian matrix (3.3) is

T = tr J|E∗ = a11 + a22 and D = det J|E∗ = a11a22 – a21a12.

Therefore, the characteristic equation of the linearized system of (2.2) at E∗ = (u∗, v∗) is

λ2 – Tλ + D = 0. (3.4)

The qualitative behaviors of the interior equilibrium point E∗(u∗, v∗) may be stated as fol-
lows.

Case (i): If T < 0 and D > 0, then the characteristic roots of (3.4) are either both negative
reals or complex conjugates with a negative real part. Therefore, E∗ is either a
stable node (T2 > 4D) or a stable spiral (T2 < 4D).
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Case (ii): If T > 0 and D > 0, then the characteristic roots of (3.4) are either both positive
reals or complex conjugates with a positive real part. Hence, E∗ is either an
unstable node (T2 > 4D) or an unstable spiral (T2 < 4D).

Case (iii): If D < 0 and T �= 0, then the characteristic roots of (3.4) are both are real with
opposite signs. Therefore E∗ is a saddle point.

Case (iv): If D < 0 and T = 0, then the characteristic roots of (3.4) both are real numbers
with same magnitude and opposite signs. Hence, E∗ is a saddle node.

Case (v): If D > 0 and T = 0, then the characteristic roots of (3.4) are purely complex
conjugate. Therefore, E∗ is a center.

3.4 Global stability analysis
Here, we provide the result to attain global stability in the nontrivial interior equilibrium
E∗ = (u∗, v∗) for both local (2.2) and spatial (2.3) systems.

Theorem 3.2 If (δ(1 – m)v∗ – u∗)α < 1
1–m + βu∗(v∗ – 1) and (1 – m)u∗(β – α) < 1 hold,

then the interior equilibrium E∗ = (u∗, v∗) of the local system (2.2) is globally asymptotically
stable.

Proof The proof is usually developed by applying the Lyapunov function. We consider the
subsequent positive definite Lyapunov function in R about the equilibrium E∗:

V1 = u – u∗ – u∗ ln

(
u
u∗

)
and

V2 = v – v∗ – v∗ ln

(
v
v∗

)
.

This kind of Lyapunov function was first utilized in [13], and later it was broadly exploited
by several researchers. We can simply verify that ∂V1

∂u > 0 for u > u∗ and ∂V1
∂u < 0 for 0 < u <

u∗, and ∂V2
∂v > 0 for v > v∗ and ∂V2

∂v < 0 for 0 < v < v∗. If we estimate ∂V1
∂t via (2.2), we obtain

dV1(u)
dt

=
(
u – u∗) u̇

u
=

(
1 –

u∗

u

){
u(r – u) –

δ(1 – m)uv
Θ

}
,

=
(
u – u∗)

{
–
(
u – u∗) –

(
δ(1 – m)v

Θ
–

δ(1 – m)v∗

Θ̂

)}
,

=
(
u – u∗)2

{
δ(1 – m)(α(1 – m)v∗ – β(1 – m)v∗(1 – v))

ΘΘ̂
– 1

}

–
δ(1 – m)(1 + α(1 – m)u∗ – β(1 – m)u∗)(u – u∗)(v – v∗)

ΘΘ̂
, (3.5)

where Θ = 1 + α(1 – m)u + β((1 – m)u)(v – 1), Θ̂ = 1 + α(1 – m)u∗ + β((1 – m)u∗)(v∗ – 1).
Similarly,

dV2(v)
dt

=
(
v – v∗) v̇

v
=

(
1 –

v∗

v

){
ξ

(
ζv –

v2

Φ
– σv

)}
, =

(
v – v∗)

{
–ξv
Φ

+
ξv∗

Φ̂

}
,

=
–ξ (v – v∗)2

Φ
+

ξ (1 – m)v∗(u – u∗)(v – v∗)
ΦΦ̂

, (3.6)

where Φ = η + (1 – m)u, Φ̂ = η + (1 – m)u∗.
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We define the Lyapunov function V = V1(u) + 1
C V2(v), where C = ξv∗

δ(1+α(1–m)u∗–β(1–m)u∗) .
Generating dV

dt via (3.5) and (3.6) gives

dV
dt

=
(
u – u∗)2

{
δ(1 – m)(1 + α(1 – m)u∗ – β(1 – m)v∗(1 – v))

ΘΘ̂
– 1

}

–
(
v – v∗)2

{
δ(1 + α(1 – m)u∗ – β(1 – m)u∗)

v∗Φ

}
. (3.7)

The coefficient of (u – u∗)2 is

δ(1 – m)(1 + α(1 – m)u∗ – β(1 – m)v∗(1 – v))
ΘΘ̂

– 1

≤ δ(1 – m)(1 + α(1 – m)u∗ – β(1 – m)v∗(1 – v))
Θ̂

– 1.

The coefficient of (v – v∗)2 is

–
δ(1 + α(1 – m)u∗ – β(1 – m)u∗)

v∗Φ
≤ –

δ(1 + α(1 – m)u∗ – β(1 – m)u∗)
v∗ .

Therefore, if (δ(1 – m)v∗ – u∗)α < 1
1–m + βu∗(v∗ – 1) and (1 – m)u∗(β – α) < 1 hold con-

sequently from (3.7), then we obtain dV
dt < 0. Hence, by Lyapunov’s asymptotic stability

theorem, the interior equilibrium E∗ of system (2.2) is globally asymptotically stable. �

Now, we select the Lyapunov function for the diffusion system (2.3)

E(t) =
∫∫

�

V (u, v) dA. (3.8)

Hence, differentiating E(t) with respect to t along the solutions of system (2.3), we obtain

dE(t)
dt

=
∫∫

�

(
∂V
∂u

d1∇2u +
∂V
∂v

d2∇2v
)

dA +
∫∫

�

dV
dt

dA.

Considering the zero-flux boundary conditions ∂νu = ∂νv = 0, x ∈ ∂� and applying
Green’s first identity in the plane, we obtain

dE(t)
dt

=
∫∫

�

dV
dt

dA –
{

d1u∗

u2

∫∫

�

((
∂u
∂x

)2

+
(

∂u
∂y

)2)
dA

+
d2v∗

v2

∫∫

�

((
∂v
∂x

)2

+
(

∂v
∂y

)2)
dA

}

≤
∫∫

�

dV
dt

dA ≤ 0. (3.9)

Therefore, the equilibrium E∗ of the spatial system (2.3) is globally asymptotically stable.

4 Existence of Hopf bifurcation around E∗

We analyze the Hopf bifurcation occurring at E∗(u∗, v∗) by choosing ξ as the bifurcation
parameter. Also, note that E∗(u∗, v∗) is independent of ξ . The characteristic equation of
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system (2.2) at E∗(u∗, v∗) is

λ2 – T(ξ )λ + D(ξ ) = 0. (4.1)

The two roots of (4.1) are given as λ = T±√
T2–4D
2 = p1(ξ ) ± ip2(ξ ).

Let ξ0 =
{–r+2u∗+ δ(1–m)v∗

((m–1)u∗(α+(v∗–1)β)–1)2

(ζ– 2v∗
η+(1–m)u∗ –σ )

}
. To see the instability of system (2.2), let us state the

following theorem.

Theorem 4.1 (Hopf bifurcation theorem [28]) Let T(ξ ) and D(ξ ) be smooth functions of ξ

in an open interval about ξ0 ∈ R such that the characteristic equation has a pair of imag-
inary eigenvalues λ = p1(ξ ) ± p2(ξ ) with p1(ξ ) and p2(ξ ) ∈ R such that λ become purely
imaginary at ξ = ξ0 and dp1

dξ
|ξ=ξ0 �= 0. Then a Hopf bifurcation occurs around E∗ at ξ = ξ0

(i.e., stability changes of E∗(x∗, y∗) are accompanied by the formation of a limit cycle when
ξ = ξ0).

Theorem 4.2 When ξ passes through ξ0, the local system (2.2) attains a Hopf bifurcation
around E∗(x∗, y∗) provided T(ξ0) = 0 and D(ξ0) > 0.

Proof At ξ = ξ0, the characteristic equation (4.1) becomes

λ2 + D(ξ0) = 0. (4.2)

The roots of equation (4.2) are λ1 = i
√

D(ξ0) and λ2 = –i
√

D(ξ0). Thus, at E∗, two purely
imaginary eigenvalues are present. Likewise, T(ξ ) and D(ξ ) are smooth functions of ξ .
Therefore, in the neighborhood of ξ0, the roots of equation (4.2) are of the form λ1 =
p1(ξ ) + ip2(ξ ) and λ2 = p1(ξ ) – ip2(ξ ), where pi(ξ ) are real functions for i = 1, 2. Subse-
quently, let us validate the transversality condition d

dξ
(Reλi(ξ ))|ξ=ξ0 �= 0, i = 1, 2.

By substituting λ(ξ ) = p1(ξ ) + ip2(ξ ) into the characteristic equation of the Jacobi matrix
J|E∗ (3.4), we obtain

(
p1(ξ ) + ip2(ξ )

)2 + T
(
p1(ξ ) + ip2(ξ )

)
+ D = 0. (4.3)

Differentiating both sides with respect to ξ , we obtain

2
(
p1(ξ ) + ip2(ξ )

)(
ṗ1(ξ ) + iṗ2(ξ )

)
+ T

(
ṗ1(ξ ) + iṗ2(ξ )

)
+ Ṫ

(
p1(ξ ) + ip2(ξ )

)
+ Ḋ = 0. (4.4)

Collating the real and imaginary parts from both sides, we obtain

2p1(ξ )ṗ1(ξ ) – 2p2(ξ )ṗ2(ξ ) + T
(
ṗ1(ξ )

)
+ Ṫ

(
p1(ξ )

)
+ D = 0, (4.5)

2p1(ξ )ṗ2(ξ ) + 2p2(ξ )ṗ1(ξ ) + T
(
ṗ2(ξ )

)
+ Ṫ

(
p2(ξ )

)
= 0. (4.6)

Equation (4.5) becomes

ṗ1(ξ )
(
2p1(ξ ) + T

)
+ ṗ2(ξ )

(
–2p2(ξ )

)
+ p1(ξ )Ṫ + Ḋ = 0


⇒ ṗ1B1 – ṗ2B2 + B3 = 0. (4.7)
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Moreover, equation (4.6) becomes

ṗ1(ξ )
(
2p2(ξ )

)
+ ṗ2(ξ )

(
2p1(ξ ) + T

)
+ p2(ξ )Ṫ = 0


⇒ ṗ1B2 + ṗ2B1 + B4 = 0, (4.8)

where B1 =
(
2p1(ξ ) + T

)
, B2 =

(
–2p2(ξ )

)
, B3 = p1(ξ )Ṫ + Ḋ, B4 = p2(ξ )Ṫ .

Multiplying (4.7) by B1 and (4.8) by B2 and then adding, we obtain

ṗ1
(
B2

1 + B2
2
)

+ B1B3 + B2B4 = 0


⇒ ṗ1 =
–(B1B3 + B2B4)

B2
1 + B2

2
.

At ξ = ξ0,
Case (i): p1 = 0, p2 =

√
D.

Then B1 = T �= 0, B2 = 2
√

D, B3 = Ḋ, B4 = Ṫ
√

D.

∴ B1B3 + B2B4 �= 0 
⇒ ṗ1(ξ )|ξ=ξ0 �= 0.

Case (ii): p1 = 0, p2 = –
√

D.

Then B1 = T �= 0, B2 = –2
√

D, B3 = Ḋ, B4 = –Ṫ
√

D.

∴ B1B3 + B2B4 �= 0 
⇒ ṗ1(ξ )|ξ=ξ0 �= 0. �

Theorem 4.3 Let D(ξ ) > 0. Then
(i) the interior equilibrium point E∗ = (u∗, v∗) of system (2.2) is locally asymptotically

stable when ξ > ξ0 and unstable when ξ < ξ0; and
(ii) the local system (2.2) passes through the Hopf bifurcation at an interior equilibrium

E∗ = (u∗, v∗) when ξ = ξ0.

4.1 Stability behavior of Hopf bifurcation
Here, we discuss the behavior of Hopf bifurcation. For this specific purpose, we propose
the perturbation u = u1 + uξ0

1 and v = v1 + vξ0
1 in our local system (2.2). Then, broadening

in Taylor series, we obtain

u̇1 = a10u1 + a01v1 + a20u2
1 + a11u1v1 + a30u3

1 + a21u2
1v1 + · · · ,

v̇1 = b10u1 + b01v1 + b20u2
1 + b11u1v1 + b30u3

1 + b21u2
1v1 + · · · ,

where a10 = r – 2u – δ(1–m)v
((m–1)u(α+(v–1)β)–1)2 , a01 = δ(1–m)(–1+(m–1)u(α–β))u

((m–1)u(α+(v–1)β)–1)2 , b10 = –ξ0(m–1)v2

(η+(1–m)u)2 , b01 =
ξ0(ζ – 2v

η+(1–m)u – σ ). Therefore, a10 + b01 = 0 and a10b01 – a01b10 > 0.
Various other coefficients are to be determined as given below.

a20 = 1/2
(

∂2F
∂u2

)∣
∣∣
∣
ξ=ξ0

= –1 –
(m – 1)2v∗(α + (v∗ – 1)β)δ

((m – 1)u∗(α + (v∗ – 1)β) – 1)3 ,

a11 =
(

∂2F
∂u∂v

)∣∣
∣∣
ξ=ξ0

=
(m – 1)((m – 1)u∗(α – (v∗ + 1)β) – 1)δ

((m – 1)u∗(α + (v∗ – 1)β) – 1)3 ,
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a30 = 1/6
(

∂3F
∂u3

)∣∣
∣∣
ξ=ξ0

=
(m – 1)3v∗(α + (v∗ – 1)β)2δ

(–1 + (m – 1)u∗(α + (v∗ – 1)β))4 ,

a21 = 1/2
(

∂3F
∂u2∂v

)∣∣
∣∣
ξ=ξ0

= –
((

(m – 1)2(α
(
–1 + (m – 1)u∗α

)
+ β – 2v∗β

– 2(m – 1)u∗αβ – (m – 1)u∗(v∗2 – 1
)
β2)δ

))

/((
–1 + (m – 1)u∗(α +

(
v∗ – 1

)
β
))4),

b20 = 1/2
(

∂2G
∂u2

)∣
∣∣
∣
ξ=ξ0

=
–2(m – 1)2v∗ξ

((1 – m)u∗ + η)3 ,

b11 =
(

∂2G
∂u∂v

)∣
∣∣
∣
ξ=ξ0

=
–2(m – 1)v∗ξ

((1 – m)u∗ + η)2 ,

b30 = 1/6
(

∂3G
∂u3

)∣
∣∣
∣
ξ=ξ0

=
–(m – 1)3v∗2ξ

((1 – m)u∗ + η)4 ,

b21 = 1/2
(

∂3G
∂u2∂v

)∣
∣∣
∣
ξ=ξ0

=
–2(1 – m)2v∗ξ

((1 – m)u∗ + η)3 ,

where

F = u(r – u) –
δ(1 – m)uv

1 + α(1 – m)u + β((1 – m)u)(v – 1)
,

G = ξ

(
ζv –

v2

η + (1 – m)u
– σv

)
.

By [32], the first Lyapunov number to conclude the dynamics (stable or unstable) of the
limit cycle arising through Hopf bifurcation has

� =
–3π

2a01(a10b01 – a01b10)3/2

([
a10b10a2

11 + a10a01
(
b2

11 + a20b11
)

– 2a10a01a2
20

– a2
01(2a20b20 + b11b20) –

(
a01b10 – 2a2

10
)
a11a20

]

–
(
a2

10 + a01b10
)[

–3a01a30 + 2a10(a21 + b12) + (b10a12 – a01b21)
])

.

Theorem 4.4 When � < 0, the direction of Hopf bifurcation is supercritical and the bifur-
cated periodic solutions are stable; when � > 0, the direction of Hopf bifurcation is subcrit-
ical and the bifurcated periodic solutions are unstable.

5 Diffusion-driven instability
Through this section, we concentrate on the prey–predator system with self-diffusion and
examine the occurrence of Turing instability in the equilibrium point under diffusion ef-
fects (diffusion-driven instability).

Theorem (4.3) states that whenever ξ > ξ0, the nontrivial interior equilibrium E∗ is lo-
cally asymptotically stable for the nondiffusion system (2.2).

We consider the influences of diffusion on the stable nontrivial interior equilibrium E∗ of
(2.3) under the supposition ξ > ξ0. Subsequently, for the diffusion system (2.3), we should



Surendar et al. Boundary Value Problems         (2023) 2023:81 Page 12 of 21

consider the one-dimensional space � = (0,π ) with a smooth boundary ∂�:

ut = u(r – u) –
δ(1 – m)uv

1 + α(1 – m)u + β((1 – m)u)(v – 1)
+ d1uxx, x ∈ (0,π ), t > 0,

vt = ξ

(
ζv –

v2

η + (1 – m)u
– σv

)
+ d2vxx, x ∈ (0,π ), t > 0,

ux(0, t) = ux(π , t) = 0, vx(0, t) = vx(π , t) = 0, t > 0.

(5.1)

This is actually the notable operator u → –uxx with Neumann boundary conditions. The
analogous eigenvalues and normalized eigenfunctions are

�0 = 0, ϕ0(x) =
√

1
π

, �k = k2, ϕk(x) =
√

2
π

cos(kx), where k = 1, 2, 3, . . . .

Linearizing the above diffusion system (5.1) at E∗, we obtain

[
ut

vt

]

= L

[
u
v

]

+ J

[
u
v

]

+ D

[
uxx

vxx

]

,

where D = diag(d1, d2) and J is the Jacobian matrix pointed out in Sect. 3.3. L indicates
a linear operator whose domain is DL = XC := X ⊕ iX = {u1 + iu2 : u1, u2 ∈ X}, where
X := {(u, v) ∈ H2[(0,π )] × H2[(0,π )] : ux(0, t) = ux(π , t) = vx(0, t) = vx(π , t) = 0}, which is a
real-valued Sobolev space.

Consider the characteristic equation L(ϕ,ψ)T = �(ϕ,ψ)T , and let

(ϕ,ψ)T =
∞∑

k=0

(ak , bk)T cos(kx). (5.2)

Let Jk = J – k2D. Then we obtain
∑∞

k=0(Jk – �I)(ak , bk)T cos(kx) = 0.
Thus, all eigenvalues of L are obtained by the eigenvalues of Jk for k = 1, 2, 3, . . . . The

characteristic equation of Jk is

�2 – Tk� + Dk = 0, k = 1, 2, 3, . . . , (5.3)

where

Tk = tr Jk = T – (d1 + d2)k2,

and Dk = det Jk = D + d1d2k4 + (δd1 – δ0d2)k2.

Simply by examining the distribution of characteristic roots of Jk , we obtain the imminent
conclusion.

Theorem 5.1 Assume that ξ > ξ0 and D(ξ ) > 0. Then
(i) the equilibrium E∗ = (u∗, v∗) of the nondiffused system (2.2) is locally asymptotically

stable;
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(ii) the equilibrium E∗ = (u∗, v∗) of the diffused system (5.1) is locally asymptotically
stable if and only if the following conditions hold:

(C1) d1 ≥ d2ξ0

ξ
,

(C2) d1 <
d2ξ0

ξ
and

d1

d2
>

ξ0ξ + 2D – 2
√

D(ξξ0 + D)
ξ 2 .

Furthermore, for the diffused system (5.1), the solution E∗ is unstable (that is, Turing
instability occurs) if

(C3) 0 <
d1

d2
<

ξ0ξ + 2D – 2
√

D(ξξ0 + D)
ξ 2 (Turing instability domain).

Proof Because ξ > ξ0 (T < 0) signifies that Tk < 0 for all k ≥ 0. Moreover, by the meaning
of Tk , we have the relationship that for every k ≥ 0, Tk+1 < Tk . We calculate Dk like a
quadratic function in k2, that is, Dk = D(k2) = d1d2(k2)2 + (ξd1 –ξ0d2)k2 + D. Consequently,
the real part of the characteristic values signs of (5.3) are discovered by the sign of D(k2),
separately. The symmetric axis of the graph (k2, D(k2)) is k2

min = – (ξd1–ξ0d2)
2d1d2

. We know that
when Dk < 0 (D(k2) < 0), the characteristic roots of Jk (5.3) are two real roots with opposite
signs. Notice that in D(k2), d1d2 > 0 and k2 > 0. Therefore, whenever ξd1 – ξ0d2 < 0, D(k2)
attains the bare minimum at k2 = k2

min.
Therefore, when (C3) holds, D(k2

min) is negative. However, this means that any one of the
characteristic roots of Jk have a positive real part, that is, that E∗ is the unstable solution
of (5.1). As a result, we consider that whenever (C3) holds, Turing instability occurs. (C1)
implies that Dk > 0 for all k ≥ 0 (because D0 = D > 0), and (C2) implies that D(k2

min) is
positive, and therefore that all the characteristic roots of Jk have negative real parts. In
this manner, any of conditions (C1) and (C2) guarantee that the characteristic roots of Jk

have negative real parts. Consequently, if any one of the conditions of (C1) and (C2) holds,
then E∗ is the stable equilibrium solution of (5.1). �

6 Numerical simulation
In this section, we describe a few numerical simulations performed to verify our analyti-
cal findings using MATLAB. We consider system (2.2) with fixed parameters {r = 0.7, δ =
1.5,α = 0.8,β = 0.4, ξ = 1.8, ζ = 1.7,η = 0.4,σ = 1.4, 0 ≤ m = 0.35 < 1}. For these parametric
values, the corresponding nullclines are shown in Fig. 1. The pink and orange curves rep-
resent the prey and predator nullclines, respectively. Intersecting points of nullclines are
given by equilibrium points E0, E1, E2, and E∗(u∗, v∗) = (0.51525, 0.22047). Note that, for
the above set of parameters, one condition Δ3 > 0 is violated in (H) although there exists
a unique E∗ in R

2
+. Therefore, the set of conditions we mentioned in (H) is necessary but

not sufficient for the existence and uniqueness of E∗ ∈ R
2
+.

Through the vector fields (blue arrows) in Fig. 1, we may understand the stability of
the equilibriums. For this set of parameters, E0 = (0, 0) is unstable. In particular, for this
case, E0 is a nodal source. Also, where ζ = 1.7 > σ = 1.4, therefore E1 = (r, 0) = (1.7, 0) and
E2 = (0, ζη – ησ ) = (0, 0.12) are also unstable (saddle points).

By fixing the same set of above parameters other than ζ and σ with condition ζ = 1.4 <
σ = 1.7, our resultant phase plane is shown in Fig. 2. Because ζ < σ , the axial equilibrium
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Figure 1 Nullclines of a prey–predator system (2.2) with parameters
{r = 0.7,δ = 1.5,α = 0.8,β = 0.4,ξ = 1.8,ζ = 1.7,η = 0.4,σ = 1.4,m = 0.35}

Figure 2 Phase plane of the prey–predator system (2.2) with parameters
{r = 0.7,δ = 1.5,α = 0.8,β = 0.4,ξ = 1.8,ζ = 1.4,η = 0.4,σ = 1.7,m = 0.35}

E2 = (0, ζη – ησ ) = (0, –0.12) /∈ {{0} ∪ R}2
+. We drew different phase trajectories starting

from various initial points. From the phase plane, we obtain that E1 = (r, 0) = (0.7, 0) is lo-
cally asymptotically stable (a nodal sink). Also, Fig. 2 shows that E0 is unstable (a saddle
point) and E2 is unstable (a nodal source). Also note that for this set of parametric val-
ues, the conditions Δ1 < 0, Δ3 > 0 do not hold in (H). Therefore, no interior equilibrium
E∗(u∗, v∗) exists in R

2
+. However, there were three nontrivial equilibriums (yellow dots) on

quadrants II and III of the phase plane. From the biological perspective, these are meaning-
less. The following set possesses all conditions of (H) and ζ > σ : {r = 1, δ = 0.8,α = 10,β =
0.1, ξ = 0.15, ζ = 7.1,η = 0.01,σ = 6, 0 ≤ m = 0.01 < 1}. Then there exists a unique nontriv-
ial interior equilibrium E∗(u∗, v∗) = (0.920642, 1.01358) ∈R

2
+, which is shown in Fig. 3. For

these parameter values, the trivial equilibrium point E0 = (0, 0) is unstable and axial equi-
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Figure 3 Existence and uniqueness of E∗(u∗ , v∗). The parametric values are taken as
{r = 1,δ = 0.8,α = 10,β = 0.1,ξ = 0.15,ζ = 7.1,η = 0.01,σ = 6,m = 0.01}. Moreover, the steady state
E∗ = (0.920642, 1.01358) is globally asymptotically stable. Because (δ(1 –m)v∗ – u∗)α < 1

1–m + βu∗(v∗ – 1) and
(1 –m)u∗(β – α) < 1

librium E1 = (1, 0) and E2 = (0, 0.011) are saddle points. Further, the above set of parame-
ters follows the conditions (δ(1 – m)v∗ – u∗)α < 1

1–m + βu∗(v∗ – 1) and (1 – m)u∗(β – α) < 1.
As per Theorem 3.2, Fig. 3 shows that different phase trajectories start from different ini-
tial points, but ultimately all the trajectories converge to the same interior equilibrium
point E∗ = (0.920642, 1.01358). This shows that E∗ is globally asymptotically stable.

Now, consider the prey–predator model (2.2) together with the following set of param-
eters: {r = 1, δ = 8,α = 10,β = 0.1, ζ = 7.1,η = 0.01,σ = 6, m = 0.01}. Then our ODE model
becomes

⎧
⎪⎪⎨

⎪⎪⎩

du
dt = u(1 – u) – 8(1–0.01)uv

1+10(1–0.01)u+0.1((1–0.01)u)(v–1) ,
dv
dt = ξ (7.1v – v2

0.01+(1–0.01)u – 6v),

u(0) = u0 > 0, v(0) = v0 > 0.

(6.1)

Under this set of parameters, the above system (6.1) has a unique nontrivial positive inte-
rior equilibrium E∗(u∗, v∗) = (0.315572, 0.3554658). Pertaining to the preceding paramet-
ric values, the crucial point value is ξ0 = 0.183713, which is independent of ξ . Further, we
vary the bifurcation parameter ξ only.

By fixing ξ = 0.2, we obtain ξ > ξ0 = 0.183713, and it follows from Theorem (4.3) that
E∗(u∗, v∗) is locally asymptotically stable (see Fig. 4).

Fixing ξ = ξ0 = 0.183713 implies that T(ξ0) = 0. Subsequently, by Theorem (4.3), E∗ loses
its stability and a Hopf bifurcation arises, that is, a family group of intermittent periodic
solutions bifurcating from the interior equilibrium E∗ (see Fig. 5).

Through ξ = 0.15, we certainly have ξ < ξ0, and it follows by Theorem (4.3) that E∗(u∗, v∗)
is unstable (see Fig. 6).

Moreover, when ξ goes through ξ0 from the right-hand side of ξ0, the equilibrium point
E∗ loses its steadiness and a Hopf bifurcation occurs, as shown in Fig. 5 and Fig. 6. For
the above set of parameters, we obtain � = –9.01885 < 0. Therefore, from Theorem 4.4,
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Figure 4 Stability behavior with respect to time t and phase portraits of system (2.2) with ξ > ξ0 and initial
data (u0, v0) = (0.5, 0.3)

Figure 5 Periodic behavior with respect to time t and phase portraits of system (2.2) with ξ = ξ0 and initial
data (u0, v0) = (0.32, 0.36)

Figure 6 Unstable behavior with respect to time t and phase portraits of system (2.2) with ξ < ξ0 and initial
data (u0, v0) = (0.32, 0.36)

the direction of the Hopf bifurcation at ξ = ξ0 is supercritical, and the bifurcating periodic
solutions are asymptotically stable, as shown in phase diagrams of Fig. 5 and Fig. 6.

The formation of a limit cycle around the interior equilibrium point with initial data
(0.4, 0.3) and (0.5, 0.5) inside and outside of the limit cycle, respectively, is shown in Fig. 7.
The diagram shows that the limit cycle is stable.

To verify the occurrence of Turing instability of the diffusive prey–predator system (5.1),
we consider the following set with Neumann boundary condition on a one-dimensional
spatial domain � = (0, 60): {r = 1, δ = 8,α = 10,β = 0.1, ζ = 7.1,η = 0.01,σ = 6, m = 0.01}.
We modify the diffusion coefficients d1 and d2 only.

Within the parameters d1 = 1, d2 = 2 and ξ = 0.2 (0.2 = ξ > ξ0 = 0.183713), also 1 = d1 <
d2ξ0

ξ
= 1.83713 and d1

d2
= 0.5 > ξ0ξ+2D–2

√
D(ξξ0+D)

ξ2 = 0.071, that is, (C2) holds. By Theorem 5.1,
the homogeneous equilibrium solution E∗ of system (5.1) is stable. The stability behavior
and the corresponding contour diagram is shown in Fig. 8.

Under the parameters d1 = 0.01, d2 = 1 and ξ = 0.2 (ξ > ξ0), 0.01 = d1
d2

<
ξ0ξ+2D–2

√
D(ξξ0+D)

ξ2 = 0.071, that is, (C3) holds. By Theorem 5.1, the homogeneous equilib-
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Figure 7 Existence of a stable limit cycle around the interior equilibrium E∗ = (0.315572, 0.354658)

Figure 8 Numerical simulations of the diffusion system (5.1) with parameter restriction ξ = 0.2
(0.2 = ξ > ξ0 = 0.183713), d1 = 1 and d2 = 2, with the initial condition (t = 0, 0.1 + 0.05(cos( 12u)),
0.1 + 0.03 sin( 12 v))

rium solution E∗ of system (5.1) is unstable. That is, Turing instability occurs. The Turing
instability and the corresponding contour diagram are shown in Fig. 9.

7 Conclusion
Our study focused on investigating the dynamic behavior of a prey–predator model that
incorporates prey refuge and interference among predators. The interaction between prey
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Figure 9 Numerical simulations of the diffusion system (5.1) with parameter restriction ξ = 0.2
(0.2 = ξ > ξ0 = 0.183713), d1 = 0.01 and d2 = 1, with the initial condition (t = 0, 0.31, 0.35)

and predators was governed by the Crowley–Martin response function. Our key contri-
bution lies in the thorough analysis of the refuge function during intraspecific competition
among predators for prey.

Throughout our investigation, we successfully established the existence criteria for bio-
logically meaningful axial and interior equilibrium points, and we assessed their stability.
Particularly, we found that when the growth rate of predators, based on the conversion co-
efficients from individual prey to individual predators, exceeds the death rate of predators
(ζ = r2ρ/δ2 > σ = δ3ρ/δ2), only predators will survive (v∗ > 0).

Moreover, we identified the influential role of the parameter ξ , independent of E∗, in
causing a Hopf bifurcation around E∗. Theorem 4.3 reveals that when D > 0 and the pro-
portion between the maximal per capita predator consumption rate and the intensity of
competition among individuals of the prey species (ξ = δ2/ρ) exceeds the critical value
ξ0, the prey–predator inhabitants are stable for any initial interior population. This em-
phasizes the significance of prey refuge and interference among predators in maintaining
stable populations. However, when the ratio between the maximal per capita predator
consumption rate and the intensity of competition among individuals of the prey species
falls below the critical value ξ0, the population size becomes unstable and cannot be pre-
cisely determined. When this ratio precisely equals the critical value ξ0, the prey–predator
inhabitant dynamics exhibit periodic changes due to the occurrence of Hopf bifurcation,
as presented in Theorem 4.4.
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Furthermore, we delved into the dynamics of the prey–predator population, considering
both spatial and temporal motion. To capture spatial movements, we analyzed a diffusion
system (5.1) and explored the diffusion-driven instability of the spatial system in detail.
We observed that the stability of the interior equilibria E∗ could vary from stable to unsta-
ble, even when ξ > ξ0 was satisfied due to the occurrence of diffusion-driven effects. The
corresponding results are presented in Theorem 5.1. To validate our analytical findings,
we provided numerical examples in Sect. 6, ensuring the robustness of our results.

As we conclude our study, we recognize that an exciting avenue for future research
would involve exploring the impact of stochastic noise on the model, particularly in terms
of habitat-dependent parameters. Incorporating stochastic elements could offer valuable
insights into the system’s resilience and adaptability under varying environmental condi-
tions.

In summary, our work contributes to a deeper understanding of the complex dynamics
within prey–predator ecosystems, shedding light on how refuge and interactions among
predators play pivotal roles in governing population stability and behavior. Our findings
open the door to further investigations and offer potential applications in ecological man-
agement and conservation efforts.
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