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Abstract
This paper concerns the initial value problem of a coupled complex mKdV (CCMKDV)
equations

ut + uxxx + 6(|u|2 + |v|2)ux + 6u(|v|2)x = 0,

vt + vxxx + 6(|u|2 + |v|2)vx + 6v(|u|2)x = 0,

proposed by Yang (Nonlinear Waves in Integrable and Nonintegrable Systems, 2010),
which is associated with a 4× 4 scattering problem. Based on matrix spectral analysis,
a fourth-order matrix Riemann–Hilbert problem is formulated. By solving a specific
nonregular Riemann–Hilbert problem with zeros, we present the N-soliton solutions
for the CCMKDV system. Moreover, the single-soliton solutions are displayed
graphically.
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1 Introduction
In nonlinear wave theory, integrable nonlinear equations play an important role, these in-
clude the KdV equation, nonlinear Schrödinger equation, Sine–Gordon equation, modi-
fied KdV equation, etc. These integrable systems often have a rich mathematical structure,
such as the Lax pair formulation and an abundance of conservation laws. To explore the
exact solutions of these models, a bulk of effective methods have been developed, such as
the inverse scattering transform (IST) method [2, 3], the Hirota bilinear method [4], the
Bäcklund transformation method [5], the Dressing method [6], etc. In the initial version of
the IST method, one has to solve the Gel’fand–Levitan–Marchenko (GLM) integral equa-
tions, which is not an easy task. Later, a simplified version of IST was developed, known
as the Riemann–Hilbert (RH) approach [1, 7]. Thereafter, many researchers utilized the
RH approach to find the soliton solutions of some physically important integrable partial
differential equations [8–18]. In recent years, the RH approach has also proved to be ap-
plicable to study the asymptotic behavior of solutions to initial boundary value problem
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of some integrable nonlinear equations [19–23]. For the recent construction of soliton
solutions concerning high-order poles by the RH approach, see [24, 25].

The mKdV equation

ut + uxxx + 6|u|2ux = 0 (1)

is an important integrable model in physics, which is initially proposed to describe
the acoustic wave in some anharmonic lattices and also the Alfven wave in the cold
collision-free plasma [26]. Subsequently, the multi-solitons, conserved qunatities, algebro-
geometric solutions, rogue waves for the mKdV equation, and some coupled mKdV equa-
tions have been studied by many researchers via generalized Darboux transformation
method, IST method, the Hirota bilinear method, and other methods [11, 12, 27–31].
The researchers also investigated the initial-boundary value problem for a coupled mKdV
equations by use of the Fokas unified transform method [21, 22, 32], and the perturbation
theory for the vector mKdV equation [33]. Recently, the long-time asymptotic property
for the coupled mKdV equation was studied by the nonlinear steepest descent method
[34]. For the classifications of the solition solutions, see [35].

The main purpose in this paper is to study a CCMKDV system [1]

ut + uxxx + 6
(|u|2 + |v|2)ux + 6u

(|v|2)x = 0,

ut + uxxx + 6
(|u|2 + |v|2)vx + 6v

(|u|2)x = 0,
(2)

in the RH formulation, where u = u(x, t), v = v(x, t) represent complex field envelopes. The
terms involving uxxx and vxxx account for dispersive effects, which influence the spread
of wave packets over time. Meanwhile, the coupling terms describe interactions between
the two wave components u(x, t) and v(x, t). It is easy to see that when v = 0, this system
reduces to the mKdV equation (1). The soliton solutions for a vectorial mKdV system have
been studied by the Hirota bilinear method [36] and the IST method [29]. Some other
coupled mKdV systems have also been investigated using the RH formulation [30, 31],
but we note that this CCMKDV System (2) cannot be covered by [30, 31]. As far as we
know, the RH problem for the CCMKDV System (2) has not been studied before.

This paper is arranged as follows. In Sect. 2, we first deal with the 4 × 4 Lax pair of
the CCMKDV System (2), after some spectral analysis, we present the analytical prop-
erty of the Jost solutions for the spectral equation of x-part. In Sect. 3, we shall formulate
the corresponding RH problem for this CCMKDV system. In Sect. 4, we shall solve the
RH problem with simple zeros. By restricting to the reflectionless case and reconstruct-
ing the potentials, we will construct the N-soliton solutions of Eq. (2). By choosing suit-
able parameters, we shall graphically show the behavior of single-soliton solutions for the
CCMKDV system. The last section dealsThis paper is arranged as follows. In Sect. 2, we
treat firstly with the 4 × 4 Lax pair of the CCMKDV System (2), after some spectral anal-
ysis, we present the analytical property of the Jost solutions for the spectral equation of
x-part. In Sect. 3, we shall formulate the corresponding RH problem for this CCMKDV
system. In Sect. 4, we shall solve the RH problem with simple zeros, and by restricting
to the reflectionless case and reconstructing the potentials, the N-soliton solutions of of
Eq. (2) will be constructed. By choosing suitable parameters, we shall graphically show
the behavior of single-soliton solutions for the CCMKDV system. The last section is con-
cerned with the conclusions. with the conclusions.
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2 Spectral analysis
In this section, we focus on the scattering problem for the CCMKDV System (2) and study
its matrix Jost solutions.

2.1 Spectral problem
As is pointed out by Yang [1], the CCMKDV System (2) is Lax integrable in the following
sense

Yx = UY = (–iωσ + Ũ)Y , (3)

Yt = VY =
(
–4iω3σ + Ṽ

)
Y , (4)

where ω is a spectral parameter and Y (x, t,ω) is a 4 × 1 matrix function. The matrices σ ,
Ũ , Q, Ṽ are defined as follows

σ =

(
I2 0
0 –I2

)

, Ũ =

(
0 Q

–Q† 0

)

,

Q =

(
u v
v∗ u∗

)

, Ṽ =

(
Ṽ11 Ṽ12

Ṽ21 Ṽ22

)

,

in which

Ṽ11 = 2iωQQ† – QxQ† + QQ†
x,

Ṽ12 = 4ω2Q + 2iωQx – Qxx – 2QQ†Q,

Ṽ21 = –4ω2Q† + 2iωQ†
x + Q†

xx + 2Q†QQ†,

Ṽ22 = –2iωQ†Q + Q†Qx – Q†
xQ,

where † represents the Hermitian conjugate of a matrix. It is easy to find that Ũ satisfies
the following symmetry conditions

Ũ† = –Ũ . (5)

In what follows, we always assume that the potential functions satisfy the zero boundary
conditions, that is

u(x, t) → 0, v(x, t) → 0, x → ±∞.

To study the localized solutions for Eq. (2), we simply introduce a new matrix spectral
function

J(x, t,ω) = Y (x, t,ω)eiωσx+4iω3σ t . (6)

Then, (3) and (4) can be rewritten as

Jx = –iω[σ , J] + ŨJ , (7)
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Jt = –4iω3[σ , J] + Ṽ J , (8)

where [σ , J] = σ J – Jσ .
In the scattering problem, we firstly investigate the Jost solutions J±(x,ω) of Eq. (7) sat-

isfying

J+(x,ω) → I, x → +∞,

J–(x,ω) → I, x → –∞,
(9)

where I denotes the 4 × 4 unit matrix, the subscripts in J± indicate at which end of the
x-axis the boundary conditions are set. It is well known that

(det J)x = det J · tr
(
JxJ–1), (10)

where det(J) denotes the determinant of matrix J , tr(·) represents the trace of a matrix. In
virtue of tr(Ũ) = 0, which yields

det J± = 1. (11)

2.2 Analytic properties of Jost solutions
Before the construction of RH problem, it suffices to establish the analytic properties of
the Jost solutions J± and the scattering matrix S(ω). To this end, let us split J± into column
vectors, i.e., J± = ([J±]1, [J±]2, [J±]3, [J±]4). By the Volterra integration, one can rewrite the
first column [J–]1 as follows:

[J–]11 = 1 +
∫ x

–∞

(
u[J–]31 + v[J–]41

)
(y) dy,

[J–]21 =
∫ x

–∞

(
v∗[J–]31 + u∗[J–]41

)
(y) dy,

[J–]31 = –
∫ x

–∞

(
u∗[J–]11 + v[J–]21

)
(y)e2iω(x–y) dy,

[J–]41 = –
∫ x

–∞

(
v∗[J–]11 + u[J–]21

)
(y)e2iω(x–y) dy.

(12)

By similar arguments on the analytic properties of the Jost solution [1, 8], one knows that
[J–]1 is analytic in the upper half-plane ω ∈ C+ and continuous on the real axis. In a similar
way, [J–]2, [J+]3, [J+]4 are analytic in the upper half-plane ω ∈C+ and continuous on the real
axis, while [J+]1, [J+]2, [J–]3, [J–]4 are analytic in the lower half-plane ω ∈ C– and continuous
on the real axis.

Denote E = e–iωσx, it is easy to see that both J+E and J–E are fundamental solutions of
(3), hence they are linearly related by the scattering matrix S(ω). That is

J– = J+ES(ω)E–1, ω ∈R. (13)

It follows from (11) and (13) that

det S(ω) = 1. (14)
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From the relation (13), we get

S(ω) = E–1J–1
+ J–E, ω ∈R, (15)

which indicates that we need to study the analytic properties of J–1
+ before deriving the

analytic properties of the entries of S(ω). To this end, we start with the adjoint spectral
equation of (7)

Kx = –iω[σ , K] – KŨ , (16)

one can simply find that J–1± satisfy Eq. (16), where J–1± are partitioned into rows

J–1
+ =

⎛

⎜
⎜⎜
⎝

[J–1
+ ]1

[J–1
+ ]2

[J–1
+ ]3

[J–1
+ ]4

⎞

⎟
⎟⎟
⎠

, J–1
– =

⎛

⎜
⎜⎜
⎝

[J–1
– ]1

[J–1
– ]2

[J–1
– ]3

[J–1
– ]4

⎞

⎟
⎟⎟
⎠

. (17)

By similar arguments, we find that [J–1
+ ]1, [J–1

+ ]2, [J–1
– ]3, [J–1

– ]4 are analytic in ω ∈ C+, while
[J–1

– ]1, [J–1
– ]2, [J–1

+ ]3, [J–1
+ ]4 are analytic for ω ∈ C–. Thanks to the analytic property of J–1

+

and J–, it follows that s11, s12, s21, s22 are analytic in the upper half-plane ω ∈ C+, s33, s34,
s43, s44 are analytic in C–, s13, s14, s23, s24, s31, s32, s42 are only defined and continuous for
ω ∈R.

3 Riemann–Hilbert problem
Let us begin with the symmetry conditions for J± and S(ω). Firstly, it follows easily from
(7) and (5) that

J†
±,x

(
x,ω∗) = –iω

[
σ , J†

±
(
x,ω∗)] – J†

±
(
x,ω∗)Ũ , (18)

hence both J†
±(x,ω∗) and J–1± (x,ω) solve the adjoint spectral problem (16), and they also

tend to the unit matrix as x → ±∞. Thus,

J†
±
(
x,ω∗) = J–1

± (x,ω). (19)

By similar arguments, one gets

S†
(
ω∗) = S–1(ω). (20)

Next, we shall formulate the RH problem. To accomplish this, we introduce the following
matrix function

�+ = J–H1 + J+H2 =
(
[J–]1, [J–]2, [J+]3, [J+]4

)
, (21)

where

H1 = diag(1, 1, 0, 0), H2 = diag(0, 0, 1, 1). (22)
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It is evident that �+ is analytic in C+ and solves the spectral equation (7). Moreover,

�+ = J+E
(
S(ω)H1 + H2

)
E–1 = J+E

⎛

⎜⎜
⎜
⎝

s11(ω) s12(ω) 0 0
s21(ω) s22(ω) 0 0
s31(ω) s32(ω) 1 0
s41(ω) s42(ω) 0 1

⎞

⎟⎟
⎟
⎠

E–1

= J–E
(
H1 + S†(ω)H2

)
E–1 = J–E

⎛

⎜
⎜⎜
⎝

1 0 s∗
31(ω) s∗

41(ω)
0 1 s∗

32(ω) s∗
42(ω)

0 0 s∗
33(ω) s∗

43(ω)
0 0 s∗

34(ω) s∗
44(ω)

⎞

⎟
⎟⎟
⎠

E–1.

(23)

Therefore

det
(
�+)

= M1 = M∗
2, (24)

in which M1 = s11s22 – s12s21, M2 = s33s44 – s43s34. According to (23), we get �+(x,ω) → I ,
ω ∈C+ → ∞. To acquire the analytic counterpart of �+ inC–, we investigate the following
matrix function,

�– = H1J–1
– + H2J–1

+ =

⎛

⎜
⎜⎜
⎝

[J–1
– ][1]

[J–1
– ][2]

[J–1
+ ][3]

[J–1
+ ][4]

⎞

⎟
⎟⎟
⎠

. (25)

From (23) it is clear that �– is analytic in C– and also solves the spectral equation (7).
Moreover, one has

�– = E
(
H1S† + H2

)
E–1J–1

+ = E

⎛

⎜
⎜⎜
⎝

s∗
11 s∗

21 s∗
31 s∗

41

s∗
12 s∗

22 s∗
23 s∗

24

0 0 1 0
0 0 0 1

⎞

⎟
⎟⎟
⎠

E–1J–1
+

= E(H1 + H2S)E–1J–1
– = E

⎛

⎜⎜⎜
⎝

1 0 0 0
0 1 0 0

s31 s32 s33 s34

s41 s42 s43 s44

⎞

⎟⎟⎟
⎠

E–1J–1
– .

(26)

It follows easily that

det�– = M2 = M∗
1, (27)

and �–(x,ω) → I , ω ∈C– → ∞.
Now we are ready to formulate the RH problem with the aid of �+ and �–, that is

�–(x,ω)�+(x,ω) = G(x,ω), ω ∈R, (28)
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where the jump matrix reads as follows

G(x,ω) = E

⎛

⎜
⎜⎜
⎝

1 0 s∗
31 s∗

41

0 1 s∗
32 s∗

42

s31 s32 1 0
s41 s42 0 1

⎞

⎟
⎟⎟
⎠

E–1. (29)

Moreover, it follows from (19), (23), and (26) that

(
�+)†(x,ω∗) = �–(x,ω). (30)

4 N-soliton solutions
We shall solve the RH problem (28) with simple zeros, that is, assume that det�+(ω) =
M1(ω) and det�–(ω) = M∗

1(ω∗) admit simple zeros, for the multiple zero case, we refer to
[37, 38]. It follows from (24) and (27) that, the number of the zeros of det�+ and det�– is
the same, moreover, if ω1 ∈ C+ is a simple zero of det�+, then ω∗

1 ∈ C– must be a simple
zero of det�–. Hence, it is supposed that {ωk ∈C+, 1 ≤ k ≤ N} are simple zeros of M1(ω),
then we can simply denote the zeros of M∗

1(ω∗) by {ω∗
k ∈C–, 1 ≤ k ≤ N}. Then there must

exist a column vector μk fulfilling

�+(ωk)μk = 0, 1 ≤ k ≤ N . (31)

Taking the Hermitian conjugate to (31) yields

(μk)†
(
�+(ωk)

)† = 0, 1 ≤ k ≤ N . (32)

In virtue of (30), we have

(μk)†�–(
ω∗

k
)

= 0, 1 ≤ k ≤ N . (33)

For simplicity, we denote

μ̂k := (μk)†, 1 ≤ k ≤ N . (34)

Next, we shall find the explicit expressions for μk and μ̂k . It follows from (7), (21), and
(31) that

�+(ωk)(μk,x + iωkσμk) = 0. (35)

By similar argument, we have

�+(ωk)
(
μk,t + 4iω3

kσμk
)

= 0, (36)

thus

μk = e–iωkσx–4iω3
kσ tμk0, 1 ≤ k ≤ N , (37)

in which μk0 is a complex constant vector.
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It is well known that by eliminating the zeros and the Plemelj’s formula [39], the irregular
RH problem (28) can be solved as follows [1]

�– = I +
N∑

k=1

N∑

l=1

μkμ̂l(M–1)kl

ω – ωl
, �+ = I –

N∑

k=1

N∑

l=1

μkμ̂l(M–1)kl

ω – ω∗
l

, (38)

in which M is an invertible N × N matrix with elements Mkl defined as follows

Mkl =
μ̂kμl

ωl – ω∗
k

, 1 ≤ k, l ≤ N . (39)

To obtain the soliton solutions for the coupled mKdV Equation (2), it suffices to expand
the solutions �+ when ω → ∞,

�+ = I +
�+

1
ω

+
1
ω2 �+

2 + O
(

1
ω3

)
. (40)

Notice that the soliton solutions correspond to the case when the scattering data vanish,
that is, s31 = s32 = s41 = s42 = 0. Substituting (40) into the spectral Equation (7), one arrives
at

Ũ = –i
[
σ ,�+

1
]
, (41)

which yields

u = –2i
[
�+

1
]

13, v = –2i
[
�+

1
]

14, (42)

where [�+
1 ]13 represents the (1, 3)-th element of the matrix [�+

1 ]. By direct computation,
it follows from (38) that

�+
1 = –

N∑

k=1

N∑

l=1

μkμ̂l
(
M–1)

kl. (43)

Take �k = iωkx + 4iω3
kt and μk0 = (a1

k , a2
k , a3

k , a4
k)T, 1 ≤ k ≤ N , therefore, the N-soliton so-

lutions for the coupled mKdV Equation (2) read

u = 2i
N∑

k=1

N∑

l=1

a1
k
(
a3

l
)∗e–�k +�∗

l
(
M–1)

kl, v = 2i
N∑

k=1

N∑

l=1

a1
k
(
a4

l
)∗e–�k +�∗

l
(
M–1)

kl, (44)

where a2
k(a3

l )∗ = (a1
k)∗a4

l and a2
k(a4

l )∗ = (a1
k)∗a3

l .
Specifically, when N = 1, we can obtain the explicit expressions of u, v. To this end, we

introduce the following notations

ω1 = δ1 + iη1, �1 = iω1x + 4iω3
1t, μ10 = (a1, a2, a3, a4)T ,

ρ1 = ln

( |a3|
|a1|

)
, τ1 = arg a1 – arg a3,

κ1 = arg a3 – arg a4, z1 = �1 + �∗
1 + ρ1,

(45)
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in which ai (i = 1, 2, 3, 4) are complex constants, arg A denotes the argument of A. It follows
from (37) and (45) that

μ1 =
(
a1e–�1 , a2e–�1 , a3e�1 , a4e�1

)T,

μ̂1 =
(
a∗

1e–�∗
1 , a∗

2e–�∗
1 , a∗

3e�∗
1 , a4e�∗

1
)
.

(46)

In view of (38), (40), and (41), one gets

Ũ =
2i

e–�1–�∗
1 (|a1|2 + |a2|2) + e�1+�∗

1 (|a3|2 + |a4|2)

·

⎛

⎜⎜
⎜
⎝

0 0 e�∗
1–�1 a1a∗

3 e�∗
1–�1 a1a∗

4

0 0 e�∗
1–�1 a2a∗

3 e�∗
1–�1 a2a∗

4

–e�1–�∗
1 a∗

1a3 –e�1–�∗
1 a∗

2a3 0 0
–e�1–�∗

1 a∗
1a4 –e�1–�∗

1 a∗
2a4 0 0

⎞

⎟⎟
⎟
⎠

.
(47)

Therefore, we have

Q =
2ie�∗

1–�1

e–�1–�∗
1 (|a1|2 + |a2|2) + e�1+�∗

1 (|a3|2 + |a4|2)
·
(

a1a∗
3 a1a∗

4

a2a∗
3 a2a∗

4

)

. (48)

The single soliton solutions of the CCMKDV System (2) thus read

u = e�∗
1–�1+iτ1 sech z1,

v = e�∗
1–�1+iτ1+iκ1 sech z1.

(49)

Besides, the complex constants a1, a2, a3, a4 satisfy

a1a∗
4 = a3a∗

2, a1a∗
3 = a4a∗

2.

Set a1 = a2 = a3 = a4 = 1, δ1 = 0, η1 = 0.5, we plot the graphics of single-soliton solutions
for the CCMKDV System (2) in Fig. 1.

Figure 1 A single non-degenerate soliton in u and v, the associated parameters are: ω1 = 0.5i,
a1 = a2 = a3 = a4 = 1
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When N = 2, set μ10 = (a1, a2, a3, a4)T and μ20 = (A1, A2, A3, A4)T , therefore the two-
soliton solutions of the CCMKDV System (2) read

u =
2i

|M|
{

1
ω2 – ω∗

2

[
e–�2–�∗

2
(|A1|2 + |A2|2

)
+ e�2+�∗

2
(|A3|2 + |A4|2

)]
e–�1+�∗

1 a1a∗
3

–
1

ω1 – ω∗
2

[
e–�1–�∗

2
(
a1A∗

1 + a2A∗
2
)

+ e�1+�∗
2
(
a3A∗

3 + a4A∗
4
)]

e–�1+�∗
2 a1A∗

3

–
1

ω2 – ω∗
1

[
e–�2–�∗

1
(
a∗

1A1 + a∗
2A2

)
+ e�∗

1+�2
(
a∗

3A3 + a∗
4A4

)]
e–�2+�∗

1 A1a∗
3

+
1

ω1 – ω∗
1

[
e–�1–�∗

1
(|a1|2 + |a2|2

)
+ e�1+�∗

1
(|a3|2 + |a4|2

)]
e–�2+�∗

2 A1A∗
3

}
,

(50)

v =
2i

|M|
{

1
ω2 – ω∗

2

[
e–�2–�∗

2
(|A1|2 + |A2|2

)
+ e�2+�∗

2
(|A3|2 + |A4|2

)]
e–�1+�∗

1 a1a∗
4

–
1

ω1 – ω∗
2

[
e–�1–�∗

2
(
a1A∗

1 + a2A∗
2
)

+ e�1+�∗
2
(
a3A∗

3 + a4A∗
4
)]

e–�1+�∗
2 a1A∗

4

–
1

ω2 – ω∗
1

[
e–�2–�∗

1
(
a∗

1A1 + a∗
2A2

)
+ e�∗

1+�2
(
a∗

3A3 + a∗
4A4

)]
e–�2+�∗

1 A1a∗
4

+
1

ω1 – ω∗
1

[
e–�1–�∗

1
(|a1|2 + |a2|2

)
+ e�1+�∗

1
(|a3|2 + |a4|2

)]
e–�2+�∗

2 A1A∗
4

}
,

(51)

in which

|M| =
1

(ω1 – ω∗
1)(ω2 – ω∗

2)
[
e–�1–�∗

1
(|a1|2 + |a2|2

)
+ e�1+�∗

1
(|a3|2 + |a4|2

)]

× [
e–�2–�∗

2
(|A1|2 + |A2|2

)
+ e�2+�∗

2
(|A3|2 + |A4|2

)]

–
1

(ω1 – ω∗
2)(ω2 – ω∗

1)
[
e–�1–�∗

2
(
a1A∗

1 + a2A∗
2
)

+ e�1+�∗
2
(
a3A∗

3 + a4A∗
4
)]

× [
e–�2–�∗

1
(
a∗

1A1 + a∗
2A2

)
+ e�2+�∗

1
(
a∗

3A3 + a∗
4A4

)]
.

(52)

In virtue of (5), we have

A1 = A∗
2 = a2 = a∗

1, –A3 = A∗
4 = a4 = a∗

3. (53)

Moreover, the two-soliton interactions are graphically shown in Fig. 2 by choosing some
suitable parameters.

5 Concluding remarks
A CCMKDV System (2) was investigated in this paper. By analyzing its spectral problem,
we construct the associated 4 × 4 matrix RH problem. By eliminating the zeros and the
Plemelj’s formula [39], we solve the RH problem with simple zeros. Subsequently, we pre-
sented the N-soliton solutions formula for (2). Specifically, the single soliton solutions are
presented explicitly and the dynamical behavior of the single-soliton solutions has been
shown graphically. We note that we only treat the case when the potential functions satisfy
some zero boundary conditions. For the general case when the potentials fail to obey these
vanishing conditions, more general solutions could be obtained, which may be studied in
the future.
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Figure 2 Two-soliton interactions between u and v via (50)–(52), the associated parameters are: ω1 = 2i,
ω2 = i, –A3 = A∗

4 = a1 = a∗
2 = 1 + 2i, A1 = A∗

2 = a3 = a∗
4 = 1 – 2i
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