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Abstract
The asymptotic behavior of solutions for a new class of generalized Halanay
inequalities is studied via the fixed point method. This research provides a new
approach to the study of the stability of Halanay inequality. To make the application
of fixed point method in stability research more flexible and feasible, we introduce
corresponding functions to construct an operator according to different
characteristics of coefficients. The results obtained in this paper are applied to the
stability study of a neural network system, which has high value in application.
Moreover, three examples and simulations are given to illustrate the results. The
conclusions in this paper greatly improve and generalize the relative results in the
current literature.
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1 Introduction
The delay dynamical systems have been applied in a lot of fields such as medicine biology,
neural networks, physics, electrical engineering, and other fields of engineering and sci-
ence. Stability has always been the most widely studied in the theory of dynamical systems.
Therefore, research on the stability of delay dynamical systems has been very fruitful, see
for instance [1–22]. Recently, as a generalization of dynamical systems, many authors have
studied the stability of Halanay inequality systems.

To discuss the asymptotic stability of the following dynamical systems with delay τ :

y′(t) = –ay(t) + by(t – τ ), t ≥ t0,

Halanay ([4] and [5]) proved the so-called Halanay inequalities

y′(t) ≤ –ay(t) + b sup
t–τ≤s≤t

y(s), (t ≥ t0), y(t) = ψ(t), (t ≤ t0) (1.1)

and the following lemma.
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Lemma 1.1 (Halanay 1975 [5]) Let a > b > 0 and ψ(t) ≥ 0 be continuous and bounded. If
y(t) satisfies (1.1), then there are �, c > 0 such that y(t) ≤ ce–�(t–t0). Hence, when t → +∞,
y(t) → 0.

In view of the above properties of the Halanay inequality, many authors have studied the
stability of various generalized types of delay dynamical systems. Let R = (–∞, +∞), R+ =
(0, +∞), C(A,�) be a continuous function from A to �, BC(A,�) be a bounded continuous
function from A to �, Im = 1, 2, . . . , m. Baker and Tang [6] gave one generalization of (1.1)
and obtained Lemma 1.2.

Lemma 1.2 (Baker and Tang 1996 [6]) Let y(t) > 0 satisfy

y′(t) ≤ –a(t)y(t) + b(t) sup
t–τ (t)≤s≤t

y(s) for t ≥ t0 and y(t) = ψ(t) for t ≤ t0, (1.2)

where ψ(t) ∈ BC((–∞, t0], R+). When t ≥ t0, a(t), b(t), τ (t) ≥ 0. And τ (t) satisfies t – τ (t) →
+∞ as t → +∞. There is θ > 0 such that b(t) – a(t) ≤ –θ < 0 for t ≥ t0, then y(t) → 0 as
t → +∞.

Some authors further presented the generalized Halanay inequality

D+y(t) ≤ –a(t)y(t) + b(t) sup
t–τ (t)≤s≤t

y(s) for t ≥ t0 and

y(t) = ψ(t) for t ≤ t0,
(1.3)

where the upper-right Dini derivative D+y(t) is defined as

D+y(t) = lim sup
σ→0+

y(t + σ ) – y(t)
σ

, (1.4)

a(t), b(t) and τ (t) are defined by Lemma 1.2.
As applications of generalized Halanay inequality (1.3), Tian [7] researched the stability

and boundedness of inequality (1.3) with constant delays. Wen [8] obtained the dissipa-
tivity results of Volterra functional differential equations. Based on Wen [8], Liu ([9] and
[10]) considered boundedness, asymptotic stability, and exponential stability of inequality
(1.3) and obtained the following lemma.

Lemma 1.3 (Liu 2012 [10]) If y(t) satisfies (1.3), b(t) ≥ 0, then there are λa > 0, λb > 0, τ̃ > 0
such that |a(t)| ≤ λa, b(t) ≤ λb, τ (t) ≤ τ̃ , then y(t) → 0 as t → +∞ if limt→+∞

∫ t
o [a(s) –

b(s)eMa τ̃ ] ds = +∞.

Then, Ruan [11] studied the stability and boundedness of inequality (1.3) by integral
inequalities and obtained the following lemma.

Lemma 1.4 (Ruan [11]) If y(t) satisfies (1.3), b(t) ≥ 0, and

lim
t→+∞

∫ t

o

[
–a(s) + b(s)esupt–τ (t)≤s≤t

∫ t
s a(v) dv]ds = –∞,

then y(t) → 0 as t → +∞.
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Many authors used the stability results of Halanay inequality to study the synchroniza-
tion and stability of neural networks. When studying the stability of dynamical systems,
most of the authors (such as [12, 13]) used Lyapunov’s direct method. Yet, there are many
problems which make this method invalid. For solving the problems encountered in the
study of Lyapunov’s direct method, Burton and other authors [14–18] investigated the sta-
bility of stochastic dynamical systems driven by Brownian motion using fixed point the-
ory. Later, Shahram Rezapour and his collaborators [19–21] used the fixed point method
to study the properties associated with the solution of stochastic fractional differential
system. The results showed that the fixed point method can overcome many problems in
the study of the stability of dynamical systems.

However, when using Halanay inequalities to discuss the stability of dynamical systems,
the fixed point method is seldom used. In this paper, we study the asymptotic stability of
dynamical system with variable delays via generalized Halanay inequalities by the fixed
point method. In particular, the obtained conclusions improve and promote the results of
some existing papers. See the examples in Sect. 4.

The remaining parts of the paper are designed as follows. The main theoretical conclu-
sions are firstly proposed and then proved in Sect. 2. The conclusions in Sect. 2 are applied
to study the global stability of neural networks in Sect. 3. Examples with numerical simu-
lations are illustrated in Sect. 4. The conclusions are given in Sect. 5.

2 Main results
Consider the following generalized Halanay’s inequality with multiple delays:

⎧
⎪⎪⎨

⎪⎪⎩

D+y(t) ≤ –
∑m

i=1 ai(t)y(t) +
∑m

i=1 bi(t)y(gi(t))

+
∑m

k=1 ck(t) suprk (t)≤s≤t y(s), t ≥ 0,

y(t) = |ψ(t)| ∈ C([ψ(0), 0], R+), t ≤ 0.

(2.1)

Here,

ψ(0) = max
1≤i,k≤m

{
inf

(
gi(s), s ≥ 0

)
, inf

(
rk(s), s ≥ 0

)}
,

D+y(t) is defined by (1.4), ai(t), bi(t), ck(t), gi(t), rk(t)∈C(R+, R) satisfy gi(t) → ∞, rk(t) → ∞
as t → ∞. Besides, let gi(t) ≤ t be differentiable and rk(t) ≤ t (1 ≤ i, k ≤ m < ∞).

Theorem 2.1 Assume that there are some functions fi(t) ∈ C(R+, R+), (i ∈ Im) and a positive
constant α < 1 such that, for t ≥ 0,

(i)

f (t) =
m∑

i=1

fi(t) and lim inf
t→∞

∫ t

0
f (s) ds > –∞,

(ii)

sup
t≥t0

{ m∑

i=1

∫ t

gi(t)

∣
∣fi(s) – ai(s)

∣
∣ds
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+
∫ t

0
e–

∫ t
s f (v) dv

m∑

i=1

∣
∣bi(s) +

[
fi
(
gi(s)

)
– ai

(
gi(s)

)]
g ′

i(s)
∣
∣ds

+
∫ t

0
f (s)e–

∫ t
s f (v) dv

( m∑

i=1

∫ s

gi(s)

∣
∣fi(v) – ai(v)

∣
∣dv

)

ds

+
∫ t

0
e–

∫ t
s f (v) dv

m∑

k=1

∣
∣ck(s)

∣
∣ds

}

≤ α < 1.

Then y(t) → 0 as t → +∞ if and only if
(iii)

∫ t

0
f (s) ds → ∞ as t → ∞.

Proof Define the following delay dynamic system:

⎧
⎪⎪⎨

⎪⎪⎩

dy(t) = [
∑m

i=1(–ai(t))y(t) +
∑m

i=1 bi(t)y(gi(t))

+
∑m

k=1 ck(t) suprk (t)≤s≤t y(s)] dt, t ≥ 0,

y(t) = |ψ(t)| ∈ C([ψ(0), 0], R+), t ≤ 0.

(2.2)

From (2.2), we obtain

y(t) = φ(0)e–
∫ t

0 f (v) dv +
∫ t

0

[

f (s) –
m∑

i=1

ai(s)

]

e–
∫ t

s f (v) dvy(s) ds

+
∫ t

0
e–

∫ t
s f (v) dv

m∑

i=1

bi(s)y
(
gi(s)

)
ds

+
∫ t

0
e–

∫ t
s f (v) dv

m∑

k=1

ck(s) sup
rk (s)≤u≤s

y(u) ds.

(2.3)

Among

∫ t

0

[

f (s) –
m∑

i=1

ai(s)

]

e–
∫ t

s f (v) dvy(s) ds

=
m∑

i=1

∫ t

0
e–

∫ t
s f (v) dv d

∫ s

gi(s)

[
fi(u) – ai(u)

]
y(u) du

+
m∑

i=1

∫ t

0
e–

∫ t
s f (v) dv[fi

(
gi(s)

)
– ai

(
gi(s)

)]
g ′

i(s)y
(
gi(s)

)
ds

=
m∑

i=1

∫ t

gi(t)

[
fi(s) – ai(s)

]
y(s) ds – e–

∫ t
0 f (v) dv

m∑

i=1

∫ 0

gi(0)

[
fi(s) – ai(s)

]
ψ(s) ds

(2.4)

+
m∑

i=1

∫ t

0
e–

∫ t
s f (v) dv[fi

(
gi(s)

)
– ai

(
gi(s)

)]
g ′

i(s)y
(
gi(s)

)
ds
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–
∫ t

0
f (s)e–

∫ t
s f (v) dv

( m∑

i=1

∫ s

gi(s)

[
fi(u) – ai(u)

]
y(u) du

)

ds.

So, combining (2.3) and (2.4), we know

y(t) =

(

ψ(0) –
m∑

i=1

∫ 0

gi(0)

[
fi(s) – ai(s)

]
ψ(s) ds

)

e–
∫ t

0 f (v) dv +
m∑

i=1

∫ t

gi(t)

[
fi(s) – ai(s)

]
y(s) ds

+
∫ t

0
e–

∫ t
s f (v) dv

m∑

i=1

([
fi
(
gi(s)

)
– ai

(
gi(s)

)]
g ′

i(s) + bi(s)
)
f
(
gi(s)

)
ds

–
∫ t

0
f (s)e–

∫ t
s f (v) dv

( m∑

i=1

∫ s

gi(s)

[
fi(u) – ai(u)

]
y(u) du

)

ds

+
∫ t

0
e–

∫ t
s f (v) dv

m∑

k=1

ck(s) sup
rk (s)≤u≤s

y(u) ds.

(2.5)

Define the operator � : S → S as follows:

(�y)(t) =

(

ψ(0) –
m∑

i=1

∫ 0

gi(0)

[
fi(s) – ai(s)

]
ψ(s) ds

)

e–
∫ t

0 f (v) dv

+
m∑

i=1

∫ t

gi(t)

[
fi(s) – ai(s)

]
y(s) ds

+
∫ t

0
e–

∫ t
s f (v) dv

m∑

i=1

([
fi
(
gi(s)

)
– ai

(
gi(s)

)]
g ′

i(s) + bi(s)
)
y
(
gi(s)

)
ds

–
∫ t

0
f (s)e–

∫ t
s f (v) dv

( m∑

i=1

∫ s

gi(s)

[
fi(u) – ai(u)

]
y(u) du

)

ds

+
∫ t

0
e–

∫ t
s f (v) dv

m∑

k=1

ck(s) sup
rk (s)≤u≤s

y(u) ds :=
5∑

j=1

Ij(t), t ≥ 0.

(2.6)

The initial value is (�y)t) = ψ(t) for t ∈ [ψ(0), 0]. Denote by S the Banach space of
all functions ϕ ∈ BC(R, R). Then S is a complete metric space with metric ρ(x, y) =
supt≥0 |x(t) – y(t)|. Moreover, ϕ(s) = |ψ(s)| for s ∈ (–∞, 0], and when t ≥ 0, we have
|ϕ(t)| → 0 as t → +∞. Then it is obvious that � is continuous on [0,∞).

Next, we show that �(S) ∈ S. From condition (iii), we know, when t → ∞,

∣
∣I1(t)

∣
∣ =

∣
∣
∣
∣
∣
φ(0) –

m∑

i=1

∫ 0

gi(0)

[
fi(s) – ai(s)

]
ψ(s) ds

∣
∣
∣
∣
∣
e–

∫ t
0 f (v) dv → 0. (2.7)

As t → ∞, gi(t) → ∞, and |y(t)| → 0, then for any ε > 0, there exists T1 > 0 such that
t ≥ T1 implies |y(t)| < ε and |y(gi(t))| < ε, i ∈ Im. Hence, when t ≥ T1, from condition (ii),
we have

∣
∣I2(t)

∣
∣ =

∣
∣
∣
∣
∣

m∑

i=1

∫ t

gi(t)

[
fi(s) – ai(s)

]
y(s) ds

∣
∣
∣
∣
∣
≤ ε

( m∑

i=1

∫ t

gi(t)

∣
∣fi(s) – ai(s)

∣
∣ds

)

< ε. (2.8)
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Then |I2(t)| → 0 as t → ∞. Meanwhile, from condition (ii), we have

∣
∣I3(t)

∣
∣ =

∣
∣
∣
∣
∣

∫ t

0
e–

∫ t
s f (v) dv

m∑

i=1

[(
fi
(
gi(s)

)
– ai

(
gi(s)

))
g ′

i(s) + bi(s)
]
y
(
gi(s)

)
ds

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ T1

0
e–

∫ t
s f (v) dv

m∑

i=1

[(
fi
(
gi(s)

)
– ai

(
gi(s)

))
g ′

i(s) + bi(s)
]
y
(
gi(s)

)
ds

+
∫ t

T1

e–
∫ t

s f (v) dv
m∑

i=1

[(
fi
(
gi(s)

)
– ai

(
gi(s)

))
g ′

i(s) + bi(s)
]
y
(
gi(s)

)
ds

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫ T1

0
e–

∫ t
s f (v) dv

m∑

i=1

[(
fi
(
gi(s)

)
– ai

(
gi(s)

))
g ′

i(s) + bi(s)
]
y
(
gi(s)

)
ds

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫ t

T1

e–
∫ t

s f (v) dv
m∑

i=1

[(
fi
(
gi(s)

)
– ai

(
gi(s)

))
g ′

i(s) + bi(s)
]
y
(
gi(s)

)
ds

∣
∣
∣
∣
∣

≤ sup
t∈[0,T1]

∣
∣y(t)

∣
∣

(∫ T1

0
e–

∫ t
s f (v) dv

m∑

i=1

[(
fi
(
gi(s)

)
– ai

(
gi(s)

))
g ′

i(s) + bi(s)
]

ds

)

+ ε

(∫ t

T1

e–
∫ t

s f (v) dv
m∑

i=1

[(
fi
(
gi(s)

)
– ai

(
gi(s)

))
g ′

i(s) + bi(s)
]

ds

)

.

(2.9)

By condition (iii), there exists T2 ≥ T1 when t ≥ T2 such that

sup
t∈[0,T1]

∣
∣y(t)

∣
∣

(∫ T1

0
e–

∫ t
s f (v) dv

m∑

i=1

[(
fi
(
gi(s)

)
– ai

(
gi(s)

))
g ′

i(s) + bi(s)
]

ds

)

< ε. (2.10)

We easily know that |I3(t)| < 2ε by condition (ii). Therefore, |I3(t)| → 0, as t → ∞. Simi-
larly, we can get |I4(t)| → 0 as t → ∞.

As t → ∞, rk(t) → ∞ and |y(t)| → 0. Then there is T3 > 0 such that rk(t) ≥ T3, k ∈ Im,
implies |y(t)| < ε for any ε > 0. Hence, when rk(t) ≥ T3, we have

∣
∣I5(t)

∣
∣ ≤

∣
∣
∣
∣
∣

∫ T3

0
e–

∫ t
s f (v) dv

m∑

k=1

ck(s) sup
rk (s)≤u≤s

y(u) ds

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫ t

T3

e–
∫ t

s f (v) dv
m∑

k=1

ck(s) sup
rk (s)≤u≤s

y(u) ds

∣
∣
∣
∣
∣

≤ sup
rk (0)≤t≤T3

∣
∣y(t)

∣
∣

∣
∣
∣
∣
∣

∫ T3

0
e–

∫ t
s f (v) dv

m∑

k=1

ck(s) ds

∣
∣
∣
∣
∣

+ ε

∣
∣
∣
∣
∣

∫ t

T3

e–
∫ t

s f (v) dv
m∑

k=1

ck(s) ds

∣
∣
∣
∣
∣
.

(2.11)

As can be seen from the above proof, |I5(t)| → 0 as t → ∞. Then we have |(�y)(t)| → 0
as t → ∞. Therefore, we get the conclusion of �(S) ⊂ S.
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For ξ ∈ S and ϕ ∈ S, we have

sup
s∈[0,t]

∣
∣(�ξ )(s) – (�ϕ)(s)

∣
∣

≤ sup
s∈[0,t]

∣
∣ξ (s) – ϕ(s)

∣
∣ sup

s∈[0,t]

{ m∑

i=1

∫ s

gi(s)

∣
∣fi(v) – ai(v)

∣
∣dv

+
∫ s

0
e–

∫ s
v f (v) dv

m∑

i=1

∣
∣bi(v) +

(
fi
(
gi(s)

)
– ai

(
gi(s)

))
g ′

i(v)
∣
∣dv

+
∫ s

0
f (v)e–

∫ s
v f (v) dv

( m∑

i=1

∫ v

gi(v)

∣
∣fi(u) – ai(u)

∣
∣du

)

dv

+
∫ s

0
e–

∫ s
v f (v) dv

m∑

k=1

∣
∣ck(v)

∣
∣dv

}

≤ α sup
s∈[0,t]

∣
∣ξ (s) – ϕ(s)

∣
∣.

(2.12)

Therefore, we obtain that � is a contraction mapping according to the contraction map-
ping principle. � has a unique fixed point y(t) in S by the contraction mapping principle.
The fixed point is a solution of (2.2) with y(s) = |ψ(s)| on [ψ(0), 0) and |y(t)| → 0 as t → ∞.

Then, we need to prove that the zero solution of (2.2) is stable. Suppose that σ > 0 is
given and choose a positive constant σ (θ < σ ) satisfying

θ

(

1 +
m∑

i=1

∫ 0

gi(0)

∣
∣fi(s) – ai(s)

∣
∣ds

)

e–
∫ t

0 f (v) dv + ασ < σ .

If y(t) = y(t, 0, |ψ |) is a solution of (2.2) with |ψ | < θ , then y(t) = (�y)(t) is defined in
(2.6). We have |y(t)| < σ for all t ≥ 0. Notice that |y(t)| < σ on [ψ(0), 0). Suppose that there
is t∗ > 0 such that |y(t∗)| = σ and |y(s)| < σ for ψ(0) ≤ s < t∗. From (2.6), we obtain

∣
∣y

(
t∗)∣∣ ≤ |ψ |

(

1 +
m∑

i=1

∫ 0

gi(0)

∣
∣fi(s) – ai(s)

∣
∣ds

)

e–
∫ t∗

0 f (v) dv

+ σ

{ m∑

i=1

∫ s

gi(s)

∣
∣fi(v) – ai(v)

∣
∣dv

+
∫ s

0
e–

∫ s
v f (v) dv

m∑

i=1

∣
∣bi(v) +

(
fi
(
gi(s)

)
– ai

(
gi(s)

))
g ′

i(v)
∣
∣dv

+
∫ s

0
f (v)e–

∫ s
v f (v) dv

( m∑

i=1

∫ v

gi(v)

∣
∣fi(u) – ai(u)

∣
∣du

)

dv

+
∫ s

0
e–

∫ s
v f (v) dv

m∑

k=1

∣
∣ck(v)

∣
∣dv

}

≤ |ψ |
(

1 +
m∑

i=1

∫ 0

gi(0)

∣
∣fi(s) – ai(s)

∣
∣ds

)

e–
∫ t∗

0 f (v) dv + ασ < σ .

(2.13)

This is contradictory to the definition of t∗. Thus the zero solution of (2.2) is asymptotically
stable if condition (iii) is established.
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On the contrary, assume that condition (iii) is not met, then there is a sequence tl , tl →
∞ as l → ∞ such that liml→∞

∫ tl
0 f (s) ds = p for some p ∈ R by condition (i). We can select

a constant Q > 0 satisfying 0 <
∫ tl

0 f (s) ds ≤ Q for all l ≥ 1. We define A(s) as follows for
simplification:

A(s) :=
m∑

i=1

∣
∣bi(v) +

[
fi
(
gi(s)

)
– ai

(
gi(s)

)]
g ′

i(v)
∣
∣

+ f (v)

( m∑

i=1

∫ v

gi(v)

∣
∣fi(u) – ai(u)

∣
∣du

)

, s ≥ 0.

By condition (ii), we have

∫ tl

0
e–

∫ tl
s f (v) dvA(s) ds ≤ α.

This yields

∫ tl

0
e
∫ s

0 f (v) dvA(s) ds ≤ αe
∫ tl

0 f (v) dv ≤ eQ.

From the above, there is a convergent subsequence as {∫ tl
0 e

∫ s
0 f (v) dvA(s) ds} is bounded. For

the convenience, we may suppose that there exists some γ ∈ R+ such that

lim
l→∞

∫ tl

0
e
∫ s

0 f (v) dvA(s) ds = γ .

Then we can find an integer k̃ > 0 large enough such that, for all l ≥ k̃,

lim
l→∞

∫ tl

tk̃

e
∫ s

0 f (v) dvA(s) ds <
θ

8β
,

where β = supt∈[0,+∞) e–
∫ t

0 f (v) dv, θ > 0 satisfies 8θβeQ + α < 1.
Next, we will discuss the zero solution y(t) = y(t, tk̃ , |ψ |) of system (2.2) with |ψ(tk̃)| = θ

and |ψ(s)| ≤ θ for s ≤ tk̃ . Then |y(t)| ≤ 1 for t ≥ tk̃ . We may select ψ such that

B(tk̃) := ψ(tk̃) –
m∑

i=1

∫ tk̃

gi(tk̃ )

[
fi(s) – ai(s)

]
ψ(s) ds ≥ 1

2
θ .

From (2.6), we obtain

∣
∣
∣
∣
∣
y(tl) –

m∑

i=1

∫ tl

gi(tl)

[
fi(s) – ai(s)

]
y(s) ds

∣
∣
∣
∣
∣

≥ B(tk̃)e
–

∫ tl
tk̃

f (v) dv
{

B(tk̃)e
–

∫ tl
tk̃

f (v) dv
– 2

∫ tl

tk̃

e–
∫ tl

s f (v) dvA(s) ds
}

≥ 1
2
θe

–
∫ tl

tk̃
f (v) dv

{
1
2
θe

–
∫ tl

tk̃
f (v) dv

– 2
∫ tl

tk̃

e–
∫ tl

s f (v) dvA(s) ds
}
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=
1
2
θe

–
∫ tl

tk̃
f (v) dv

{
1
2
θe

–
∫ tl

tk̃
f (v) dv

– 2e–
∫ tl

0 f (v) dv
∫ tl

tk̃

e
∫ s

0 f (v) dvA(s) ds
}

(2.14)

≥ 1
2
θe

–2
∫ tl

tk̃
f (v) dv

{
1
2
θ – 2β

∫ tl

tk̃

e
∫ s

0 f (v) dvA(s) ds
}

≥ 1
8
θ2e

–2
∫ tl

tk̃
f (v) dv

≥ 1
8
θ2e–2Q > 0.

However, provided gi(tl) → ∞ as l → ∞ holds. From condition (ii), we have |y(tl) –
∑m

i=1
∫ tl

gi(tl)
[fi(s) – ai(s)]y(s) ds| → 0 as l → ∞ for |y(t)| = |y(t, tk̃ , |ψ |)| → 0, which is contra-

dictory to (2.14). Therefore, for the asymptotic stability of system (2.2), condition (iii) is
essential. Thus, system (2.1) is asymptotically stable if and only if condition (iii) holds. The
proof is complete. �

Apparently, if we set m = k = 1, a1(t) = a(t), bi(t) = 0, c1(t) = b(t), g1(t) = r1(t) = t – τ (t) in
Theorem 2.1, we have Theorem 2.2.

Theorem 2.2 Let τ (t) be differentiable. Assume that y(t) satisfies (1.3), there are f (t) ∈
C(R+, R+) and a positive constant α < 1 such that, for t ≥ 0,

(i)

lim inf
t→∞

∫ t

0
f (s) ds > –∞,

(ii)

sup
t≥t0

{∫ t

t–τ (t)

∣
∣f (s) – a(s)

∣
∣ds

+
∫ t

0
e–

∫ t
s f (v) dv∣∣

[
f
(
s – τ (s)

)
– a

(
s – τ (s)

)](
1 – τ ′(s)

)∣
∣ds

+
∫ t

0
f (s)e–

∫ t
s f (v) dv

(∫ s

s–τ (s)

∣
∣f (u) – a(u)

∣
∣du

)

ds

+
∫ t

0
e–

∫ t
s f (v) dv∣∣b(s)

∣
∣ds

}

≤ α < 1.

Then y(t) → 0 as t → +∞ if and only if
(iii)

∫ t

0
f (s) ds → ∞ as t → ∞.

Remark 2.1 We do not require bounded delay τ (t) nor inverse function of delay, which
improves the results in a lot of literature works, for example, [9, 10, 15].

Remark 2.2 In Theorem 2.2, we do not require a(t) > b(t). This greatly improves the con-
clusions of studies [5, 8–11].
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3 Applications
Consider the Grossberg–Hopfield neural network with multiple time-varying delays as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

dyi(t) = [
∑m

j=1(–aij(t))yi(t) +
∑m

j=1 bij(t)hj(yj(t))

+
∑m

j=1 cij(t)gj(yj(kij(t))) + Ii(t)] dt, t ≥ 0,

yi(t) = |ψi(t)| ∈ C([ψ(0), 0], R), t ≤ 0.

(3.1)

Here, self-inhibition aij(t), the interconnection weights bij(t), cij(t) and hj(t), gj(t), kij(t) are
scalar integrable functions for t ∈ [0, +∞), inputs Ii(t) : R+ −→ R are continuously func-
tions, i ∈ Im. ψ(0) is defined as above.

Definition 3.1 (Gopalsam [22]) The solution u(t) = (u1(t), . . . , un(t)) of (3.1) is globally
asymptotically stable if and only if every other solution v(t) = (v1(t), . . . , vn(t)) of (3.1) with
vi(0) > 0 (i ∈ Im) is defined for all t > 0 and satisfies

lim
t→∞

∣
∣ui(t) – vi(t)

∣
∣ = 0, i = l, 2, . . . .n. (3.2)

Theorem 3.1 The functions hj(t), gj(t) satisfying the Lipschitz condition with Lipschitz’s
constant Lj, Pj are differentiable (j ∈ Im). Assume that there is a positive constant α < 1 and
some functions fij(t) ∈ C(R+, R+) (i, j ∈ IM) such that, for t ≥ 0,

(i)

fi(t) =
m∑

j=1

fij(t) and lim inf
t→∞

∫ t

0
fi(t) ds > –∞,

(ii)

sup
t≥t0

{∫ t

0
e–

∫ t
s fi(v) dv

m∑

j=1

∣
∣bij(s)Lj + fij(s) – aij(s)

∣
∣ds +

∫ t

0
e–

∫ t
s fi(v) dv

m∑

j=1

∣
∣cij(s)Pj

∣
∣ds

}

≤ α < 1.

Then the neural network system (3.1) is globally asymptotically stable if and only if
(iii)

∫ t

0
fi(s) ds → ∞ as t → ∞.

Proof For system (3.1), we know

d[ui(t) – vi(t)]
dt

= –
m∑

j=1

aij(t)
[
ui(t) – vi(t)

]
+

m∑

j=1

bij(t)
[
hj

(
uj(t)

)
– hj

(
vj(t)

)]

+
m∑

j=1

cij(t)
[
gj
(
uj

(
kij(t)

))
– gj

(
vj

(
kij(t)

))]
, t ≥ 0, i ∈ Im.

(3.3)
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Define xi(t) = ui(t) – vi(t), t ≥ 0, k(t) = min{kij(t)}, i, j ∈ Im. From Theorem 3.1, we can
obtain the following inequalities:

⎧
⎪⎪⎨

⎪⎪⎩

D+xi(t) ≤ ∑m
j=1(–aij(t))xi(t) +

∑m
j=1 bij(t)Ljxj(t)

+
∑m

j=1 cij(t)Pj supkij(t)≤s≤t xj(s), t ≥ 0,

xi(t) = supk(0)≤s≤0 xi(s), t ≤ 0.

(3.4)

For t ≥ 0, define y(t) := max{xi(t), i ∈ Im}. For all t ∈ [0, +∞), let it̃ stand for the index such
that y(t) = |xit̃ (t)|. So, we have for t ≥ 0

D+y(t) ≤
m∑

j=1

(
–ait̃ j(t)

)
y(t) +

m∑

j=1

bit̃ j(t)Ljxj(t)

+
m∑

j=1

cit̃ j(t)Pj sup
kit̃ j(t)≤s≤t

xj(s)

≤
m∑

j=1

(
–ait̃ j(t)

)
y(t) +

m∑

j=1

bit̃ j(t)Ljy(t)

+
m∑

j=1

cit̃ j(t)Pj sup
k(t)≤s≤t

y(s), i ∈ Im.

Let aj(t) = ait̃ j(t), bj(t) = bit̃ j(t), cj(t) = cit̃ j(t), then we get

⎧
⎪⎪⎨

⎪⎪⎩

D+y(t) ≤ ∑m
j=1(–aj(t))y(t) +

∑m
j=1 bj(t)Ljy(t)

+
∑m

j=1 cj(t)Pj supk(t)≤s≤t y(s), t ≥ 0

y(t) = supk(0)≤s≤0 x(s), t ≤ 0.

(3.5)

From Theorem 2.1, we can get the conclusion of Theorem 3.1. The proof is complete. �

4 Examples
In this section, we present some examples and numerical simulations to test and verify
our main conclusions.

Example 4.1 Consider a delay dynamical system

dx(t) = – (3 + 3t)–1x(t) – (6 + 6t)–1x(t) + (8 + 6t)–1x
(

t –
t
3

)

+ (9 + 6t)–1x
(

t –
2t
3

)

+ (19 + 18t)–1 sup
3t/4≤s≤t

x(s) + (10 + 9t)–1 sup
4t/5≤s≤t

x(s) for t ≥ 0.

(4.1)

The initial value is x(t) = 10 for t ∈ [–2, 0]. In Theorem 2.1, let f1(t) ≡ a1(t) = (3 + 3t)–1,
f2(t) ≡ a2(t) = (6 + 6t)–1, f (t) = f1(t) + f2(t) = (2 + 2t)–1, b1(t) = (8 + 6t)–1, b2(t) = (9 + 6t)–1,
c1(t) = (19 + 18t)–1, c2(t) = (10 + 9t)–1. Because supt≥0

∫ t
0 e–

∫ t
s (2+2u)–1 dμ|(9 + 6s)–1 + (8 +

6s)–1|ds < 2
3 , supt≥0

∫ t
0 e–

∫ t
s (2+2u)–1 dμ|(10 + 9s)–1 + (19 + 18s)–1|ds < 1

3 . So, we know x(t) → 0
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Figure 1 Example 4.1

as t → +∞ from Theorem 2.1. Simulation result presented in Fig. 1 shows the validity of
our theoretical result. Figure 1 is the graph of the system

dx(t) = – (3 + 3t)–1x(t) – (6 + 6t)–1x(t)

+ (8 + 6t)–1x
(

t –
t
3

)

+ (9 + 6t)–1x
(

t –
2t
3

)

+ (19 + 18t)–1x
(

t –
t
4

)

+ (10 + 9t)–1x
(

t –
t
5

)

for t ≥ 0.

Remark 4.1 Because τ1(t) = t
3 , τ2(t) = 2t

3 , τ3(t) = t
4 , τ4(t) = t

5 are unbounded, [9, 10, 15] are
invalid.

Example 4.2 Consider a delay dynamic system

dx(t) =
[

–2tx(t) + 6e–1.2tx
(

t –
1

2 + t

)]

dt, t ≥ 0, and

x(t) = 10, t ∈ [–1, 0].
(4.2)

In Theorem 2.2, let f (t) = α(t) = 2t, β(t) = 6e–1.2t. Because

sup
t≥0

∫ t

0
e–

∫ t
s 2μdμ

∣
∣6e–1.2s

∣
∣ds ≤ 3e–1.2 < 1,

we know x(t) → 0 as t → +∞ from Theorem 2.2. The system (4.2) is asymptotically stable,
as shown in Figs. 2.

Remark 4.2 In [5, 6, 8–10], and [11], the authors required –λ(t) + δ(t) ≤ –ϑ < 0 for t ≥ 0
and positive constant ϑ . Obviously, our Example 4.2 does not require such a restriction.
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Figure 2 Example 4.2

Example 4.3 Consider a 2-dimensional Grossberg–Hopfield neural network as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dyi(t) = [–ai(t)xi(t) +
∑m

j=1 bij(t)hj(xj(t))

+
∑m

j=1 cij(t)gj(xj(kij(t))) + Ii(t)] dt, t ≥ 0,

xi(t) = |ϕi(t)|, t ≤ 0, i = 1, 2.

(4.3)

We consider the dynamical behavior of two solutions x(1)(t) = (x(1)
1 (t), x(1)

2 (t)), x(2)(t) =
(x(2)

1 (t), x(2)
2 (t)) of (4.3) with different initial values ϕ(1)(t) = (ϕ(1)

1 (t),ϕ(1)
2 (t)), ϕ(2)(t) = (ϕ(2)

1 (t),
ϕ

(2)
2 (t)) for t ∈ [–2, 0], which have the following definition:

ϕ
(1)
1 (t) = 20, ϕ

(1)
2 (t) = 30, ϕ

(2)
1 (t) = 40, and ϕ

(2)
2 (t) = 50.

We further set a1(t) = a2(t) = t, b11(t) = b21(t) = 0.2t, b12(t) = b22(t) = 0.3t, c11(t) = c21(t) =
0.15t, c12(t) = c22(t) = 0.25t, I1(t) = cos t, I2(t) = sin t, and k11(t) = k12(t) = k21(t) = k22(t) =
0.4t. For each s ∈ R, h1(s) = h2(s) = arctan(s), g1(s) = g2(s) =

√
s + 1. It is easy to know that

L1 = L1 = P1 = P2 = 1. Let f1(t) = f2(t) = a1(t) = a2(t) = t, define y1(t) = |x(1)
1 (t) – x(2)

1 (t))|,
y2(t) = |x(1)

2 (t) – x(2)
2 (t)|, y(t) = (y1(t), y2(t))ᵀ. From Theorem 3.1,

sup
t≥0

∫ t

0
e–

∫ t
s f1(μ) dμ

2∑

j=1

∣
∣b1j(s)Lj

∣
∣ds +

∫ t

0
e–

∫ t
s h1(μ) dμ

2∑

j=1

∣
∣c1j(s)Pj

∣
∣ds = 0.9 < 1,

sup
t≥0

∫ t

0
e–

∫ t
s f2(μ) dμ

2∑

j=1

∣
∣b2j(s)Lj

∣
∣ds +

∫ t

0
e–

∫ t
s h2(μ) dμ

2∑

j=1

∣
∣c2j(s)Pj

∣
∣ds = 0.9 < 1.

The neural network system (4.3) is globally asymptotically stable, as shown in Figs. 3–5.

Remark 4.3 Because ai(t), bij(t), cij(t) (i, j ∈ Im) are unbounded, Theorem 3 in [9] and
Proposition 3 in [10] cannot be applied to system (4.3). Besides, because delays are un-
bounded, Theorem 3 in [11] will be invalid.
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Figure 3 The state response of x(1)1 (t) and x(1)2 (t) in system (4.3)

Figure 4 The state response of x(2)1 (t) and x(2)2 (t) in system (4.3)

5 Conclusion
In this note, we first used the fixed point method to study a new kind of generalized Ha-
lanay inequalities and obtained some sufficient conditions of asymptotic behavior. Then,
we applied our conclusions to the study of the asymptotic synchronization and conver-
gence of neural network systems. Finally, we presented some examples and numerical
simulations to test and verify our main conclusions. The conclusions in this note improve
and generalize the relative results in [4–11]. Also, to the authors’ knowledge, the study
of stochastic differential systems with time lag driven jointly by Brownian and fractional
Brownian motions is rare, and only the existence of uniqueness and convergence of solu-
tions are studied. In addition, the study of stochastic time-lagged partial differential sys-
tems jointly driven by Brownian and fractional Brownian motion is even rarer at present.
Therefore, it is our future research goal to study the properties associated with the so-
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Figure 5 The state response of y1(t) and y2(t) in system (4.3)

lutions of stochastic fractional dynamical systems or doubly-driven stochastic dynamical
systems by using the immobile point method as well as Halanay inequalities, based on the
studies [19–21].
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