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Abstract
This paper is concerned with positive solutions of the limiting system arising from the
Shigesada–Kawasaki–Teramoto model with large interspecific competition rate. It has
previously been suggested that the limiting system has positive solutions with large
amplitude for a certain value of parameters. As a first step, the purpose of this paper is
to discuss the precise spatial profile of such solutions by employing formal
calculations by the singular perturbation technique.
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1 Introduction
In 1979, Shigesada et al. [7] proposed the competition-diffusion system with nonlinear
diffusion effect to model the segregation of interacting species. The following is the sta-
tionary problem of their proposed system:

⎧
⎪⎪⎨

⎪⎪⎩

0 = ε�[(1 + αz)w] + (1 – w – θz)w,

0 = dε�[(1 + βw)z] + (1 – γ θw – z)z, x ∈ �,

∂νw = 0, ∂νz = 0, x ∈ ∂�,

(1)

where the variables w and z mean the population density of two competing species, the
parameters ε, d, θ , and γ are positive, the cross-diffusion coefficients α and β are non-
negative, the habitat � of two competing species is a bounded domain in R

� with smooth
boundary ∂�, the integer � is the space dimension of �, the vector ν = ν(x) is the outward
unit normal vector on x ∈ ∂�, the notation ∂ξ f denotes the derivative of the function f
with respect to ξ . We remark that the values θ and γ θ correspond to the interspecific
competition rate. Since w(x) and z(x) mean the population density, we restrict our dis-
cussion to the positive solution of problem (1), where we say that (w, z)(x) is positive if
(w, z)(x) is in the positive quadrant for any x in the closure Cl� of �. Since then, many
mathematicians have researched the solution structure of positive solution for problem
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(1) to understand what kinds of phenomena occur by the cross-diffusion effect (for exam-
ple, see Jüngel [3] and Yamada [8, 9] as surveys of mathematical study related to problem
(1)).

Since the change of variables p = (ψp,ψq)(w) with w = (w, z), p = (p, q),

p = ψp(w) = (1 + αz)w, q = ψq(w) = (1 + βw)z

is a bijective map from the positive quadrant to itself, it turns out that there exists an
inverse map w = (�w,�z)(p) of p = (ψu,ψv)(w) in the positive quadrant. After simple cal-
culations, we obtain

w = �w(p) =
βp – αq – 1 +

√
(βp – αq – 1)2 + 4βp
2β

,

z = �z(p) =
–βp + αq – 1 +

√
(βp – αq – 1)2 + 4βp
2α

for any p in the positive quadrant, and then we represent problem (1) as

⎧
⎪⎪⎨

⎪⎪⎩

0 = ε�p + f (p),

0 = dε�q + g(p), x ∈ �,

∂νp = 0, ∂νq = 0, x ∈ ∂�,

(2)

which is a stationary problem of reaction-diffusion system with linear diffusion term,
where

f (p) =
(
1 – �w(p) – θ�z(p)

)
�w(p),

g(p) =
(
1 – γ θ�w(p) – �z(p)

)
�z(p).

We remark that

lim
θ→+∞(�w,�z)

(
θ–1p

)
= 0, lim

θ→+∞
{
θ (�w,�z)

(
θ–1p

)}
= p

hold true for any p in the positive quadrant.
In the previous paper [5], it was shown that problem (2) as θ → +∞ has two kinds of

limiting systems. One limiting system is represented as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 = ε�p + (1 – p)p, x ∈ �+,

0 = dε�q + (1 – q)q, x ∈ �–,

p = 0, q = 0, γ ∂μp = –d∂μq, x ∈ �,

∂νp = 0, ∂νq = 0, x ∈ ∂�,

(3)

by applying the argument in Dancer et al. [2], where � = �– ∪ �+ ∪ �, � is the interface
which separates two subregions

�+ =
{

x ∈ � : p(x) > 0 = q(x)
}

, �– =
{

x ∈ � : p(x) = 0 < q(x)
}

,
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and μ = μ(x) is a unit vector normal to �. We note that the solution of limiting system (3)
approximates the bounded solution of problem (1) for sufficiently large θ > 0. By employ-
ing the change of variables u = γ θp and v = θq, and taking the limit as θ → +∞, we obtain
the other limiting system

⎧
⎪⎪⎨

⎪⎪⎩

0 = ε�u + (1 – v)u,

0 = dε�v + (1 – u)v, x ∈ �,

∂νu = 0, ∂νv = 0, x ∈ ∂�,

(4)

of problem (2). Since the positive constant solution of problem (1) in the positive quadrant
is

ŵ =
(

θ – 1
γ θ2 – 1

,
γ θ – 1
γ θ2 – 1

)

,

the corresponding constant solution of problem (4) becomes

ê = lim
θ→+∞

{
θ
(
γψp(ŵ),ψq(ŵ)

)}
= (1, 1).

Hence, it turns out that the solution of limiting system (4) approximates the solution with
small amplitude of problem (1) in a neighborhood of w = ŵ for sufficiently large θ > 0. We
note that the solution structure of limiting system (3) has been already investigated (for
example, see Dancer et al. [2]). However, although limiting system (4) is simple in a class
of 2-component reaction-diffusion systems, we have not yet understood enough solution
structure of positive solution for limiting system (4).

As a first step to approach the solution structure of problem (4), we assume that the
habitat � is the ball with center origin and radius π , and we restrict our discussion to the
radially symmetric positive solution, that is, we study positive solutions of the problem

⎧
⎪⎪⎨

⎪⎪⎩

0 = εLu + (1 – v)u,

0 = dεLv + (1 – u)v, r ∈ (0,π ),

∂ru = 0, ∂rv = 0, r = 0,π ,

(5)

where Lu = r1–�∂r[r�–1∂ru]. In the previous paper [5], it was suggested that problem (5)
has a solution with very large amplitude for some ε > 0. In this paper, to discuss precise
spatial profile of such a solution of problem (5), we construct the solution for some ε > 0.
To do this, we employ formal calculations by the singular perturbation technique because
the rigorous proof on the existence theorem of solution requires lengthy arguments (for
example, see Ito [4]).

2 Preliminary
Let (u, v)(r) be an arbitrary bounded positive solution of problem (5) for ε > 0 and d > 0.
When u(r) > 1 (respectively, v(r) > 1) is satisfied for any r ∈ [0,π ], we have

0 = dε

∫ π

0
∂r

[
r�–1∂rv(r)

]
dr =

∫ π

0
v(r)

(
u(r) – 1

)
r�–1 dr > 0
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⎛

⎜
⎜
⎜
⎝

respectively, 0 = ε

∫ π

0
∂r

[
r�–1∂ru(r)

]
dr

=
∫ π

0
u(r)

(
v(r) – 1

)
r�–1 dr > 0

⎞

⎟
⎟
⎟
⎠

because of the boundary condition. This contradiction implies that the following holds
true.

Lemma 1 Let (u, v)(r) be an arbitrary bounded positive solution of problem (5) for ε > 0
and d > 0. Then there exist ru and rv ∈ [0,π ] such that u(ru) ≤ 1 and v(rv) ≤ 1 are satisfied.

Setting

D(u) =

⎧
⎨

⎩

u if u ≥ 0,

du if u < 0,

we consider solutions of the problem

⎧
⎨

⎩

0 = εL[D(u)] + u, r ∈ (0,π ),

∂ru = 0, r = 0,π
(6)

with 〈∂r[D(u)]〉(τ ) = 0 for each τ ∈ (0,π ) such that u(τ ) = 0 is satisfied, where

〈f 〉(τ ) = lim
r↘τ

f (r) – lim
r↗τ

f (r).

We denote by u+(r) (respectively, u–(r)) the solution of the problem

0 = L
[
D(u)

]
+ u, r > 0

with u(0) = 1 (respectively, u(0) = –1) and ∂ru(0) = 0. The phase plane analysis leads to the
following.

Lemma 2 With σ ∈ {–, +}, there exist sequences {ξσ
k }∞k=0 and {ησ

k }∞k=0 such that

0 < ξσ
k < ησ

k < ξσ
k+1, uσ

(
ξσ

k
)

= 0, ∂ruσ
(
ησ

k
)

= 0,

σ (–1)kuσ (r) < 0 in r ∈ (
ξσ

k–1, ξσ
k
)

for any k ∈N, where ξσ
0 = 0 and ησ

0 = 0.

For each k ∈N and σ ∈ {–, +}, setting

ūσ
k (r) = uσ

(
ησ

k r
π

)

, εσ
k =

(
π

ησ
k

)2

, uσ
k (r) =

(
uσ

k , vσ
k
)
(r),

uσ
k (r) =

⎧
⎨

⎩

ūσ
k (r) if ūσ

k (r) ≥ 0,

0 if ūσ
k (r) < 0,
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vσ
k (r) =

⎧
⎨

⎩

0 if ūσ
k (r) > 0,

–ūσ
k (r) if ūσ

k (r) ≤ 0,

we find out that ū–
k (r) and ū+

k (r) are solutions of problem (6) for ε = ε–
k and ε = ε+

k , respec-
tively, and that u–

k (r) and u+
k (r) are quasi-positive solutions of the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 = εLu + u, r ∈ I+,

0 = dεLv + v, r ∈ I–,

u = 0, v = 0, ∂ru = –d∂rv, r ∈ I0

∂ru = 0, ∂rv = 0, r = 0,π ,

(7)

where (0,π ) = I– ∪ I0 ∪ I+, I0 is the interface that separates two subintervals

I+ =
{

r ∈ (0,π ) : u(r) > 0 = v(r)
}

, I– =
{

r ∈ (0,π ) : u(r) = 0 < v(r)
}

,

and we say that (u, v)(r) is quasi-positive if u(r) ≥ 0, v(r) ≥ 0, and (u, v)(r) �≡ 0 are satisfied
on r ∈ [0,π ]. We remark that problem (7) is a linearized one for problem (5) around (u, v) =
0. Moreover, in the previous paper [5], it was suggested that positive solutions with large
amplitude for problem (5) appear in a neighborhood of ε = ε–

1 and ε = ε+
1 .

3 Solutions with large amplitude
Setting

ω =
{

max
x∈[0,π ]

(
u(r), v(r)

)}–1
, u =

û
ω

, v =
v̂
ω

,

we represent problem (5) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Eu ≡ ω(εLû + û) – ûv̂ = 0,

Ev ≡ ω(dεLv̂ + v̂) – ûv̂ = 0, r ∈ (0,π ),

∂rû = 0, ∂rv̂ = 0, r = 0,π .

(8)

We remark that for each k ∈N, u–
k (r) and u+

k (r) are quasi-positive solutions of problem (8)
with ε = ε–

k and ε = ε+
k , respectively, except for points τ ∈ [0,π ] with u(τ ) = v(τ ) = 0. We

only discuss the construction of positive solution for problem (8) in a neighborhood of
ε = ε+

1 by formal calculations employing the singular perturbation technique, because we
can similarly discuss that in a neighborhood of ε = ε–

1 .
We set

ε0 = ε+
1 , τ =

πξ+
1

η+
1

∈ (0,π ), (u0, v0)(r) = u+
1 (r).

Since our purpose of this paper is to seek classical solutions of problem (8), we may impose

〈∂rû〉(τ ) = 0, 〈∂rv̂〉(τ ) = 0 (9)
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on the condition at r = τ . In an analogous way to the argument in Ito [4], we introduce δ

as an auxiliary parameter and assume the following estimate:

⎧
⎪⎪⎨

⎪⎪⎩

ξ = (r – τ )/δ, ω = δ3, ε = ε0 + ε1δ + ε2δ
2 + o(δ2),

û(r) = u0(r) + u1(ξ )δ + u2(r, ξ )δ2 + u3(r, ξ )δ3 + o(δ3),

v̂(r) = v0(r) + v1(ξ )δ + v2(r, ξ )δ2 + v3(r, ξ )δ3 + o(δ3)

(10)

as δ → 0, where each function is bounded and continuous. Setting

u±
0,k = lim

h↘0

∂k
r u0(τ ± h)

k!
, v±

0,k = lim
h↘0

∂k
r v0(τ ± h)

k!

for each k ∈N and γ0 = v+
0,1, we have

u+
0,k = 0, v–

0,k = 0 for any k ∈N,

and

u0(r) = u0(τ + δξ ) =

⎧
⎨

⎩

u–
0,1ξδ + u–

0,2ξ
2δ2 + o(δ2) if r < τ ,

0 if r > τ ,

v0(r) = v0(τ + δξ ) =

⎧
⎨

⎩

0 if r < τ ,

v+
0,1ξδ + v+

0,2ξ
2δ2 + o(δ2) if r > τ

as δ → 0 for any compact subset of R. The definition of u0(r) and v0(r) implies that

v+
0,1 = γ0 > 0, u–

0,1 = –dv+
0,1 = –dγ0 < 0,

u–
0,2 = –

(� – 1)u–
0,1

2τ
=

d(� – 1)γ0

2τ
> 0,

v+
0,2 = –

(� – 1)v+
0,1

2τ
= –

(� – 1)γ0

2τ
< 0

hold true. Substituting the above estimate (10) into problem (8), we have

Eu =
(
ε0∂

2
ξ u1(ξ ) – u1(ξ )v1(ξ ) – v±

0,1ξu1(ξ ) – u±
0,1ξv1(ξ )

)
δ2

+
{
ε0∂

2
ξ u2(τ , ξ ) –

(
v1(ξ ) + v±

0,1ξ
)
u2(τ , ξ ) –

(
u1(ξ ) + u±

0,1ξ
)
v2(τ , ξ )

+ ε1∂
2
ξ u1(ξ ) + ε0(� – 1)τ–1∂ξ u1(ξ )

– v±
0,2ξ

2u1(ξ ) – u±
0,2ξ

2v1(ξ )
}
δ3 + o

(
δ3),

Ev =
(
dε0∂

2
ξ v1(ξ ) – u1(ξ )v1(ξ ) – v±

0,1ξu1(ξ ) – u±
0,1ξv1(ξ )

)
δ2

+
{

dε0∂
2
ξ v2(τ , ξ ) –

(
v1(ξ ) + v±

0,1ξ
)
u2(τ , ξ ) –

(
u1(ξ ) + u±

0,1ξ
)
v2(τ , ξ )

+ dε1∂
2
ξ v1(ξ ) + dε0(� – 1)τ–1∂ξ v1(ξ )

– v±
0,2ξ

2u1(ξ ) – u±
0,2ξ

2v1(ξ )
}
δ3 + o

(
δ3)
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as δ → 0 for any compact subset of R±, where R– = (–∞, 0) and R+ = (0, +∞). Moreover,
we see from condition (9) that

0 = 〈∂ru0〉(τ ) + 〈∂ξ u1〉(0), 0 =
〈
∂ξ u2(τ , ·)〉(0),

0 = 〈∂rv0〉(τ ) + 〈∂ξ v1〉(0), 0 =
〈
∂ξ v2(τ , ·)〉(0)

are satisfied.

3.1 Solution (u1, v1)(ξ )
In this subsection, we seek a bounded solution (u1, v1)(ξ ) of the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = ε0∂
2
ξ u1(ξ ) – u1(ξ )v1(ξ ) + dγ0ξv1(ξ ),

0 = dε0∂
2
ξ v1(ξ ) – u1(ξ )v1(ξ ) + dγ0ξv1(ξ ), ξ ∈ R–,

0 = ε0∂
2
ξ u1(ξ ) – u1(ξ )v1(ξ ) – γ0ξu1(ξ ),

0 = dε0∂
2
ξ v1(ξ ) – u1(ξ )v1(ξ ) – γ0ξu1(ξ ), ξ ∈ R+,

u1(0) = p1, 〈∂ξ u1〉(0) = –dγ0,

v1(0) = q1, 〈∂ξ v1〉(0) = –γ0

(11)

with (u1, v1)(±∞) = 0, where p1 and q1 are positive constants to be determined, and
f (±∞) = limξ→±∞ f (ξ ). We set

w1(ξ ) = u1(ξ ) – dv1(ξ ), γ1 = p1 – dq1.

From

〈∂ξ w1〉(0) = 〈∂ξ u1〉(0) – d〈∂ξ v1〉(0) = 0,

it follows that w1(ξ ) is a C1-class bounded solution of the problem

⎧
⎨

⎩

0 = ε0∂
2
ξ w1(ξ ), ξ ∈R– ∪R+,

w1(0) = γ1, w1(±∞) = 0.

Hence, we obtain γ1 = 0 and u1(ξ ) = dv1(ξ ) for any ξ ∈R.

Lemma 3 (Lemma 4.2 in [1]) The problem

0 = ∂2
t u + (t – u)u, u > max(0, t), t ∈R

has a unique solution H(t) such that the following holds true:
(1) H(t) is a strictly increasing convex function, and
(2) H(t) = O(et) as t → –∞, H(t) – t = O(e–t) as t → +∞, and H(t) = t + H(–t) for any

t ∈R are satisfied.

We note that problem (11) can be represented as

0 = ε0∂
2
ξ v1(ξ ) –

(
γ0|ξ | + v1(ξ )

)
v1(ξ ), ξ ∈ R– ∪R+.
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After simple calculations, it turns out that the bounded solution (u1, v1)(ξ ) of problem (11)
with u1(ξ ) = dv1(ξ ) for any ξ ∈R can be represented as

u1(ξ ) = dv1(ξ ), v1(ξ ) =

⎧
⎨

⎩

ε0α
2
0H(α0ξ ) if ξ ∈R–,

ε0α
2
0H(–α0ξ ) if ξ ∈R+,

where α0 = (γ0/ε0)1/3 > 0. Hence, we take p1 and q1 as satisfying

p1 = dε0α
2
0H(0), q1 = ε0α

2
0H(0).

Moreover, we can check

〈u1〉(0)
d

= 〈v1〉(0) = –2ε0α
3
0∂tH(0) = –γ0

because of ∂tH(0) = 1/2, that is, the difference between left-hand and right-hand differ-
ential coefficients in problem (11) always holds true. Employing v1(±∞) = 0, we calculate
the asymptotic expansion of v1(ξ ) as |ξ | → +∞, and then we have

v1(ξ ) = C0
± Ai

(
α0|ξ |)(1 + o(1)

)

as ξ → ±∞, where Ai(z) is the Airy function of the first kind, and C0
– and C0

+ are suitable
positive constants.

3.2 Constant ε1

In this subsection, setting w(ξ ) = u2(τ , ξ ) and z(ξ ) = v2(τ , ξ ), we seek a bounded solution
(w, z)(ξ ) of the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = ε0∂
2
ξ w(ξ ) – v1(ξ )w(ξ ) – (u1(ξ ) – dγ0ξ )z(ξ )

+ ε1∂
2
ξ u1(ξ ) + ε0(� – 1)τ–1∂ξ u1(ξ ) – u–

0,2ξ
2v1(ξ ),

0 = dε0∂
2
ξ z(ξ ) – v1(ξ )w(ξ ) – (u1(ξ ) – dγ0ξ )z(ξ )

+ dε1∂
2
ξ v1(ξ ) + dε0(� – 1)τ–1∂ξ v1(ξ ) – u–

0,2ξ
2v1(ξ ), ξ ∈R–,

0 = ε0∂
2
ξ w(ξ ) – (v1(ξ ) + γ0ξ )w(ξ ) – u1(ξ )z(ξ )

+ ε1∂
2
ξ u1(ξ ) + ε0(� – 1)τ–1∂ξ u1(ξ ) – v+

0,2ξ
2u1(ξ ),

0 = dε0∂
2
ξ z(ξ ) – (v1(ξ ) + γ0ξ )w(ξ ) – u1(ξ )z(ξ )

+ dε1∂
2
ξ v1(ξ ) + dε0(� – 1)τ–1∂ξ v1(ξ ) – v+

0,2ξ
2u1(ξ ), ξ ∈R+,

w(0) = p2, 〈∂ξ w〉(0) = 0, z(0) = q2, 〈∂ξ z〉(0) = 0

(12)

with (w, z)(±∞) = 0, where p2 and q2 are suitable constants to be determined. From the
condition at ξ = 0, we remark that w(ξ ) and z(ξ ) are of C1-class in ξ ∈R.

Since ŵ(ξ ) = w(ξ ) – dz(ξ ) is a C1-class solution of the problem

⎧
⎨

⎩

0 = ε0∂
2
ξ ŵ(ξ ), ξ ∈R– ∪R+,

ŵ(0) = p2 – dq2, ŵ(±∞) = 0,
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we have ŵ(ξ ) = 0 for any ξ ∈ R, which implies p2 = dq2 and w(ξ ) = dz(ξ ) for any ξ ∈ R.
Hence, we find out that z(ξ ) is a C1-class solution of the problem

⎧
⎨

⎩

Kz(ξ ) = ε1F+(ξ ) + F–(ξ ), ξ ∈R– ∪R+,

z(0) = q2, ∂ξ z(0) = q̂2,
(13)

where

A(ξ ) = 2v1(ξ ) + γ0|ξ |, Kz(ξ ) = ε0∂
2
ξ z(ξ ) – A(ξ )z(ξ ),

F+(ξ ) = –∂2
ξ v1(ξ ), F–(ξ ) = –ε0(� – 1)τ–1∂ξ v1(ξ ) + v+

0,2ξ |ξ |v1(ξ ),

and q̂2 is a constant to be determined. By Lemma 3 and the expression of v1(ξ ), we have
A(ξ ) > 0 for any ξ ∈ R. Since v1(ξ ) is an even function in ξ ∈ R, it turns out that F–(ξ )
(respectively, F+(ξ )) is a bounded odd (respectively, even) function in ξ ∈R.

Let ψ(ξ ) be the solution of the problem

0 = Kψ(ξ ), ξ ∈R– ∪R+ (14)

with ψ(0) = 1 and ∂ξψ(0) = 0. Since v1(ξ ) and A(ξ ) are even functions in ξ ∈ R and A(ξ ) > 0
holds true for any ξ ∈ R, we see that ψ(ξ ) is positive and increasing in ξ ∈R+ and satisfies
ψ(ξ ) = ψ(–ξ ) for any ξ ∈ R. From

ψ(ξ ) = 1 +
1
ε0

∫ ξ

0

∫ t

0
A(s)ψ(s) ds dt ≥ 1 +

γ0

ε0

∫ ξ

0

∫ t

0
s ds dt = 1 +

γ0ξ
3

6ε0

in ξ ∈R+, it follows that

φ–(ξ ) = ψ(ξ )
∫ +∞

ξ

1
{ψ(s)}2 ds, ξ ∈R,

is a positive solution of problem (14) and satisfies

φ–(0) =
∫

R+

1
{ψ(s)}2 ds > 0, ∂ξφ–(0) = –1, lim

ξ→–∞φ–(ξ ) = +∞.

Moreover, it follows that φ+(ξ ) defined by φ+(ξ ) = φ–(–ξ ) for any ξ ∈ R is a positive solu-
tion of problem (14) in ξ ∈R, and that

lim
ξ→–∞φ+(ξ ) = lim

ξ→+∞φ–(ξ )

= lim
ξ→+∞

{

ψ(ξ )
∫ +∞

ξ

1
{ψ(s)}2 ds

}

= lim
ξ→+∞

1
∂ξψ(ξ )

= 0

holds true because of L’Hôpital’s rule. Summarizing the above argument, we see that
{φ–(ξ ),φ+(ξ )} is a fundamental set of solution for problem (14).
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Employing v1(±∞) = 0, we calculate the asymptotic expansion of φ–(ξ ) and φ+(ξ ) as
|ξ | → +∞, and then we have

φ–(ξ ) =

⎧
⎨

⎩

C–
– Bi(α0|ξ |)(1 + o(1)) as ξ → –∞,

C–
+ Ai(α0|ξ |)(1 + o(1)) as ξ → +∞,

φ+(ξ ) =

⎧
⎨

⎩

C+
– Ai(α0|ξ |)(1 + o(1)) as ξ → –∞,

C+
+ Bi(α0|ξ |)(1 + o(1)) as ξ → +∞,

where Bi(t) is the Airy function of the second kind, and C–± and C+± are suitable nonzero
constants. Employing the asymptotic expansion of Ai(t) and Bi(t) as t → +∞, we have

Ai(t)
∂t Ai(t)

= –
1√

t
(
1 + o(1)

)
,

Bi(t)
∂t Bi(t)

=
1√

t
(
1 + o(1)

)
,

Ai(t) Bi(t) =
1

2π
√

t
(
1 + o(1)

)
,

as t → +∞, and then we obtain

{φ–(ξ )}2φ+(ξ )
∂ξφ–(ξ )

= –
C–±C+±

2πα2
0 |ξ |

(
1 + o(1)

) → 0,

φ–(ξ ){φ+(ξ )}2

∂ξφ+(ξ )
=

C–±C+±
2πα2

0 |ξ |
(
1 + o(1)

) → 0

as ξ → ±∞. From the above estimate and L’Hôpital’s rule, it follows that for any bounded
function f (ξ ) from R to itself, the functions

∫ ξ

–∞
φ–(ξ )φ+(s)f (s) ds,

∫ +∞

ξ

φ–(s)φ+(ξ )f (s) ds

from R to itself are bounded and satisfy

lim
ξ→±∞

∫ ξ

–∞
φ–(ξ )φ+(s)f (s) ds = 0, lim

ξ→±∞

∫ +∞

ξ

φ–(s)φ+(ξ )f (s) ds = 0.

Let f (ξ ) be an arbitrary bounded function from R to itself. After simple calculations, we
see that the bounded solution W (ξ ) of the problem

KW (ξ ) = f (ξ ), ξ ∈R

can be represented as

W (ξ ) = –
1

ε0�0

(∫ ξ

–∞
φ–(ξ )φ+(s)f (s) ds +

∫ +∞

ξ

φ–(s)φ+(ξ )f (s) ds
)

(15)

for any ξ ∈R, where

�0 = det

(
φ–(0) φ+(0)

∂ξφ–(0) ∂ξφ+(0)

)

= 2
∫

R+

1
{ψ(s)}2 ds > 0.
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We denote by K–1f (ξ ) the solution W (ξ ) given in equation (15). Since

W (–ξ ) = –
1

ε0�0

(∫ ξ

–∞
φ–(ξ )φ+(s)f (–s) ds +

∫ +∞

ξ

φ–(s)φ+(ξ )f (–s) ds
)

holds true because of φ–(ξ ) = φ+(–ξ ) for any ξ ∈R, we obtain W (–ξ ) = W (ξ ) (respectively,
W (–ξ ) = –W (ξ ))for any ξ ∈R if f (ξ ) is an even (respectively, odd) function in ξ ∈R

Let z(ξ ) be a solution of problem (13) with z(±∞) = 0 for (ε1, q2, q̂2) ∈ R
3. Since A(ξ ) is

an even function in ξ ∈ R, it follows that

Z+(ξ ) =
z(ξ ) + z(–ξ )

2
, Z–(ξ ) =

z(ξ ) – z(–ξ )
2

satisfy

⎧
⎪⎪⎨

⎪⎪⎩

KZ–(ξ ) = F–(ξ ),

KZ+(ξ ) = ε1F+(ξ ), ξ ∈R– ∪R+,

Z–(0) = 0, ∂ξ Z–(0) = q̂2, Z+(0) = q2, ∂ξ Z+(0) = 0.

Since F–(ξ ) and F+(ξ ) are bounded in ξ ∈R, we can represent the solution z(ξ ) of problem
(13) as

z(ξ ) = Ẑ–(ξ ) + ε1Ẑ+(ξ ), ξ ∈R– ∪R+, (16)

where

Ẑ–(ξ ) =
[
K–1F–

]
(ξ ), Ẑ+(ξ ) =

[
K–1F+

]
(ξ ), ξ ∈R.

By integration by parts, we have

–ε0q̂2φ–(0) =
∫

R+

(
KẐ–(s)φ–(s) – Ẑ–(s)Kφ–(s)

)
ds =

∫

R+

F–(s)φ–(s) ds,

–ε0Ẑ+(0) =
∫

R+

(
KẐ+(s)φ–(s) – Ẑ+(s)Kφ–(s)

)
ds =

∫

R+

F+(s)φ–(s) ds

= –
1
ε0

∫

R+

[{
v1(s)

}2 + γ0sv1(s)
]
φ–(s) ds < 0,

which implies that q̂2 and Ẑ+(0) are determined by the above equations. Hence, we see
from q2 = Ẑ+(0)ε1 that the positive solution of problem (12) is determined for any fixed
ε1 ∈R.

Lemma 4 Let ε1 ∈ R be arbitrarily fixed, and let (w, z)(ξ ) be a solution of problem (12)
with (w, z)(±∞) = 0. Then w(ξ ) = dz(ξ ) holds true for any ξ ∈ R and z(ξ ) is represented as
equation (16).

Because rigorous proofs are not given in the above arguments, the summary of this paper
is written down as a conjecture.
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Conjecture 1 If we take ω as ω = δ3, then there exists δ0 > 0 such that there exist continuous
functions (u, v)(·, δ) and ε(δ) defined on an interval (0, δ0) such that (u, v)(r, δ) is a positive
solution of problem (8) with ε = ε(δ) for each δ ∈ (0, δ0), and

lim
δ↘0

ε(δ) = ε0,

lim
δ↘0

(u, v)(·, δ) = (u0, v0)(·) uniformly in any compact set on (0,π )

are satisfied.

4 Conclusion and future works
Since we can study the rough solution structure and the fine solution structure of problem
(1) through limiting systems (3) and (4), respectively, we might guess that these structures
lead to the global solution structure for problem (1). In this paper, we formally constructed
a family of solutions for problem (8) arising from limiting system (4). To do this, we em-
ployed the singular perturbation technique such as in Ito [4].

Recently in [6] it was shown that 0 < ε–
1 < ε+

1 holds true for any d > 1. Furthermore,
employing the argument as in Dancer et al. [2], it follows that limiting system (3) has no
nontrivial solutions for any ε > ε+

1 and has quasi-positive solutions for any 0 < ε < ε+
1 . Al-

though we have not yet determined the value of ε1 in estimate (10), it is possible that we
could determine its value by studying the higher order asymptotic expansion of the solu-
tion as δ ↘ 0. If the validity of ε(δ) > ε+

1 can be proved, then we obtain a positive solution
of problem (1), which does not appear in limiting system (3), by employing limiting system
(4).

Since problem (1) has nonlinear diffusion terms, only the linearized stability is not suf-
ficient for the stability analysis of solution for the system of evolution equations whose
stationary problem is represented as problem (1), so that the stability analysis is still open
also for the solution corresponding to the positive solution of limiting systems (3) and (4).
Since in this paper we have obtained the asymptotic expansion of positive solutions with
large amplitude for limiting system (4), it may be possible to establish the stability of the
solution by using the expansion of the solution constructed in this paper.

Since the existence of the solutions constructed in this paper seems to be proved in an
analogous way to the argument in Ito [4], one of our future works is that we establish a
rigorous proof.
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