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Abstract
In this paper, the existence of the multiple positive solutions for a class of higher-order
fractional differential equations on infinite intervals with infinite-point boundary value
conditions is mainly studied. First, we construct the Green function and analyze its
properties, and then by using the Leggett–Williams fixed point theorem, some new
results on the existence of positive solutions for the boundary value problem are
obtained. Finally, we illustrate the application of our conclusion by an example.
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1 Introduction
Boundary value problems of fractional differential equations have always been of great
interest to researchers and are of great importance in the fields of physics, biology, chem-
istry, control theory, fluid mechanics, aerodynamics, complex medium electrodynamics,
and other areas of engineering and science [1–6]. The Guo–Krasnoselskii fixed point the-
orem, Avery–Peterson fixed point theorem, Leggett–Williams fixed point theorem, etc.,
are important research tools in solving fractional differential equations of boundary value
conditions [7–9]. In recent years, the study of finite multipoint boundary value problems
for fractional differential equations on finite intervals has yielded more significant results
[10–17]. However, the existence of multiple positive solutions for fractional differential
equations with infinite multipoint boundary conditions on infinite intervals is relatively
rare.

In [10], the authors investigated the fractional differential equation boundary value
problems at resonance:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ x(t) + λf (t, x(t), Dβ

0+ x(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0,

Dβ

0+ x(1) =
∑m

i=1 ηiDβ

0+ x(ξi),
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where 2 < α < 3, α – 2 > β > 0, ηi > 0, 0 < ξ1 < · · · < ξm < 1 with
∑m

i=1 ηiξ
α–β–1
i = 1, and Dα

0+

denotes the Riemann–Liouville derivative.
In [11], the authors investigated the following m-point p-Laplacian fractional boundary

value problem involving Riemann–Liouville fractional integral boundary conditions on
the half-line:

⎧
⎪⎪⎨

⎪⎪⎩

Dγ

0+ (φp(Dα
0+ u(t))) + a(t)f (t, u(t), u′(t)) = 0, t ∈ [0, +∞),

u(0) = u′(0) = 0,

limt→+∞ Dα–1
0+ u(t) =

∑m–2
i=1 ηiIβ

0+ u′(ξi), Dα
0+ u(0) = 0,

where Dγ

0+ and Dα
0+ are the standard Riemann–Liouville fractional derivatives and Iβ

0+ is
the standard Riemann–Liouville fractional integral, 0 < γ ≤ 1, 2 < α ≤ 3, β > 0, 0 < ξ1 <
ξ2 < · · · < ξm–2 < +∞, ηi > 0, i = 1, 2, . . . , m – 2, φp(s) = |s|p–2s, p > 1, 1

p + 1
q = 1.

Motivated by the above papers, in this work, we consider the following fractional differ-
ential equations with infinite-point boundary conditions on an infinite interval:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + a(t)f (t, u(t), u′(t)) = 0, t ∈ [0, +∞),

u(j)(0) = 0, j = 0, 1, 2, . . . , n – 2,

limt→+∞ Dα–1
0+ u(t) =

∑∞
i=1 ηiIβ

0+ (Dδ
0+ u(t))(ξi) +

∑∞
i=1 ρiDσ

0+ u(ξi),

(1)

where Dε
0+ is the Riemann–Liouville fractional derivative, ε ∈ {α, δ,σ }, Iβ

0+ is the Riemann–
Liouville fractional integral, n – 1 < α ≤ n, n > 3, l, n ∈N

+, β > 0, δ > 0, σ ≥ 0, and σ < α – 1,
δ < α + β – 1, δ < α, 0 < ξ1 < ξ2 < · · · < ξi < · · · < +∞, ηi, ρi ≥ 0, i = 1, 2, . . . .

For boundary value problem (1), we will first construct the Green function and then
use some properties of the Green function to obtain at least three positive solutions to
boundary value problem (1) by using the Leggett–Williams fixed point theorem.

The research in this paper is different from the existing studies. In [11], the boundary
condition contained finite integral terms, and the authors obtained existence of one pos-
itive solution by using the Leray–Schauder nonlinear alternative theorem. In this paper,
the boundary condition of boundary value problem (1) contains infinite integral terms and
infinite points, and the order of the fractional derivative is higher. The method which we
use is the Leggett–Williams fixed point theorem, and we get the existence of three positive
solutions. The new results of this paper can be considered as a contribution to this field.

The organization of this paper is as follows. In Sect. 2, we show some necessary def-
initions and lemmas from fractional calculus theory. In Sect. 3, we prove the existence
of multiple positive solutions of boundary value problem (1). In Sect. 4, we will give an
example to illustrate the applicability of our conclusions.

Now we list some conditions for convenience:
(H1) κ := (α+β –δ)(α–σ )–(α–σ )

∑∞
i=1 ηiξ

α+β–δ–1
i –(α+β –δ)

∑∞
i=1 ρiξ

α–σ–1
i > 0;

(H2) f ∈ C([0, +∞) × [0, +∞) ×R, [0, +∞)), and when u, v are bounded, f (t, (1 + tα–1)u,
(1 + tα–1)v) is bounded;

(H3) a ∈ C([0, +∞), [0, +∞)) is not constant to 0 on any subinterval of [0, +∞), and

∫ +∞

0
a(s) ds < +∞.
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2 Preliminaries
In this section, some definitions and lemmas are introduced.

Definition 2.1 The Riemann–Liouville fractional integral of order γ (γ > 0) for a function
f : (t0, +∞) →R is defined as

Iγ

t+
0

f (t) =
1

(γ )

∫ t

t0

(t – s)γ –1f (s) ds, t ≥ t0.

Definition 2.2 The Riemann–Liouville fractional derivative of order γ (γ > 0) for a func-
tion f : (t0, +∞) →R is defined as

Dγ

t+
0

f (t) =
1

(n – γ )
dn

dtn

∫ t

t0

(t – s)n–γ –1f (s) ds, t > t0,

where n = [γ ] + 1, where [γ ] denotes the integer part of the real number γ .

Lemma 2.1 ([11]) Suppose that u ∈ C(0, 1) ∩ L1(0, 1), α > 0. Then

Iα
0+ Dα

0+ u(t) = u(t) + C1tα–1 + C2tα–2 + · · · + CN tα–N , Ci ∈R, i = 1, 2, . . . , N ,

where N is the smallest integer greater than or equal to α.

Lemma 2.2 ([11]) If α,β > 0, f ∈ L1[a, b], then Iα
0+ Iβ

0+ f (t) = Iα+β

0+ f (t) = Iβ

0+ Iα
0+ f (t),

Dα
0+ Iα

0+ f (t) = f (t), ∀t ∈ [a, b].

Lemma 2.3 ([11]) If α,β > 0, then

⎧
⎨

⎩

Dα
0+ tβ–1 = (β)

(β–α) tβ–α–1, β > n,

Dα
0+ tk = 0, k = 0, 1, 2, . . . , n – 1,

where n is the smallest integer greater than or equal to α.

Lemma 2.4 Suppose (H1) holds and let h ∈ C[0, +∞). Then the fractional differential
equation boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + h(t) = 0, t ∈ [0, +∞),

u(j)(0) = 0, j = 0, 1, 2, . . . , n – 2,

limt→+∞ Dα–1
0+ u(t) =

∑∞
i=1 ηiIβ

0+ (Dδ
0+ u(t))|t=ξi +

∑∞
i=1 ρiDσ

0+ u(ξi)

(2)

has a unique solution

u(t) =
∫ +∞

0
G(t, s)h(s) ds,

where

G(t, s) =

⎧
⎨

⎩

1
(α) [ p(s)

p(0) tα–1 – (t – s)α–1], 0 ≤ s ≤ t < +∞,
p(s)

(α)p(0) tα–1, 0 ≤ t ≤ s < +∞,
(3)
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p(s) = (α + β – δ)(α – σ ) – (α – σ )
∑

s≤ξi

ηi(ξi – s)α+β–δ–1

– (α + β – δ)
∑

s≤ξi

ρi(ξi – s)α–σ–1. (4)

Proof In view of Lemma 2.1, applying Iα
0+ to both sides of Dα

0+ u(t) + h(t) = 0, we have

u(t) = –Iα
0+ h(t) + c1tα–1 + c2tα–2 + · · · + cn–1tα–n+1 + cntα–n, ci ∈ R, i = 1, 2, . . . , n.

By u(j)(0) = 0, j = 0, 1, 2, . . . , n – 2, we can know c2 = c3 = · · · = cn = 0, so u(t) = –Iα
0+ h(t) +

c1tα–1.
We have

Dα–1
0+ u(t) = –Dα–1

0+ Iα
0+ h(t) + c1Dα–1

0+ tα–1

= –
∫ t

0
h(s) ds + c1

(α)
(1)

tα–1–α+1 = –
∫ t

0
h(s) ds + c1(α),

Iβ

0+ Dδ
0+ u(t) = –Iβ

0+ Dδ
0+ Iα

0+ h(t) + c1Iβ

0+ Dδ
0+ tα–1

= –Iβ

0+ Dδ
0+

(
D–δ

0+ Iα–δ
0+

)
h(t) + c1Iβ

0+

(
(α)

(α – δ)
tα–δ–1

)

= –Iβ

0+ Iα–δ
0+ h(t) + c1

(
(α)

(α – δ)

(
(α – δ)

(α + β – δ)
tα+β–δ–1

))

= –Iα+β–δ

0+ h(t) + c1
(α)

(α + β – δ)
tα+β–δ–1,

Dσ
0+ u(t) = –Iα–σ

0+ h(t) + c1Dσ
0+ tα–1

= –Iα–σ
0+ h(t) + c1

(α)
(α – σ )

tα–σ–1.

By the boundary condition limt→+∞ Dα–1
0+ u(t) =

∑∞
i=1 ηiIβ

0+ (Dδ
0+ u(t))|ξi +

∑∞
i=1 ρiDσ

0+ u(ξi), we
obtain

–
∫ +∞

0
h(s) ds + c1(α) =

∞∑

i=1

ηi

(

–Iα+β–δ

0+ h(ξi) + c1
(α)

(α + β – δ)
ξ

α+β–δ–1
i

)

+
∞∑

i=1

ρi

(

–Iα–σ
0+ h(ξi) + c1

(α)
(α – σ )

ξα–σ–1
i

)

.

Then

c1 =
1

(α) – (α)
(α+β–δ)

∑∞
i=1ηiξ

α+β–δ–1
i – (α)

(α–σ )
∑∞

i=1ρiξ
α–σ–1
i

×
(∫ +∞

0
h(s) ds –

1
(α + β – δ)

∞∑

i=1

ηi

∫ ξi

0
(ξi – s)α+β–δ–1h(s) ds

–
1

(α – σ )

∞∑

i=1

ρi

∫ ξi

0
(ξi – s)α–σ–1h(s) ds

)
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=
(α + β – δ)(α – σ )

(α)κ

(∫ +∞

0
h(s) ds –

1
(α + β – δ)

∞∑

i=1

ηi

∫ ξi

0
(ξi – s)α+β–δ–1h(s) ds

–
1

(α – σ )

∞∑

i=1

ρi

∫ ξi

0
(ξi – s)α–σ–1h(s) ds

)

.

Thereby

u(t) = –
1

(α)

∫ t

0
(t – s)α–1h(s) ds +

tα–1(α + β – δ)(α – σ )
(α)κ

∫ +∞

0
h(s) ds

–
tα–1(α – σ )

(α)κ

∞∑

i=1

ηi

∫ ξi

0
(ξi – s)α+β–δ–1h(s) ds

–
tα–1(α + β – δ)

(α)κ

∞∑

i=1

ρi

∫ ξi

0
(ξi – s)α–σ–1h(s) ds

= –
1

(α)

∫ t

0
(t – s)α–1h(s) ds +

tα–1

(α)

∫ +∞

0

p(s)
p(0)

h(s) ds

=
∫ +∞

0
G(t, s)h(s) ds. �

Lemma 2.5 Suppose (H1) holds and p(0) > 0. Then p(s) > 0, ∀s ∈ [0, +∞).

Proof By (4),

p′(s) = (α + β – δ – 1)(α – σ )
∑

s≤ξi

ηi(ξi – s)α+β–δ–2

+ (α – σ – 1)(α + β – δ)
∑

s≤ξi

ρi(ξi – s)α–σ–2

> 0.

Then p(s) is a monotonically increasing function in [0, +∞). By p(0) > 0, we get p(s) > 0. �

Lemma 2.6 The function G(t, s) in Lemma 2.4 satisfies the following properties:
(i) G(t, s) and ∂G(t,s)

∂t are continuous on [0, +∞);
(ii) G(t, s) ≥ 0, ∂G(t,s)

∂t ≥ 0, ∀s, t ∈ [0, +∞);

(iii) G(t,s)
1+tα–1 ≤ p(s)

(α)p(0) , ∂G(t,s)
∂t (1 + tα–1)–1 ≤ p(s)(α–2)

α–2
α–1

(α)p(0) ;
(iv) for k > 1, we have min 1

k ≤t≤k
G(t,s)

1+tα–1 ≥ g1(s), min 1
k ≤t≤k

∂G(t,s)
∂t (1 + tα–1)–1 ≥ g2(s),

where

g1(s) =

⎧
⎨

⎩

1
(α) ( 1

kα–1 – ( 1
k – s)α–1) 1

1+k1–α , s ∈ [0, 1
k ),

1
(α)kα–1(1+k1–α ) , s ∈ [ 1

k , +∞),
(5)

g2(s) =

⎧
⎨

⎩

1
(α–1) ( 1

kα–2 – ( 1
k – s)α–2) 1

1+k1–α , s ∈ [0, 1
k ),

1
(α–1)kα–2(1+k1–α ) , s ∈ [ 1

k , +∞).
(6)
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Proof By calculation we can give

∂G(t, s)
∂t

=

⎧
⎨

⎩

1
(α–1) [ p(s)

p(0) tα–2 – (t – s)α–2], 0 ≤ s ≤ t < +∞,
p(s)

(α–1)p(0) tα–2, 0 ≤ t ≤ s < +∞.

According to the definition of G(t, s) and ∂G(t,s)
∂t , it is clear that (i) and (ii) hold. Next we will

prove that (iii) and (iv) hold.
For all t, s ∈ [0, +∞), G(t,s)

1+tα–1 ≤ p(s)tα–1

(α)p(0)(1+tα–1) . Let �(t) = tα–1

1+tα–1 . Then

�′(t) =
(α – 1)tα–2(1 + tα–1) – (α – 1)tα–2tα–1

(1 + tα–1)2 =
(α – 1)tα–2

(1 + tα–1)2 .

As �′(t) = 0, we have t = 0. Therefore, �(t) is monotonically increasing on [0, +∞). More-
over,

�(t)max0≤t≤+∞ = lim
t→+∞

tα–1

1 + tα–1 = 1.

It follows that G(t,s)
1+tα–1 ≤ p(s)

(α)p(0) .

For all t, s ∈ [0, +∞), ∂G(t,s)
∂t (1 + tα–1)–1 ≤ p(s)tα–2

(α–1)p(0)(1+tα–1) . Let �(t) = tα–2

1+tα–1 . Then

� ′(t) =
(α – 2)tα–3(1 + tα–1) – (α – 1)tα–2tα–2

(1 + tα–1)2 =
(α – 2)tα–3 – t2α–4

(1 + tα–1)2 .

When � ′(t) = 0, we get t = 0 or t = (α – 2) 1
α–1 . Because �(0) = 0 and �((α – 2) 1

α–1 ) > 0, we
know that �(t) is monotonically increasing on [0, (α – 2) 1

α–1 ) and monotonically decreas-
ing on [(α – 2) 1

α–1 , +∞). Therefore,

�(t)max 0≤t≤+∞ =
[(α – 2) 1

α–1 ]α–2

1 + [(α – 2) 1
α–1 ]α–1

=
(α – 2) α–2

α–1

α – 1
.

Thus, ∂G(t,s)
∂t (1 + tα–1)–1 ≤ p(s)(α–2)

α–2
α–1

(α)p(0) . That is to say, (iii) is certified.
By Lemma 2.5, if s ∈ [0, 1

k ),

min
1
k ≤t≤k

G(t, s)
1 + tα–1 = min

1
k ≤t≤k

1
(α)

(
p(s)
p(0)

tα–1 – (t – s)α–1
)

1
1 + tα–1

≥ 1
(α)

(
1

kα–1 –
(

1
k

– s
)α–1) 1

1 + k1–α
;

if s ∈ [ 1
k , k),

min
1
k ≤t≤s

G(t, s)
1 + tα–1 = min

1
k ≤t≤s

p(s)tα–1

(α)p(0)(1 + tα–1)
≥ 1

(α)kα–1(1 + k1–α)
,

min
s≤t≤k

G(t, s)
1 + tα–1 = min

s≤t≤k

1
(α)

(
p(s)
p(0)

tα–1 – (t – s)α–1
)

1
1 + tα–1

≥ sα–1

(α)(1 + sα–1)
,
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so

min
1
k ≤t≤k

G(t, s)
1 + tα–1 ≥ 1

(α)kα–1(1 + k1–α)
;

if s ∈ [k, +∞),

min
1
k ≤t≤k

G(t, s)
1 + tα–1 = min

1
k ≤t≤k

p(s)tα–1

(α)p(0)(1 + tα–1)
≥ 1

(α)kα–1(1 + k1–α)
.

In summary, min 1
k ≤t≤k

G(t,s)
1+tα–1 ≥ g1(s).

Similarly, we can obtain the following: if s ∈ [0, 1
k ),

min
1
k ≤t≤k

∂G(t, s)
∂t

(
1 + tα–1)–1 = min

1
k ≤t≤k

1
(α – 1)

(
p(s)
p(0)

tα–2 – (t – s)α–2
)

× 1
1 + tα–1

≥ 1
(α – 1)

(
1

kα–2 –
(

1
k

– s
)α–2) 1

1 + k1–α
;

if s ∈ [ 1
k , k),

min
1
k ≤t≤s

∂G(t, s)
∂t

(
1 + tα–1)–1 = min

1
k ≤t≤s

p(s)tα–2

(α – 1)p(0)(1 + tα–1)

≥ 1
(α – 1)kα–2(1 + k1–α)

,

min
s≤t≤k

∂G(t, s)
∂t

(
1 + tα–1)–1 = min

s≤t≤k

1
(α – 1)

(
p(s)
p(0)

tα–2 – (t – s)α–2
)

× 1
1 + tα–1

≥ sα–2

(α – 1)(1 + sα–1)
,

so

min
1
k ≤t≤k

∂G(t, s)
∂t

(
1 + tα–1)–1 ≥ 1

(α – 1)kα–2(1 + k1–α)
;

if s ∈ [k, +∞),

min
1
k ≤t≤k

∂G(t, s)
∂t

(
1 + tα–1)–1 = min

1
k ≤t≤k

p(s)tα–2

(α – 1)p(0)(1 + tα–1)

≥ 1
(α – 1)kα–2(1 + k1–α)

.

In conclusion, min 1
k ≤t≤k

∂G(t,s)
∂t (1 + tα–1)–1 ≥ g2(s). Therefore, (iv) is proved. �
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Let E∞ = {u ∈ C1([0, +∞),R) : limt→+∞ |u(t)|
1+tα–1 < +∞, limt→+∞ |u′(t)|

1+tα–1 < +∞}, en-
dowed with the norm ‖u‖ = max{‖u‖∞,‖u′‖∞}, where ‖u‖∞ = supt≥0

|u(t)|
1+tα–1 , ‖u′‖∞ =

supt≥0
|u′(t)|

1+tα–1 . It is clear that E∞ is a Banach space [11].

Lemma 2.7 ([11]) Set O = {u ∈ E∞,‖u‖ < ρ, where ρ > 0}, O(t) = { u(t)
1+tα–1 , u ∈ O}, O′(t) =

{ u′(t)
1+tα–1 , u ∈ O}. Then O is relatively compact in E∞ if O(t) and O

′(t) are equicontinuous
on any finite subinterval of [0, +∞) and equiconvergent at +∞, that is, for any ε > 0 there
exists ζ = ζ (ε) > 0 such that

∣
∣
∣
∣

u(t1)
1 + tα–1

1
–

u(t2)
1 + tα–1

2

∣
∣
∣
∣ < ε,

∣
∣
∣
∣

u′(t1)
1 + tα–1

1
–

u′(t2)
1 + tα–1

2

∣
∣
∣
∣ < ε, ∀u ∈ O, t1, t2 > ζ .

Lemma 2.8 ([12]) Let P be a cone in a real Banach space. Assume that there exists a con-
cave nonnegative continuous functional θ on P, with θ (u) ≤ ‖u‖, ∀u ∈ Pc. Letting a, b, c > 0
be constants, we define

Pd =
{

u ∈ P : ‖u‖ < d
}

, Pd =
{

u ∈ P : ‖u‖ ≤ d
}

,

P(θ , a, b) =
{

u ∈ P : θ (u) ≥ a,‖u‖ ≤ b
}

.

Let T : Pc → Pc be a completely continuous operator. Suppose that there exist constants
0 < a < b < d ≤ c such that the following conditions hold:

(i) {u ∈ P(θ , b, d) : θ (u) > b} �= ∅ and θ (Tu) > b, ∀u ∈ P(θ , b, d);
(ii) ‖Tu‖ < a, ∀u ∈ Pa;

(iii) θ (Tu) > b for u ∈ P(θ , b, c), with ‖Tu‖ > d.
Then T has at least three fixed points u1, u2, and u3 in Pc. Furthermore, ‖u1‖ < a, b < θ (u2),
a < ‖u3‖ with θ (u3) < b.

3 Main results
Define a cone P ⊂ E∞ by P = {u ∈ E∞ : u(t) ≥ 0, u′(t) ≥ 0}. We introduce an operator
T : P → E∞ as follows:

Tu(t) =
∫ +∞

0
G(t, s)a(s)f

(
s, u(s), u′(s)

)
ds. (7)

By Lemma 2.4, we can know that the fixed point of T is the solution of the boundary value
problem (1) and vice versa.

Now we make the following assumption:
(H4)

∫ +∞
0 a(s)p(s) ds < +∞, where p(s) is defined as (4).

Lemma 3.1 Suppose that (H1)–(H4) hold. Then T : P→ P is a completely continuous op-
erator.

Proof First of all, we will show that T : P→ P.
In view of the properties of G(t, s) and ∂G(t,s)

∂t and the nonnegativity of f , it is easy to know
that Tu(t) ≥ 0, Tu′(t) ≥ 0, ∀t ∈ [0, +∞).
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By (H2)–(H4) and Lemma 2.6, for any u ∈ P and t ∈ [0, +∞), we have u(t)
1+tα–1 ≤ ‖u‖∞,

u′(t)
1+tα–1 ≤ ‖u′‖∞, and there exists μu > 0 such that

sup
t∈[0,+∞)

|Tu(t)|
1 + tα–1

= sup
t∈[0,+∞)

∫ +∞

0

G(t, s)
1 + tα–1 a(s)f

(
s, u(s), u′(s)

)
ds

≤ sup
t∈[0,+∞)

∫ +∞

0

p(s)
(α)p(0)

a(s)f
(

s,
(
1 + sα–1) u(s)

1 + sα–1 ,
(
1 + sα–1) u′(s)

1 + sα–1

)

ds

≤ μu

(α)p(0)

∫ +∞

0
p(s)a(s) ds < +∞.

Similarly,

sup
t∈[0,+∞)

|T ′u(t)|
1 + tα–1

= sup
t∈[0,+∞)

∫ +∞

0

∂G(t, s)
∂t

(
1 + tα–1)–1a(s)f

(
s, u(s), u′(s)

)
ds

≤ sup
t∈[0,+∞)

(α – 2) α–2
α–1

(α)p(0)

×
∫ +∞

0
p(s)a(s)f

(

s,
(
1 + sα–1) u(s)

1 + sα–1 ,
(
1 + sα–1) u′(s)

1 + sα–1

)

ds

≤ (α – 2) α–2
α–1 μu

(α)p(0)

∫ +∞

0
p(s)a(s) ds < +∞.

Therefore, T(P) ⊂ P.
Secondly, we will prove that T : P → P is continuous.
Let un → u as n → +∞ in P, that is, ‖un – u‖ → 0 (n → ∞). By Lemma 2.6,

∣
∣
∣
∣

Tun(t)
1 + tα–1 –

Tu(t)
1 + tα–1

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ +∞

0

G(t, s)
1 + tα–1 a(s)f

(
s, un(s), u′

n(s)
)

ds –
∫ +∞

0

G(t, s)
1 + tα–1 a(s)f

(
s, u(s), u′(s)

)
ds

∣
∣
∣
∣

≤ 1
(α)p(0)

∣
∣
∣
∣

∫ +∞

0
p(s)a(s)f

(
s, un(s), u′

n(s)
)

ds –
∫ +∞

0
p(s)a(s)f

(
s, u(s), u′(s)

)
ds

∣
∣
∣
∣

≤ 1
(α)p(0)

∫ +∞

0
p(s)

∣
∣
∣
∣a(s)f

(

s,
(
1 + sα–1) un(s)

1 + sα–1 ,
(
1 + sα–1) u′

n(s)
1 + sα–1

)

– a(s)f
(

s,
(
1 + sα–1) u(s)

1 + sα–1 ,
(
1 + sα–1) u′(s)

1 + sα–1

)∣
∣
∣
∣ds.

It can be known from Lebesgue’s dominated convergence theorem and the continuity of
f that

‖Tun – Tu‖∞ = sup
t∈[0,+∞)

∣
∣
∣
∣

Tun(t)
1 + tα–1 –

Tu(t)
1 + tα–1

∣
∣
∣
∣ → 0, n → +∞.
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In the same way, we have

∣
∣
∣
∣
(Tun(t))′

1 + tα–1 –
(Tu(t))′

1 + tα–1

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ +∞

0

∂G(t, s)
∂t

(
1 + tα–1)–1a(s)f

(
s, un(s), u′

n(s)
)

ds

–
∫ +∞

0

∂G(t, s)
∂t

(
1 + tα–1)–1a(s)f

(
s, u(s), u′(s)

)
ds

∣
∣
∣
∣

≤ (α – 2) α–2
α–1

(α)p(0)

∫ +∞

0
p(s)

∣
∣
∣
∣a(s)f

(

s,
(
1 + sα–1) un(s)

1 + sα–1 ,
(
1 + sα–1) u′

n(s)
1 + sα–1

)

– a(s)f
(

s,
(
1 + sα–1) u(s)

1 + sα–1 ,
(
1 + sα–1) u′(s)

1 + sα–1

)∣
∣
∣
∣ds.

It is known from Lebesgue’s dominated convergence theorem and the continuity of f that

∥
∥(Tun)′ – (Tu)′

∥
∥∞ = sup

t∈[0,+∞)

∣
∣
∣
∣
(Tun(t))′

1 + tα–1 –
(Tu(t))′

1 + tα–1

∣
∣
∣
∣ → 0, n → +∞.

Hence, T : P→ P is continuous.
Now let � ⊂ P be bounded. Then there exists a positive constant κ such that ‖u‖ ≤ κ ,

∀u ∈ �. Next we will prove that T(�) is bounded.
In view of (H2), let the positive constant

r = sup
{

f
(
t,

(
1 + tα–1)u,

(
1 + tα–1)v

)
: (t, u, v) ∈ [0, +∞) × [0,κ] × [0,κ]

}
.

For any u ∈ �, by Lemma 2.6, we obtain

‖Tu‖∞ = sup
t∈[0,+∞)

∣
∣
∣
∣

Tu(t)
1 + tα–1

∣
∣
∣
∣

= sup
t∈[0,+∞)

∫ +∞

0

G(t, s)
1 + tα–1 a(s)f

(
s, u(s), u′(s)

)
ds

≤ sup
t∈[0,+∞)

1
(α)p(0)

∫ +∞

0
p(s)a(s)f

(

s,
(
1 + sα–1) u(s)

1 + sα–1 ,
(
1 + sα–1) u′(s)

1 + sα–1

)

ds

≤ r
(α)p(0)

∫ +∞

0
p(s)a(s) ds.

Similarly,

∥
∥(Tu)′

∥
∥∞ = sup

t∈[0,+∞)

∣
∣
∣
∣

(Tu(t))′

1 + tα–1

∣
∣
∣
∣

= sup
t∈[0,+∞)

∫ +∞

0

∂G(t, s)
∂t

(
1 + tα–1)–1a(s)f

(
s, u(s), u′(s)

)
ds

≤ sup
t∈[0,+∞)

(α – 2) α–2
α–1

(α)p(0)
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×
∫ +∞

0
p(s)a(s)f

(

s,
(
1 + sα–1) u(s)

1 + sα–1 ,
(
1 + sα–1) u′(s)

1 + sα–1

)

ds

≤ r(α – 2) α–2
α–1

(α)p(0)

∫ +∞

0
p(s)a(s) ds.

Therefore, because ‖Tu‖ = maxu∈�{‖Tu‖∞,‖(Tu)′‖∞}, we get that T(�) is bounded.
Next we will show that { Tu(t)

1+tα–1 : u ∈ �} and { (Tu(t))′
1+tα–1 : u ∈ �} are equi-continuous on any

finite subinterval of [0, +∞).
For any λ > 0, t1, t2 ∈ [0,λ], without loss of generality, we may assume that t2 ≥ t1. For all

u ∈ �, by Lemma 2.7, we have

∣
∣
∣
∣

Tu(t2)
1 + tα–1

2
–

Tu(t1)
1 + tα–1

1

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ +∞

0

G(t2, s)
1 + tα–1

2
a(s)f

(
s, u(s), u′(s)

)
ds –

∫ +∞

0

G(t1, s)
1 + tα–1

1
a(s)f

(
s, u(s), u′(s)

)
ds

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ +∞

0

(
G(t2, s)
1 + tα–1

2
–

G(t1, s)
1 + tα–1

2

)

a(s)f
(
s, u(s), u′(s)

)
ds

+
∫ +∞

0

(
G(t1, s)
1 + tα–1

2
–

G(t1, s)
1 + tα–1

1

)

a(s)f
(
s, u(s), u′(s)

)
ds

∣
∣
∣
∣

≤
∫ +∞

0

∣
∣
∣
∣

G(t2, s)
1 + tα–1

2
–

G(t1, s)
1 + tα–1

2

∣
∣
∣
∣a(s)f

(
s, u(s), u′(s)

)
ds

+
∫ +∞

0

∣
∣
∣
∣

G(t1, s)
1 + tα–1

2
–

G(t1, s)
1 + tα–1

1

∣
∣
∣
∣a(s)f

(
s, u(s), u′(s)

)
ds,

and
∫ +∞

0

∣
∣
∣
∣

G(t2, s)
1 + tα–1

2
–

G(t1, s)
1 + tα–1

2

∣
∣
∣
∣a(s)f

(
s, u(s), u′(s)

)
ds

≤
∫ t1

0

∣
∣
∣
∣

G(t2, s)
1 + tα–1

2
–

G(t1, s)
1 + tα–1

2

∣
∣
∣
∣a(s)f

(
s, u(s), u′(s)

)
ds

+
∫ t2

t1

∣
∣
∣
∣

G(t2, s)
1 + tα–1

2
–

G(t1, s)
1 + tα–1

2

∣
∣
∣
∣a(s)f

(
s, u(s), u′(s)

)
ds

+
∫ +∞

t2

∣
∣
∣
∣

G(t2, s)
1 + tα–1

2
–

G(t1, s)
1 + tα–1

2

∣
∣
∣
∣a(s)f

(
s, u(s), u′(s)

)
ds

≤ r
(α)

[∫ t1

0

p(s)
p(0) tα–1

2 – p(s)
p(0) tα–1

1 + (t1 – s)α–1 – (t2 – s)α–1

1 + tα–1
2

a(s) ds

+
∫ t2

t1

p(s)
p(0) tα–1

2 – (t2 – s)α–1 – p(s)
p(0) tα–1

1

1 + tα–1
2

a(s) ds

+
∫ +∞

t2

p(s)
p(0) tα–1

2 – p(s)
p(0) tα–1

1

1 + tα–1
2

a(s) ds

]

→ 0, t1 → t2,

∫ +∞

0

∣
∣
∣
∣

G(t1, s)
1 + tα–1

2
–

G(t1, s)
1 + tα–1

1

∣
∣
∣
∣a(s)f

(
s, u(s), u′(s)

)
ds

=
∫ t1

0

G(t1, s)|tα–1
2 – tα–1

1 |
(1 + tα–1

2 )(1 + tα–1
1 )

a(s)f
(
s, u(s), u′(s)

)
ds
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+
∫ +∞

t1

G(t1, s)|tα–1
2 – tα–1

1 |
(1 + tα–1

2 )(1 + tα–1
1 )

a(s)f
(
s, u(s), u′(s)

)
ds

≤ r
(α)

[∫ t1

0

( p(s)
p(0) tα–1

1 – (t1 – s)α–1)|tα–1
2 – tα–1

1 |
(1 + tα–1

2 )(1 + tα–1
1 )

a(s) ds

+
∫ +∞

t1

p(s)
p(0) tα–1

1 |tα–1
2 – tα–1

1 |
(1 + tα–1

2 )(1 + tα–1
1 )

a(s) ds

]

→ 0, t1 → t2.

Thus, | Tu(t2)
1+tα–1

2
– Tu(t1)

1+tα–1
1

| → 0 as t1 → t2.

Similarly, we can prove that | (Tu)′(t2)
1+tα–1

2
– (Tu)′(t1)

1+tα–1
1

| → 0 uniformly for u ∈ � when t1 → t2.

So { Tu(t)
1+tα–1 : u ∈ �} and { (Tu(t))′

1+tα–1 : u ∈ �} are equicontinuous on any finite subinterval of
[0, +∞).

At last we will prove that { Tu(t)
1+tα–1 : u ∈ �} and { (Tu(t))′

1+tα–1 : u ∈ �} are equiconvergent at
t → +∞.

For any u ∈ �, by (H4), we get

∫ +∞

0
p(s)a(s)f

(
s, u(s), u′(s)

)
ds

=
∫ +∞

0
p(s)a(s)f

(

s,
(
1 + sα–1) u(s)

1 + sα–1 ,
(
1 + sα–1) u′(s)

1 + sα–1

)

ds

≤ r
∫ +∞

0
p(s)a(s) ds < +∞.

It can be known from Lemma 2.6 that

lim
t→+∞

∣
∣
∣
∣

Tu(t)
1 + tα–1

∣
∣
∣
∣ = lim

t→+∞

∣
∣
∣
∣

∫ +∞

0

G(t, s)
1 + tα–1 a(s)f

(
s, u(s), u′(s)

)
ds

∣
∣
∣
∣

≤ r
(α)p(0)

∫ +∞

0
p(s)a(s) ds < +∞,

lim
t→+∞

∣
∣
∣
∣
(Tu(t))′

1 + tα–1

∣
∣
∣
∣ = lim

t→+∞

∣
∣
∣
∣

∫ +∞

0

∂G(t, s)
∂t

(
1 + tα–1)–1a(s)f

(
s, u(s), u′(s)

)
ds

∣
∣
∣
∣

≤ r(α – 2) α–2
α–1

(α)p(0)

∫ +∞

0
p(s)a(s) ds < +∞.

Therefore, { Tu(t)
1+tα–1 : u ∈ �} and { (Tu(t))′

1+tα–1 : u ∈ �} are equiconvergent at t → +∞. By
Lemma 2.7, we can know that T� is relatively compact. So T is completely continuous. �

Now in the following part of the paper, we take k = (α – 2) 1
α–1 . Then k > 1 and

min 1
k ≤t≤k

(α–1)tα–2

1+tα–1 = (α – 2) 1
α–1 . We will use the Leggett–Williams fixed point theorem to

prove that there are at least three positive solutions to boundary value problem (1). For
convenience, we denote

K1 =
(α + β – δ)(α – σ )

(α)p(0)

∫ +∞

0
a(s) ds,

K2 =
(α + β – δ)(α – σ )(α – 2) α–2

α–1

(α)p(0)

∫ +∞

0
a(s) ds,
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K∗
1 =

∫ k

1
k

g1(s)a(s) ds, K∗
2 =

∫ k

1
k

g2(s)a(s) ds,

K = max{K1, K2}, K∗ = min
{

K∗
1 , K∗

2
}

.

We denote a nonnegative concave functional on P by

θ (u) = min

{

min
1
k ≤t≤k

u(t)
1 + tα–1 , min

1
k ≤t≤k

u′(t)
1 + tα–1

}

.

Theorem 3.1 Assume that (H1)–(H4) hold. Let 0 < a < b < d = c, let b < [2(α – 1) 2–α
α–1 – 1]d,

and suppose that the function f satisfies the following conditions:

(C1) f
(
t,

(
1 + tα–1)u,

(
1 + tα–1)v

)
<

c
K

, 0 ≤ t < +∞, 0 ≤ u ≤ c, 0 ≤ v ≤ c,

(C2) f
(
t,

(
1 + tα–1)u,

(
1 + tα–1)v

)
>

b
K∗ ,

1
k

≤ t ≤ k, b ≤ u ≤ c, b ≤ v ≤ c,

(C3) f
(
t,

(
1 + tα–1)u,

(
1 + tα–1)v

)
<

a
K

, 0 ≤ t < +∞, 0 ≤ u ≤ a, 0 ≤ v ≤ a.

Then boundary value problem (1) has at least three positive solutions u1, u2, u3 ∈ Pc such
that ‖u1‖ < a, b < θ (u2), a < ‖u3‖ with θ (u3) < b.

Proof We will show that all conditions of Lemma 2.8 are satisfied for T defined by (7).
For all u ∈ Pc, we have ‖u‖ ≤ c, that is, 0 ≤ u(t)

1+tα–1 ≤ c, 0 ≤ u′(t)
1+tα–1 ≤ c, ∀t ∈ [0, +∞). By

using assumption (C1), we can get f (t, u(t), u′(t)) = f (t, (1 + tα–1) u(t)
1+tα–1 , (1 + tα–1) u′(t)

1+tα–1 ) < c
K ,

t ∈ [0, +∞).
For all u ∈ Pc,

‖Tu‖∞ = sup
t∈[0,+∞)

∣
∣
∣
∣

Tu(t)
1 + tα–1

∣
∣
∣
∣

= sup
t∈[0,+∞)

∫ +∞

0

G(t, s)
1 + tα–1 a(s)f

(
s, u(s), u′(s)

)
ds

<
c

K(α)p(0)

∫ +∞

0
p(s)a(s) ds

≤ (α + β – δ)(α – σ )c
K(α)p(0)

∫ +∞

0
a(s) ds =

cK1

K
≤ c,

∥
∥Tu′∥∥∞ = sup

t∈[0,+∞)

∣
∣
∣
∣

Tu′(t)
1 + tα–1

∣
∣
∣
∣

= sup
t∈[0,+∞)

∫ +∞

0

∂G(t, s)
∂t

(
1 + tα–1)–1a(s)f

(
s, u(s), u′(s)

)
ds

<
c(α – 2) α–2

α–1

K(α)p(0)

∫ +∞

0
p(s)a(s) ds

≤ (α + β – δ)(α – σ )c(α – 2) α–2
α–1

K(α)p(0)

∫ +∞

0
a(s) ds =

cK2

K
≤ c,
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we have ‖Tu‖ < c. Thus, T : Pc → Pc. By Lemma 3.1, we can know that T is completely
continuous. Using the above argument, it follows from assumption (C3) that if u ∈ Pa, then
‖Tu‖ < a. Hence, condition (ii) of Lemma 2.8 holds.

Next we will show that condition (i) of Lemma 2.8 holds.
To check that, we choose u∗(t) = b+d

2 (1 + tα–1), 0 ≤ t < +∞. Obviously, u∗ ∈ P. By the
proof of condition (iii) of Lemma 2.6,

∥
∥u∗∥∥∞ =

b + d
2

< d,
∥
∥u∗′∥∥∞ = sup

t∈[0,+∞)

(b + d)(α – 1)tα–2

2(1 + tα–1)
=

(b + d)(α – 2) α–2
α–1

2
< d.

Thus, ‖u∗‖ < d. Also, because

min
1
k ≤t≤k

u∗(t)
1 + tα–1 =

b + d
2

> b,

min
1
k ≤t≤k

u∗′ (t)
1 + tα–1 = min

1
k ≤t≤k

(b + d)(α – 1)tα–2

2(1 + tα–1)
=

(b + d)(α – 2) 1
α–1

2
>

b + d
2

> b,

we have θ (u∗) > b. Therefore, u∗ ∈ {u ∈ P(θ , b, d) : θ (u) > b} �= ∅.
For all u ∈ P(θ , b, d), ∀t ∈ [ 1

k , k], we have b ≤ u(t)
1+tα–1 ≤ c, b ≤ u′(t)

1+tα–1 ≤ c. By (C2), it follows
that f (t, u(t), u′(t)) = f (t, (1 + tα–1) u(t)

1+tα–1 , (1 + tα–1) u′(t)
1+tα–1 ) > b

K∗ . For any t ∈ [ 1
k , k], we get

min
1
k ≤t≤k

Tu(t)
1 + tα–1 = min

1
k ≤t≤k

∫ +∞

0

G(t, s)
1 + tα–1 a(s)f

(
s, u(s), u′(s)

)
ds

≥
∫ +∞

0
min

1
k ≤t≤k

G(t, s)
1 + tα–1 a(s)f

(
s, u(s), u′(s)

)
ds

>
b

K∗

∫ k

1
k

g1(s)a(s) ds

≥ bK∗
1

K∗ ≥ b,

min
1
k ≤t≤k

(Tu(t))′

1 + tα–1 = min
1
k ≤t≤k

∫ +∞

0

∂G(t, s)
∂t

(
1 + tα–1)–1a(s)f

(
s, u(s), u′(s)

)
ds

>
b

K∗

∫ k

1
k

g2(s)a(s) ds =
bK∗

2
K∗ ≥ b.

Thus, θ (Tu) > b, ∀u ∈ P(θ , b, d), that is, condition (i) of Lemma 2.8 holds.
At last, we assume that u ∈ P(θ , b, c) with ‖Tu‖ > d. Then ‖u‖ ≤ c, b ≤ u(t)

1+tα–1 ≤ c, and
b ≤ u′(t)

1+tα–1 ≤ c for t ∈ [ 1
k , k]. By assumption (C2), we have θ (Tu) > b. Hence, condition (iii)

of Lemma 2.8 is satisfied.
To sum up, all hypotheses of Lemma 2.8 are satisfied. So we get that the boundary value

problem (1) has at least three positive solutions u1, u2, and u3, such that ‖u1‖ < a, b < θ (u2),
and a < ‖u3‖ with θ (u3) < b. �

4 An example
Let α = 3.2, β = 0.6, δ = 1.2, σ = 0.7, ξi = 1 – 1

2i+2 , ηi = 1
4i , ρi = 1

5i , and a(t) = 4e–t .
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Now we consider the following fractional boundary value problem on an infinite inter-
val:

⎧
⎪⎪⎨

⎪⎪⎩

D3.2
0+ u(t) + 4e–t f (t, u(t), u′(t)) = 0, t ∈ [0, +∞),

u(j)(0) = 0, j = 0, 1, 2,

limt→+∞ D1.2
0+ u(t) =

∑∞
i=1 ηiI0.6

0+ (D1.2
0+ u(t))(ξi) +

∑∞
i=1 ρiD0.7

0+ u(ξi),

(8)

where

f (t, u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
167(1+t2) + 1

3500 ( u
1+t1.2 )5 + 1

3500 ( v
1+t1.2 )5,

(t, u, v) ∈ [0, +∞) × [0, 1
30 ] × [0, +∞),

1
167(1+t2) + 1

3500 ( u
1+t1.2 )5 + 70(u– 1

30 )
1867(1+t1.2) + 1

3500 ( v
1+t1.2 )5,

(t, u, v) ∈ [0, +∞) × [ 1
30 , 1

15 ] × [0, +∞),
1

167(1+t2) + 1
3500 ( u

1+t1.2 )5 + 7
5601(1+t1.2) + 1

3500 ( v
1+t1.2 )5,

(t, u, v) ∈ [0, +∞) × [ 1
15 , +∞] × [0, +∞).

A direct calculation shows that

κ = (1.6)(1.5) – (1.5)
[

1
4

·
(

1 –
1
4

)0.6

+
1

16
·
(

1 –
1
6

)0.6

+ · · ·

+
1
4i ·

(

1 –
1

2i + 2

)0.6

+ · · ·
]

– (1.6)
[

1
5

·
(

1 –
1
4

)0.5

+
1

25
·
(

1 –
1
6

)0.5

+ · · · +
1
5i ·

(

1 –
1

2i + 2

)0.5

+ · · ·
]

≥ (1.6)(1.5)

– (1.5) ·
(

1
4

+
1
42 + · · · +

1
4i + · · ·

)

– (1.6) ·
(

1
5

+
1
52 + · · · +

1
5i + · · ·

)

= 0.2731 > 0,

∫ +∞
0 a(t) dt =

∫ +∞
0 e–t dt = 1.

By Theorem 3.1, we set a = 1
30 , b = 1

15 , c = 5, and k = 1.0864. The calculation yields

K1 = 2.6316, K2 = 2.0125, K∗
1 = 0.1277, K∗

2 = 0.4599.

Then f satisfies

f
(
t,

(
1 + tα–1)u,

(
1 + tα–1)u

) ≤ 1.8238 <
c
K

, 0 ≤ t < +∞, 0 ≤ u ≤ 5, 0 ≤ v ≤ 5;

f
(
t,

(
1 + tα–1)u,

(
1 + tα–1)u

) ≥ 0.5764 >
b

K∗ ,

0.9205 ≤ t ≤ 1.0864,
1

15
≤ u ≤ 5,

1
15

≤ v ≤ 5;

f
(
t,

(
1 + tα–1)u,

(
1 + tα–1)u

) ≤ 0.0060 <
a
K

, 0 ≤ t < +∞, 0 ≤ u ≤ 1
30

, 0 ≤ v ≤ 1
30

.
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Therefore, all assumptions of Theorem 3.1 are satisfied. Thus, the fractional boundary
value problem (8) has at least three positive solutions u1, u2, and u3 satisfying ‖u1‖ < 1

30 ,
1

15 < θ (u2), and 1
30 < ‖u3‖ with θ (u3) < 1

15 .

Acknowledgements
The authors express their thanks to the reviewers for their valueble suggestions.

Funding
The work was supported by the Anhui Provincial Natural Science Foundation (1608085MA12).

Availability of data and materials
All date generated or analyzed during this study are included in this article.

Declarations

Ethics approval and consent to participate
There does not exist any ethical issue regarding this work.

Consent for publication
The authors confirm: that the work described has not been published before (except in the form of an abstract or as part
of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication
has been approved by all co-authors, if any; that its publication has been approved (tacitly or explicitly) by the
responsible authorities at the institution where the work is carried out.

Competing interests
The authors declare no competing interests.

Author contributions
Ziyue Cui wrote the main manuscript text. All authors read and approved the final manuscript.

Received: 3 June 2023 Accepted: 15 August 2023

References
1. Adiguzel, R.S., Aksoy, U., Karapinar, E., et al.: On the solutions of fractional differential equations via Geraghty type

hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021)
2. Bai, Z., Lv, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal.

Appl. 311(2), 495–505 (2005)
3. Lazreg, J.E., Abbas, S., Benchohra, M., et al.: Impulsive Caputo-Fabrizio fractional differential equations in b-matric

spaces. Open Math. 19, 363–372 (2021)
4. Ahmad, B., Ntouyas, S.K.: Existence results for a coupled system of Caputo type sequential fractional differential

equations with nonlocal integral boundary conditions. Appl. Math. Comput. 266, 615–622 (2015)
5. Isaia, F.: On a nonlinear integral equation without compactness. Acta Math. Univ. Comen. 75(2), 233–240 (2016)
6. Niazi, A.U.K., Wei, J., Rehman, M.U., et al.: Boundary value problem for nonlinear fractional differential equations with

delay. Adv. Differ. Equ. 24, 1–14 (2017)
7. Li, Y.: Multiple positive solutions for nonlinear mixed fractional differential equation with p-Laplacian operator. Adv.

Differ. Equ. 112, 1–12 (2019)
8. Kai, S., Zong, Z.: Positive solutions for fractional differential equations with integral and infinite-point boundary

conditions. Math. Appl. 33(3), 563–571 (2020)
9. Mahdjouba, A., Juan, J.N., Abdelghani, O.: System of fractional boundary value problem with p-Laplacian and

advanced arguments. Adv. Differ. Equ. 39(6), 1425–1434 (2016)
10. Wang, Y., Wang, H.: Triple positive solutions for fractional differential equation boundary value problems at

resonance. Appl. Math. Lett. 106, 1–14 (2020)
11. Dondu, O., Ilkay, Y.K.: Positive solutions form-point p-Laplacian fractional boundary value problem involving

Riemann-Liouville fractional integral boundary conditions on the half line. Filomat 34(9), 3161–3173 (2020)
12. Wei, J., Zong, Z.: Positive solutions of boundary value problem for a class of high-order fractional differential

equations on infinite interval. Math. Appl. 30(4), 750–759 (2017)
13. Amjad, A., Nabeela, K., Seema, I.: Successively iterative method for a class of high-order fractional differential

equations with multi-point boundary value conditions on half-line. Bound. Value Probl. 5, 1–16 (2016)
14. Yuan, T., Zhan, B., Su, S.: Positive solutions for a boundary value problem of fractional differential equation with

p-Laplacian operator. Adv. Differ. Equ. 349, 1–14 (2019)
15. Dondu, O., Ilkay, Y.K.: Positive solutions for fractional-order nonlinear boundary value problems on infinite interval. Int.

J. Nonlinear Anal. Appl. 12(1), 317–335 (2021)
16. Li, G., Jing, Z., Lian, L., et al.: Existence of multiple positive solutions for a class of infinite-point singular p-Laplacian

fractional differential equation with singular source terms. Nonlinear Anal. 27(4), 609–629 (2022)
17. Hao, X., Wang, H., Liu, L., et al.: Positive solutions for a system of nonlinear fractional nonlocal boundary value

problems with parameters and p-Laplacian operator. Bound. Value Probl. 182, 1–18 (2017)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Positive solutions for a class of fractional differential equations with inﬁnite-point boundary conditions on inﬁnite intervals
	Abstract
	Keywords

	Introduction
	Preliminaries
	Main results
	An example
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author contributions
	References
	Publisher's Note


