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Abstract
This paper investigates the existence of positive solutions for a class of fractional
boundary value problems involving an improper integral and the infinite-point on the
half-line by making use of properties of the Green function and Avery–Peterson fixed
point theorem. In addition, an example is presented to illustrate the applicability of
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1 Introduction
Fractional differential equations describe various phenomena in diverse areas of natural
science such as physics, polymer rheology, biology, mechanics, epidemiology, and other
fields, see [1–6]. Over the last few decades, the study of fractional calculus and fractional
differential equations had been gaining more and more attention because researchers have
found that fractional-order models are more suitable than integer-order models for some
realistic problems due to their excellent description of the memory and hereditary proper-
ties of numerous materials and processes. Compared with classical integer-order models,
the main advantage of fractional differential equations is the accuracy of description of
the real world.

Recently, lots of papers on fractional differential equations with finite domain have ap-
peared [7–12]. By means of many methods, such as the variational method, the upper
and lower solution technique, Legett–Williams fixed point theorem, and so on, the exis-
tence results of solutions for boundary value problems of fractional differential equations
have been obtained. While much of the work on fractional calculus deals with finite do-
main, there is a considerable development on the topics involving an unbounded domain
[13–19].
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In [20], the authors proved the existence and uniqueness of a positive solution to the
following problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ x(t) + μ(f (t, u(t)) + q(t)g(x(t))) = 0, t ∈ (0, +∞),

x(0) = x′(0) = 0,

Dα–1
0+ x(∞) = β

∫ η

0 x(s) ds + λ,

(1.1)

where 2 < α ≤ 3 and Dα
0+ is the standard Riemann–Liouville fractional derivative. β ,η > 0,

and �(α + 1) > βηα ; μ,λ ≥ 0 are called the eigenvalue and disturbance parameters, respec-
tively.

In [21], the authors considered the fractional differential equation with integral bound-
ary value condition on the half line:

⎧
⎪⎪⎨

⎪⎪⎩

HDα
1+ x(t) + a(t)f (t, x(t)) = 0, t ∈ (1, +∞),

x(1) = x′(1) = 0,
HDα–1

1+ x(+∞) =
∑m

i=1 αH
i Iβi

1+ x(η) + ρ
∑n

j=1 σjx(ξj),

(1.2)

where HDα
1+ is the Hadamard-type fractional derivative, 2 < α < 3, 0 < ξ1 < ξ2 < · · · < ξn <

+∞. They got the existence of at least three positive solutions from the generalized Avery–
Henderson fixed point theorem.

Through the discussions of (1.1) and (1.2), an interesting question is proposed: whether
the positive solution still exists and what kind of properties it has for a fractional boundary
value problem with f (t, x(t), x′(t)) and the infinite-point? As far as we know, there is no
answer to this question, which inspired us to study the following problem on an infinite
interval:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ

0+ x(t) + a(t)f (t, x(t), x′(t)) = 0, t ∈ [0, +∞),

x(0) = x′(0) = 0,

limt→+∞ Dβ–1
0+ x(t) =

∫ +∞
0 h(t)x′(t) dt +

∑∞
i=1 ηiDγ

0+ x(ξi),

(1.3)

where 2 < β ≤ 3, 0 ≤ γ ≤ β – 1, and Dβ

0+ is the standard Riemann–Liouville fractional
derivative; 0 < ξ1 < ξ2 < · · · < ξi < ξi+1 < · · · < +∞, ηi > 0, i = 1, 2, . . . .

In this paper, we make the following assumptions:
(H1) f ∈ C([0, +∞) × [0, +∞) × [0, +∞), [0, +∞)), f (t, 0, 0) �≡ 0 on any subinterval of

(0, +∞) and f (t, (1 + tβ–1)x, (1 + tβ–1)y) is bounded when x, y are bounded.
(H2) a, h ∈ C([0, +∞), [0, +∞)) are not identical zero on any closed subinterval of [0, +∞)

and
∫ +∞

0
a(s) ds < +∞.

(H3) � = �(β) – (β – 1)
∫ +∞

0 τβ–2h(τ ) dτ – �(β)
�(β–γ )

∑∞
i=1 ηiξ

β–γ –1
i > 0.

In the study of radially symmetric solutions of nonlinear elliptic equations and gas pressure
models in semiinfinite porous media, the problem of boundary values on the half-line
arises naturally. It is well known that there are not many studies of fractional differential
systems on an infinite interval, although it is necessary to do so.
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In this paper, we aim to obtain the existence of positive solutions for system (1.3) on an
infinite interval. In contrast to the existing research, we study the system with an improper
integral and infinite-point boundary value conditions on the half-line, which is more gen-
eral than those of multipoint boundary value conditions in the known papers. What is
more, the method which we use in this paper is Avery–Peterson fixed point theorem, and
multiple positive solutions are obtained for the system (1.3).

The remainder of the paper is arranged as follows. In Sect. 2, we introduce and derive
several key definitions, lemmas, and properties. In Sect. 3, we investigate the existence and
multiplicity of positive solutions to boundary value problem (1.3). In Sect. 4, an example
is displayed to demonstrate the applicability of our main results. Finally, we conclude this
paper.

2 Preliminaries
For the convenience of the reader, we introduce here some indispensable definitions and
properties which will play an important role in the following sections.

Definition 1 ([1]) The Riemann–Liouville fractional integral of order α > 0 of a function
g : (0, +∞) →R is given by

Iα
0+ g(t) =

1
�(α)

∫ t

0
(t – s)α–1g(s) ds.

Definition 2 ([1]) The Riemann–Liouville fractional derivative of order β > 0 of a func-
tion h ∈ C((0, +∞),R) is defined as

Dβ

0+ h(t) =
1

�(n – β)
dn

dtn

∫ t

0
(t – s)n–β–1h(s) ds, n = [β] + 1.

Lemma 1 ([22]) Assume that h ∈ C(0, 1) ∩ L1(0, 1) is such that Dα
0+ h ∈ C(0, 1) ∩ L1(0, 1),

then

Iα
0+ Dα

0+ h(t) = h(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈R, i = 1, 2, . . . , n, n = [α] + 1.

Lemma 2 ([1, 22])
(1) Dα

0+ Iα
0+ h(t) = h(t), where h ∈ C(0, 1) ∩ L1(0, 1);

(2) If h ∈ L1(0, 1), α > β > 0, then Dβ

0+ Iα
0+ h(t) = Iα–β

0+ h(t);
(3) If λ > –1, then

Dβ

0+ tλ =
�(λ + 1)

�(λ – β + 1)
tλ–β ,

and Dβ

0+ tβ–m = 0, m = 1, 2, . . . , n, where n = [β] + 1.
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Lemma 3 Suppose that g ∈ C([0, +∞), [0, +∞)), 2 < β ≤ 3, then the solution of boundary
value problem

⎧
⎪⎪⎨

⎪⎪⎩

Dβ

0+ x(t) + g(t) = 0,

x(0) = x′(0) = 0,

limt→+∞ Dβ–1
0+ x(t) =

∫ +∞
0 h(t)x′(t) dt +

∑∞
i=1 ηiDγ

0+ x(ξi)

(2.1)

is

x(t) =
∫ +∞

0
G(t, s)g(s) ds,

where

G(t, s) =

⎧
⎨

⎩

tβ–1

�(β)z(0) z(s) – 1
�(β) (t – s)β–1, 0 ≤ s ≤ t < +∞,

tβ–1

�(β)z(0) z(s), 0 ≤ t ≤ s < +∞,
(2.2)

z(s) = 1 –
1

�(β – 1)

∫ +∞

s
(τ – s)β–2h(τ ) dτ –

1
�(β – γ )

∑

s≤ξi

ηi(ξi – s)β–γ –1. (2.3)

Proof Considering Dβ

0+ x(t) + g(t) = 0 and Lemma 1, we have

x(t) = –Iβ

0+ g(t) + c1tβ–1 + c2tβ–2 + c3tβ–3.

Due to x(0) = x′(0) = 0, we get c2 = c3 = 0, which implies that

x(t) = –Iβ

0+ g(t) + c1tβ–1 = –
1

�(β)

∫ t

0
(t – s)β–1g(s) ds + c1tβ–1. (2.4)

Thus

x′(t) = –
1

�(β – 1)

∫ t

0
(t – s)β–2g(s) ds + c1(β – 1)tβ–2,

Dβ–1
0+ x(t) = Dβ–1

0+
[
–Iβ

0+ g(t) + c1tβ–1] = –I0+ g(t) + c1Dβ–1
0+ tβ–1

= –
∫ t

0
g(s) ds + c1�(β),

and

Dγ

0+ x(t) = Dγ

0+
[
–Iβ

0+ g(t) + c1tβ–1] = –Iβ–γ

0+ g(t) + c1Dγ

0+ tβ–1

= –
1

�(β – γ )

∫ t

0
(t – s)β–γ –1g(s) ds + c1

�(β)
�(β – γ )

tβ–γ –1.

In view of the boundary condition limt→+∞ Dβ–1
0+ x(t) =

∫ +∞
0 h(t)x′(t) dt +

∑∞
i=1 ηiDγ

0+ x(ξi),
we obtain

–
∫ +∞

0
g(s) ds + c1�(β)

=
∫ +∞

0
h(τ )

[

–
1

�(β – 1)

∫ τ

0
(τ – s)β–2g(s) ds + c1(β – 1)τβ–2

]

dτ
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+
∞∑

i=1

ηi

[

–
1

�(β – γ )

∫ ξi

0
(ξi – s)β–γ –1g(s) ds + c1

�(β)
�(β – γ )

ξ
β–γ –1
i

]

= –
1

�(β – 1)

∫ +∞

0
h(τ )

∫ τ

0
(τ – s)β–2g(s) ds dτ + c1(β – 1)

∫ +∞

0
τβ–2h(τ ) dτ

–
1

�(β – γ )

∞∑

i=1

ηi

∫ ξi

0
(ξi – s)β–γ –1g(s) ds + c1

�(β)
�(β – γ )

∞∑

i=1

ηiξ
β–γ –1
i .

Therefore
[

�(β) – (β – 1)
∫ +∞

0
τβ–2h(τ ) dτ –

�(β)
�(β – γ )

∞∑

i=1

ηiξ
β–γ –1
i

]

c1

=
∫ +∞

0
g(s) ds –

1
�(β – 1)

∫ +∞

0
h(τ )

∫ τ

0
(τ – s)β–2g(s) ds dτ

–
1

�(β – γ )

∞∑

i=1

ηi

∫ ξi

0
(ξi – s)β–γ –1g(s) ds.

Hence

c1 =
1
�

[∫ +∞

0
g(s) ds –

1
�(β – 1)

∫ +∞

0
h(τ )

∫ τ

0
(τ – s)β–2g(s) ds dτ

–
1

�(β – γ )

∞∑

i=1

ηi

∫ ξi

0
(ξi – s)β–γ –1g(s) ds

]

.

Substituting c1 into (2.4), we get

x(t) = –
1

�(β)

∫ t

0
(t – s)β–1g(s) ds + c1tβ–1

= –
1

�(β)

∫ t

0
(t – s)β–1g(s) ds

+
tβ–1

�

[∫ +∞

0
g(s) ds –

1
�(β – 1)

∫ +∞

0
h(τ )

∫ τ

0
(τ – s)β–2g(s) ds dτ

–
1

�(β – γ )

∞∑

i=1

ηi

∫ ξi

0
(ξi – s)β–γ –1g(s) ds

]

= –
1

�(β)

∫ t

0
(t – s)β–1g(s) ds

+
tβ–1

�

[∫ +∞

0
g(s) ds –

1
�(β – 1)

∫ +∞

0

(∫ +∞

s
(τ – s)β–2h(τ ) dτ

)

g(s) ds

–
1

�(β – γ )

∫ +∞

0

∑

s≤ξi

ηi(ξi – s)β–γ –1g(s) ds
]

= –
1

�(β)

∫ t

0
(t – s)β–1g(s) ds +

tβ–1

�

∫ +∞

0

[

1 –
1

�(β – 1)

∫ +∞

s
(τ – s)β–2h(τ ) dτ

–
1

�(β – γ )
∑

s≤ξi

ηi(ξi – s)β–γ –1
]

g(s) ds
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=
∫ +∞

0
G(t, s)g(s) ds,

where G(t, s) is defined by (2.2). The proof is completed. �

Lemma 4 If (H3) holds, then the function 0 < z(s) < 1, s ∈ [0, +∞), and z(s) is nondecreasing
on [0, +∞).

Proof From hypothesis (H1) and (2.3), we have

z(0) = 1 –
1

�(β – 1)

∫ +∞

0
(τ – s)β–2h(τ ) dτ –

1
�(β – γ )

∞∑

i=1

ηi(ξi)β–γ –1 =
�

�(β)
> 0

and z(s) < 1. On the other hand,

z′(s) =
1

�(β – 2)

∫ +∞

s
(τ – s)β–3h(τ ) dτ +

1
�(β – γ – 1)

∑

s≤ξi

ηi(ξi – s)β–γ –2.

Consequently, z(s) is nondecreasing on [0, +∞) and 0 < z(s) < 1, s ∈ [0, +∞). The proof is
completed. �

Lemma 5 If (H3) holds, the function G(t, s) in Lemma 3 satisfies the following properties:
(1) G(t, s) and ∂

∂t G(t, s) are continuous on [0, +∞) × [0, +∞);
(2) G(t, s) ≥ 0 and ∂

∂t G(t, s) ≥ 0 for all t, s ∈ [0, +∞);

(3) G(t,s)
1+tβ–1 < L,

∂
∂t G(t,s)
1+tβ–1 < (β – 1)L for all t, s ∈ [0, +∞), where L = 1

�
;

(4) Let k > 1, then

min
1
k ≤t≤k

G(t, s)
1 + tβ–1 ≥

⎧
⎨

⎩

0, 0 ≤ s < 1
k ,

1
�(β)kβ–1(1+kβ–1) , s ≥ 1

k .

Proof In view of (2.2), it is obvious that

∂

∂t
G(t, s) =

⎧
⎨

⎩

tβ–2

�(β–1)z(0) z(s) – 1
�(β–1) (t – s)β–2, 0 ≤ s ≤ t < +∞,

tβ–2

�(β–1)z(0) z(s), 0 ≤ t ≤ s < +∞.
(2.5)

(1) It is evident to see that G(t, s) and ∂
∂t G(t, s) are continuous on [0, +∞) × [0, +∞).

(2) For 0 ≤ s ≤ t < +∞,

G(t, s) =
tβ–1

�(β)z(0)
z(s) –

1
�(β)

(t – s)β–1

≥ tβ–1

�(β)z(0)
z(0) –

1
�(β)

(t – s)β–1

=
tβ–1

�(β)
–

1
�(β)

(t – s)β–1 ≥ 0.

For 0 ≤ t ≤ s < +∞, it is easy to show that G(t, s) ≥ 0.
In the same way as for G(t, s), we obtain ∂

∂t G(t, s) ≥ 0 for all t, s ∈ [0, +∞).
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(3) For 0 ≤ s ≤ t < +∞,

G(t, s)
1 + tβ–1 =

tβ–1

�(β)z(0)(1 + tβ–1)
z(s) –

(t – s)β–1

�(β)(1 + tβ–1)

≤ z(s)
�(β)z(0)

<
1

�(β)z(0)
=

1
�

= L,

∂
∂t G(t, s)
1 + tβ–1 ≤ tβ–2

�(β – 1)z(0)(1 + tβ–1)
z(s) ≤ (β – 1)tβ–2

�(1 + tβ–1)
<

β – 1
�

= (β – 1)L.

Indeed, tβ–2

1+tβ–1 < 1. Denote h(t) = tβ–2

(1+tβ–1) , t ∈ [0, +∞), then h′(t) = tβ–3(β–2–tβ–1)
(1+tβ–1)2 . Let h′(t) = 0,

we get t = (β – 2)
1

β–1 . So hmax = (β–2)
β–2
β–1

β–1 < 1
β–1 < 1.

For 0 ≤ t ≤ s < +∞,

G(t, s)
1 + tβ–1 =

tβ–1

�(β)z(0)(1 + tβ–1)
z(s) <

1
�

= L,

∂
∂t G(t, s)
1 + tβ–1 =

tβ–2

�(β – 1)z(0)(1 + tβ–1)
z(s) < (β – 1)L.

(4) For 0 ≤ s < 1
k , combining with the increasingness of z(s), we have

min
1
k ≤t≤k

G(t, s)
1 + tβ–1 = min

1
k ≤t≤k

[
tβ–1

�(β)z(0)(1 + tβ–1)
z(s) –

(t – s)β–1

�(β)(1 + tβ–1)

]

≥ min
1
k ≤t≤k

tβ–1 – (t – s)β–1

�(β)(1 + tβ–1)

≥
1

kβ–1 – ( 1
k – s)β–1

�(β)(1 + kβ–1)

≥ 0.

For 1
k ≤ s ≤ k,

min
1
k ≤t≤k

G(t, s)
1 + tβ–1 = min

{

min
1
k ≤t<s

G(t, s)
1 + tβ–1 , min

s≤t≤k

G(t, s)
1 + tβ–1

}

.

By simple analysis, we find

min
1
k ≤t<s

G(t, s)
1 + tβ–1 = min

1
k ≤t≤s

tβ–1

�(β)z(0)(1 + tβ–1)
z(s)

≥ min
1
k ≤t<s

tβ–1

�(β)(1 + tβ–1)

=
1

�(β)(kβ–1 + 1)

and

min
s≤t≤k

G(t, s)
1 + tβ–1 = min

s≤t≤k

[
tβ–1

�(β)z(0)(1 + tβ–1)
z(s) –

(t – s)β–1

�(β)(1 + tβ–1)

]
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≥ min
s≤t≤k

tβ–1 – (t – s)β–1

�(β)(1 + tβ–1)

≥ sβ–1

�(β)(1 + kβ–1)

≥ 1
�(β)kβ–1(1 + kβ–1)

.

Thus

min
1
k ≤t≤k

G(t, s)
1 + tβ–1 ≥ min

s∈[ 1
k ,k]

{
1

�(β)(kβ–1 + 1)
,

1
�(β)kβ–1(1 + kβ–1)

}

,

that is,

min
1
k ≤t≤k

G(t, s)
1 + tβ–1 ≥ 1

�(β)kβ–1(1 + kβ–1)
.

For s > k,

min
1
k ≤t≤k

G(t, s)
1 + tβ–1 = min

1
k ≤t≤k

tβ–1

�(β)z(0)(1 + tβ–1)
z(s)

≥ min
1
k ≤t≤k

tβ–1

�(β)(1 + tβ–1)

≥ 1
�(β)kβ–1(1 + kβ–1)

.

In conclusion,

min
1
k ≤t≤k

G(t, s)
1 + tβ–1 ≥

⎧
⎨

⎩

0, 0 ≤ s < 1
k ,

1
�(β)kβ–1(1+kβ–1) , s ≥ 1

k .

The proof is completed. �

Now, we consider the space E defined by

E =
{

x ∈ C1([0, +∞)
,R) : lim

t→+∞
|x(t)|

1 + tβ–1 < +∞, lim
t→+∞

|x′(t)|
1 + tβ–1 < +∞

}

endowed with the norm ‖x‖ = max{‖x‖∞,‖x′‖∞}, where ‖x‖∞ = supt≥0
|x(t)|

1+tβ–1 . It is not
difficult to see that E is a Banach space.

Lemma 6 ([23]) Let U = {x ∈ E,‖x‖ < l, where l > 0}, U(t) = { x(t)
1+tβ–1 , x ∈ U}, U ′(t) =

{ x′(t)
1+tβ–1 , x ∈ U}. The set U is relatively compact in E if U(t) and U ′(t) are both equicon-

tinuous on any finite subinterval of R+ and equiconvergent at ∞, that is, for any ε > 0,
there exists δ = δ(ε) > 0 such that

∣
∣
∣
∣

x(t1)
1 + tβ–1

1
–

x(t2)
1 + tβ–1

2

∣
∣
∣
∣ < ε,

∣
∣
∣
∣

x′(t1)
1 + tβ–1

1
–

x′(t2)
1 + tβ–1

2

∣
∣
∣
∣ < ε, ∀x ∈ U , t1, t2 > δ.
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Lemma 7 ([24]) Let K be a cone in a real Banach space E. Let ω and μ be nonnegative
continuous convex functionals on K , θ be a nonnegative continuous concave functional
on K , and φ be a nonnegative continuous functional on K satisfying φ(εx) ≤ εφ(x) for all
0 ≤ ε ≤ 1, such that for some numbers N > 0 and C > 0,

θ (x) ≤ φ(x), ‖x‖ ≤ Nω(x),

for all x ∈ K(ω, C). Let l, b, r > 0 and define the following convex sets:

K(ω, C) =
{

x ∈ K |ω(x) < C
}

,

K(ω, θ , b, C) =
{

x ∈ K |b ≤ θ (x),ω(x) ≤ C
}

,

K(ω,μ, θ , b, r, C) =
{

x ∈ K |b ≤ θ (x),μ(x) ≤ r,ω(x) ≤ C
}

,

and a closed set

Q(ω,φ, l, C) =
{

x ∈ K |l ≤ φ(x),ω(x) ≤ C
}

.

Suppose

T : K(ω, C) → K(ω, C)

is completely continuous and there exist some numbers l, b, r > 0 with l < b such that
(I1) {x ∈ K(ω,μ, θ , b, r, C)|θ (x) > b} �= ∅ and θ (T x) > b for x ∈ K(ω,μ, θ , b, r, C);
(I2) θ (T x) > b for x ∈ K(ω, θ , b, C) with μ(T x) > r;
(I3) 0 /∈ Q(ω,φ, l, C) and φ(T x) < l for x ∈ Q(ω,φ, l, C) with φ(x) = l.

Then T has at least three fixed points xl, x2, x3 ∈ K(ω, C) such that

ω(xi) ≤ C, i = 1, 2, 3;

θ (x1) > b;

l < φ(x2) with θ (x2) < b;

φ(x3) < l.

3 Main results
Define a cone K = {x ∈ E, x(t) ≥ 0, x′(t) ≥ 0, t ∈ [0, +∞)} and the operator T : K → E as
follows:

T x(t) =
∫ +∞

0
G(t, s)a(s)f

(
s, x(s), x′(s)

)
ds.

We can deduce that the fixed point of the operator T is a solution of the boundary value
problem (1.3) from Lemma 3.

Lemma 8 If (H1), (H2), and (H3) hold, then the operator T : K → K is completely contin-
uous.
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Proof To complete the proof, we divide it into the following five steps:
Step 1. We will show that T : K → K .
Clearly,

T x′(t) =
∫ +∞

0

∂

∂t
G(t, s)a(s)f

(
s, x(s), x′(s)

)
ds.

Due to the continuity and nonnegativity of G(t, s), ∂
∂t G(t, s), a(t), and f (t, x, y), we know

that T x(t) ≥ 0 and T x′(t) ≥ 0 are continuous with respect to t ∈ [0, +∞). Applying (3) of
Lemma 5 and (H1), (H2), for any fixed x ∈ K , we get x(t)

1+tβ–1 ≤ ‖x‖, x′(t)
1+tβ–1 ≤ ‖x‖, t ∈ [0, +∞),

and then there exists αx > 0 such that

lim
t→+∞

|T x(t)|
1 + tβ–1 = lim

t→+∞

∫ +∞

0

G(t, s)
1 + tβ–1 a(s)f

(
s, x(s), x′(s)

)
ds

≤ L
∫ +∞

0
a(s)f

(

s,
(
1 + sβ–1) x(s)

1 + sβ–1 ,
(
1 + sβ–1) x′(s)

1 + sβ–1

)

ds

≤ Lαx

∫ +∞

0
a(s) ds < +∞

and

lim
t→+∞

|T x′(t)|
1 + tβ–1 = lim

t→+∞

∫ +∞

0

∂
∂t G(t, s)
1 + tβ–1 a(s)f

(
s, x(s), x′(s)

)
ds

≤ (β – 1)L
∫ +∞

0
a(s)f

(

s,
(
1 + sβ–1) x(s)

1 + sβ–1 ,
(
1 + sβ–1) x′(s)

1 + sβ–1

)

ds

≤ (β – 1)Lαx

∫ +∞

0
a(s) ds < +∞.

As a result, T (K) ⊂ K .
Step 2. We will check the continuity of T .
Let {xn} ⊂ E with xn → x, x′

n → x′ as n → +∞. Hence, there exists a positive constant r0

such that

max
{
‖x‖∞, sup

n∈N
‖xn‖∞

}
< r0, max

{∥
∥x′∥∥∞, sup

n∈N

∥
∥x′

n
∥
∥∞

}
< r0.

With the help of Lemma 5, the continuity of f , and Lebesgue dominated convergence the-
orem, we have

‖T xn – T x‖∞ = sup
t≥0

∣
∣
∣
∣
T xn(t)
1 + tβ–1 –

T x(t)
1 + tβ–1

∣
∣
∣
∣

= sup
t≥0

∣
∣
∣
∣

∫ +∞

0

G(t, s)
1 + tβ–1 a(s)

[
f
(
s, xn(s), x′

n(s)
)

– f
(
s, x(s), x′(s)

)]
ds

∣
∣
∣
∣

≤ L
∫ +∞

0
a(s)

∣
∣f

(
s, xn(s), x′

n(s)
)

– f
(
s, x(s), x′(s)

)∣
∣ds → 0 (n → ∞)
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and

∥
∥T x′

n – T x′∥∥∞

= sup
t≥0

∣
∣
∣
∣
T x′

n(t)
1 + tβ–1 –

T x′(t)
1 + tβ–1

∣
∣
∣
∣

= sup
t≥0

∣
∣
∣
∣

∫ +∞

0

∂
∂t G(t, s)
1 + tβ–1 a(s)

[
f
(
s, xn(s), x′

n(s)
)

– f
(
s, x(s), x′(s)

)]
ds

∣
∣
∣
∣

≤ (β – 1)L
∫ +∞

0
a(s)

∣
∣f

(
s, xn(s), x′

n(s)
)

– f
(
s, x(s), x′(s)

)∣
∣ds → 0 (n → ∞).

Therefore

‖T xn – T x‖ → 0, n → ∞,

which implies that T is continuous.
Step 3. Let P ⊂ K be a bounded set, then there exists a positive constant k1 such that

‖x‖ ≤ k1 for any x ∈ P. By (H1), let

k2 = sup
{

f
(
t,

(
1 + tβ–1)x,

(
1 + tβ–1)y

)
, (t, x, y) ∈ [0, +∞) × [0, k1] × [0, k1]

}
.

Next, we will prove T (P) is bounded.
For all x ∈ P, from Lemma 5, we get

‖T x‖∞ = sup
t≥0

∣
∣
∣
∣
T x(t)

1 + tβ–1

∣
∣
∣
∣ = sup

t≥0

∫ +∞

0

G(t, s)
1 + tβ–1 a(s)f

(
s, x(s), x′(s)

)
ds

≤ L
∫ +∞

0
a(s)f

(

s,
(
1 + sβ–1) x(s)

1 + sβ–1 ,
(
1 + sβ–1) x′(s)

1 + sβ–1

)

ds

≤ Lk2

∫ +∞

0
a(s) ds < +∞.

In a similar manner, we establish

∥
∥T x′∥∥∞ ≤ (β – 1)Lk2

∫ +∞

0
a(s) ds < +∞

for all x ∈ P. It follows that T (P) is uniformly bounded.
Step 4. We will prove that { T x(t)

1+tβ–1 , x ∈ P}, { T x′(t)
1+tβ–1 , x ∈ P} are equicontinuous on any finite

subinterval of [0, +∞).
For any ρ > 0 and t1, t2 ∈ [0,ρ], without loss of generality, we assume that t2 > t1. For all

x ∈ P, we obtain
∣
∣
∣
∣
T x(t2)
1 + tβ–1

2
–

T x(t1)
1 + tβ–1

1

∣
∣
∣
∣ ≤

∫ +∞

0

∣
∣
∣
∣

G(t2, s)
1 + tβ–1

2
–

G(t1, s)
1 + tβ–1

1

∣
∣
∣
∣a(s)f

(
s, x(s), x′(s)

)
ds

≤
∫ +∞

0

∣
∣
∣
∣

G(t2, s)
1 + tβ–1

2
–

G(t1, s)
1 + tβ–1

2

∣
∣
∣
∣a(s)f

(
s, x(s), x′(s)

)
ds

+
∫ +∞

0

∣
∣
∣
∣

G(t1, s)
1 + tβ–1

2
–

G(t1, s)
1 + tβ–1

1

∣
∣
∣
∣a(s)f

(
s, x(s), x′(s)

)
ds
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=
∫ +∞

0

∣
∣
∣
∣
G(t2, s) – G(t1, s)

1 + tβ–1
2

∣
∣
∣
∣a(s)f

(
s, x(s), x′(s)

)
ds

+
∫ +∞

0

G(t1, s)|tβ–1
2 – tβ–1

1 |
(1 + tβ–1

1 )(1 + tβ–1
2 )

a(s)f
(
s, x(s), x′(s)

)
ds

≤
∫ t1

0

|G(t2, s) – G(t1, s)|
1 + tβ–1

2
a(s)f

(
s, x(s), x′(s)

)
ds

+
∫ t2

t1

|G(t2, s) – G(t1, s)|
1 + tβ–1

2
a(s)f

(
s, x(s), x′(s)

)
ds

+
∫ +∞

t2

|G(t2, s) – G(t1, s)|
1 + tβ–1

2
a(s)f

(
s, x(s), x′(s)

)
ds

+ L
∫ +∞

0

tβ–1
2 – tβ–1

1

1 + tβ–1
2

a(s)f
(
s, x(s), x′(s)

)
ds

→ 0 (t1 → t2).

Similarly, we have
∣
∣
∣
∣
T x′(t2)
1 + tβ–1

2
–
T x′(t1)
1 + tβ–1

1

∣
∣
∣
∣ → 0 (t1 → t2).

Hence, { T x(t)
1+tβ–1 , x ∈ P}, { T x′(t)

1+tβ–1 , x ∈ P} are equicontinuous on any finite subinterval of
[0, +∞).

Step 5. We will prove that the sets { T x(t)
1+tβ–1 , x ∈ P} and { T x′(t)

1+tβ–1 , x ∈ P} are equiconvergent
at t → +∞.

For all x ∈ U ,

lim
t→+∞

∣
∣
∣
∣
T x(t)

1 + tβ–1

∣
∣
∣
∣ = lim

t→+∞

∣
∣
∣
∣

∫ +∞

0

G(t, s)
1 + tβ–1 a(s)f

(
s, x(s), x′(s)

)
ds

∣
∣
∣
∣

≤ Lk2

∫ +∞

0
a(s) ds < +∞.

Moreover, we get

lim
t→+∞

∣
∣
∣
∣
T x′(t)

1 + tβ–1

∣
∣
∣
∣ < +∞.

Accordingly, { T x(t)
1+tβ–1 , x ∈ P} and { T x′(t)

1+tβ–1 , x ∈ P} are equiconvergent at t → +∞. As a result,
T : K → K is completely continuous by Lemma 6. The proof is completed. �

Next, we will prove the existence of at least three positive solutions by making use of
Avery–Peterson theorem. For convenience, we denote

L1 =
1

�(β)kβ–1(1 + kβ–1)
,

M = (β – 1)L
∫ +∞

0
a(s) ds,

m = L1

∫ k

1
k

a(s) ds,
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and define

ω(x) = μ(x) = ‖x‖, φ(x) = sup
t≥0

|x(t)|
1 + tβ–1 , θ (x) = min

1
k ≤t≤k

x(t)
1 + tβ–1 ,

where x ∈ K .

Theorem 1 Assume that (H1), (H2), and (H3) are hold. If there exist constants 0 < l < b <
r ≤ C such that

(S1) f (t, (1 + tβ–1)x, (1 + tβ–1)y) < C
M , 0 ≤ t < +∞, 0 ≤ x ≤ C, 0 ≤ y ≤ C,

(S2) f (t, (1 + tβ–1)x, (1 + tβ–1)y) > b
m , 1

k ≤ t < k, b ≤ x ≤ r, 0 ≤ y ≤ C,
(S3) f (t, (1 + tβ–1)x, (1 + tβ–1)y) < l

M , 0 ≤ t < +∞, 0 ≤ x ≤ l, 0 ≤ y ≤ C.
Then the boundary value problem (1.3) has at least three positive solutions x1, x2, and x3

satisfying

ω(xi) ≤ C (i = 1, 2, 3);

θ (x1) > b; l < φ(x2), θ (x2) < b; φ(x3) < l.

Proof Evidently, θ (x) ≤ φ(x), φ(εx) ≤ εφ(x), and ‖x‖ ≤ μ(x).
For all x ∈ K(ω, C), we know ω(x) = ‖x‖ ≤ C. That is to say, 0 ≤ x(t)

1+tβ–1 ≤ C and 0 ≤
x′(t)

1+tβ–1 ≤ C for t ∈ [0, +∞). Applying (S1), we find

f
(
t, x(t), x′(t)

)
= f

(

t,
(
1 + tβ–1) x(t)

1 + tβ–1 ,
(
1 + tβ–1) x′(t)

1 + tβ–1

)

<
C
M

, t ∈ [0, +∞).

Then combining with Lemma 5, we obtain

‖T x‖∞ = sup
t≥0

|T x(t)|
1 + tβ–1

= sup
t≥0

∫ +∞

0

G(t, s)
1 + tβ–1 a(s)f

(
s, x(s), x′(s)

)
ds

≤ L
∫ +∞

0
a(s)f

(
s, x(s), x′(s)

)
ds

< L · C
M

∫ +∞

0
a(s) ds

=
C

β – 1
< C

and

∥
∥T x′∥∥∞ = sup

t≥0

|T x′(t)|
1 + tβ–1

= sup
t≥0

∫ +∞

0

∂
∂t G(t, s)
1 + tβ–1 a(s)f

(
s, x(s), x′(s)

)
ds

≤ (β – 1)L
∫ +∞

0
a(s)f

(
s, x(s), x′(s)

)
ds
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< (β – 1)L · C
M

∫ +∞

0
a(s) ds

= C,

which lead to ‖T x‖ = max{‖T x‖∞,‖T x′‖∞} < C. That is, T : K(ω, C) → K(ω, C).
Next, we will show that T satisfies the conditions of Lemma 7.
First, let x0(t) = b+r

2 (1 + tβ–1), 0 ≤ t < +∞, then x′
0(t) = (β–1)(b+r)

2 tβ–2. Clearly, x0 ∈ K and
‖x0‖∞ = b+r

2 < r ≤ C. In addition,

∥
∥x′

0
∥
∥∞ = sup

t≥0

|x′
0(t)|

1 + tβ–1 = sup
t≥0

(β – 1)(b + r)
2

tβ–2

1 + tβ–1 =
(b + r)

2
(β – 2)

β–2
β–1 < r ≤ C.

Hence, ‖x0‖ < C, that is, μ(x0) < r, ω(x0) < C. What is more, θ (x0) = min 1
k ≤t≤k

x0(t)
1+tβ–1 = b+r

2 >
b. Thus, {x ∈ K(ω,μ, θ , b, r, C)|θ (x) > b} �= ∅. In view of (S2), we have

f
(
t, x(t), x′(t)

)
= f

(

t,
(
1 + tβ–1) x(t)

1 + tβ–1 ,
(
1 + tβ–1) x′(t)

1 + tβ–1

)

>
b
M

, t ∈ [0, +∞).

For all u ∈ K(ω,μ, θ , b, r, C), we get b ≤ x(t)
1+tβ–1 ≤ r, t ∈ [ 1

k , k]. Then

θ (T x) = min
1
k ≤t≤k

T x(t)
1 + tβ–1

= min
1
k ≤t≤k

∫ +∞

0

G(t, s)
1 + tβ–1 a(s)f

(
s, x(s), x′(s)

)
ds

≥
∫ +∞

0
min

1
k ≤t≤k

G(t, s)
1 + tβ–1 a(s)f

(
s, x(s), x′(s)

)
ds

> L1 · b
m

∫ k

1
k

a(s) ds = b.

So, the condition (I1) is satisfied.
Second, if x ∈ K(ω, θ , b, C) and μ(T x) > r, by (S2), we know

θ (T x) = min
1
k ≤t≤k

T x(t)
1 + tβ–1

= min
1
k ≤t≤k

∫ +∞

0

G(t, s)
1 + tβ–1 a(s)f

(
s, x(s), x′(s)

)
ds

≥
∫ +∞

0
min

1
k ≤t≤k

G(t, s)
1 + tβ–1 a(s)f

(
s, x(s), x′(s)

)
ds

> L1 · b
m

∫ k

1
k

a(s) ds = b.

Therefore, the condition (I2) holds.
Finally, it is easy to see that 0 /∈ Q(ω,φ, l, C) because of φ(0) = 0 < l. Assume that x ∈

Q(ω,φ, l, C) with φ(x) = l. According to (S3), we find

φ(T x) = sup
t≥0

|T x(t)|
1 + tβ–1
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= sup
t≥0

∫ +∞

0

G(t, s)
1 + tβ–1 a(s)f

(
s, x(s), x′(s)

)
ds

≤ L
∫ +∞

0
a(s)f

(
s, x(s), x′(s)

)
ds

< L · l
M

∫ +∞

0
a(s) ds =

l
β – 1

< l.

Thus, the condition (I3) is satisfied.
By Lemma 7, the conclusion of Theorem 1 holds. This completes the proof. �

4 Example
Consider the following boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
5
2
0+ x(t) + a(t)f (t, x(t), x′(t)) = 0, t ∈ [0, +∞),

x(0) = x′(0) = 0,

limt→+∞ D
3
2
0+ x(t) =

∫ +∞
0 h(t)x′(t) dt +

∑∞
i=1

1
4i D

7
6
0+ x(1 – 1

i+1 ),

(4.1)

where a(t) = e–t , h(t) = 1
4 e–t ,

f (t, x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e–t

1000 + 1
104 ( x

1+t
3
2

)2 + y

10,000(1+t
3
2 )

,

if (t, x, y) ∈ [0, +∞) × [0, 4(1+t
3
2 )

5 ] × [0, +∞),

e–t

1000 + 1
104 ( x

1+t
3
2

)2 + 1000(x– 4
5 (1+t

3
2 ))

(1+t
3
2 )2

+ y

10,000(1+t
3
2 )

,

if (t, x, y) ∈ [0, +∞) × ( 4(1+t
3
2 )

5 , 1 + t 3
2 ] × [0, +∞),

e–t

1000 + 1
104 ( x

1+t
3
2

)2 + 200

1+t
3
2

+ y

10,000(1+t
3
2 )

,

if (t, x, y) ∈ [0, +∞) × (1 + t 3
2 , +∞) × [0, +∞).

By direct computation, we get

� = �(β) – (β – 1)
∫ +∞

0
τβ–2h(τ ) dτ –

�(β)
�(β – γ )

∞∑

i=1

ηiξ
β–γ –1
i ≈ 0.5845,

L =
1
�

= 1.7109,

L1 =
1

�(β)kβ–1(1 + kβ–1)
≈ 0.0695,

M = (β – 1)L
∫ +∞

0
a(s) ds = 2.5664,

m = L1

∫ k

1
k

a(s) ds = 0.0327.

Let l = 4
5 , b = 1, r = C = 1000, k = 2, and assume f (t, x, y) satisfies

f
(
t,

(
1 + tβ–1)x,

(
1 + tβ–1)y

) ≤ 300.101 <
C
M

,
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if 0 ≤ t < +∞, 0 ≤ x ≤ 1000, 0 ≤ y ≤ 1000,

f
(
t,

(
1 + tβ–1)x,

(
1 + tβ–1)y

) ≥ 53.141 >
b
m

,

if
1
2

≤ t < 2, 1 ≤ x ≤ 1000, 0 ≤ y ≤ 1000,

f
(
t,

(
1 + tβ–1)x,

(
1 + tβ–1)y

) ≤ 0.100 <
l

M
,

if 0 ≤ t < +∞, 0 ≤ x ≤ 4
5

, 0 ≤ y ≤ 1000.

Then the boundary value problem (4.1) has at least three positive solutions x1, x2, and x3

satisfying

ω(xi) ≤ 1000 (i = 1, 2, 3);

θ (x1) > 1;
4
5

< φ(x2), θ (x2) < 1; φ(x3) <
4
5

.

5 Conclusions
This paper is devoted to the study of a class of fractional boundary value problems which
involve an improper integral and the infinite-point on the half-line. Thanks to Avery–
Peterson fixed point theorem, we have presented sufficient conditions that demonstrate
the existence of at least three positive solutions. The new results generalize some existing
results in the literature. From the discussion and results in this paper, we conclude that
Avery–Peterson fixed point theorem is an effective method to deal with the multiplicity
of positive solutions of fractional boundary value problems on the half-line.
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