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Abstract
The study of multibody systems with elastic elements involves at the moment the
reevaluation of the classical methods of analysis offered by analytical mechanics.
Modeling this system with the finite element method requires obtaining the motion
equation for an element in the circumstances imposed by a multibody system. The
paper aims to present the main analysis methods used by researchers, to make a
comparative analysis, and to show the advantages or disadvantages offered by
different methods. For the presentation of the main methods (namely Lagrange’s
equations, Gibbs–Appell’s equations, Maggi’s formalism, Kane’s equations, and
Hamilton’s equations) a unified notation is used. The paper provides a critical
evaluation of the studied applications that involved some of these methods,
highlighting the reason why it was decided to use them. Also, the paper identifies
potential research areas to explore.
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1 Introduction
In the last decades, the development of technology and fabrication of machines and equip-
ment that work at ever higher speeds, using ever greater forces in difficult operating con-
ditions, have led to the need for a more detailed study of these systems, developing a new
field of research, namely that of multibody systems (MBS). Since in the previously de-
scribed situation the elasticity of the bodies manifests itself in such a way that it influ-
ences the mechanical behavior of the systems, a study of MBS with elastic elements has
become necessary. Absolutely naturally, this development being in a stage of maximum
development of the finite element method (FEM), the use of the method in the study of
MBS with elastic elements is the optimal solution to approach these systems. Modeling
systems using FEM requires a stage of modeling and writing the equations of motion, and
this implies the use of currently less used mechanics chapters, such as the analytical me-
chanics chapter [1].

The main advantage of analytical mechanics methods in the study of any mechanical
system is the generality of the applied procedures. This allows the easy creation of effi-
cient algorithms and software. The current mechanical systems found in different indus-
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trial fields are complex and subject to extreme operating conditions. The use of analytical
mechanics methods offers the possibility of unified treatment of systems, regardless of
their size and the degrees of freedom (DOF) that describe their behavior [2–4]. The no-
tions used are generally familiar to the researchers (mechanical energy, kinetic, potential,
work, momentum, Hamiltonian, etc.). Analytical mechanics methods generalize the way
to analyze a mechanical system. We mention that within analytical mechanics there are
equivalent formulations of the general principles, a researcher can choose among them the
method he considers the most appropriate for the specific case he is studying. Also, the
method can very well describe the constraints that appear in a particular system. In this
framework, Lagrange’s equations represent the established method of analyzing complex
problems, bringing together several advantages for the researcher: the use of well-known
notions (kinetic energy, potential energy, work), the use of scalar quantities avoiding vec-
tor ones, the possibility of algorithmizing the procedure, the existence a large number of
examples treated with this method in the literature [5–8]. Lagrange’s equations can high-
light the existence of some constants in the case of conservative systems that can facilitate
the analysis [9].

Analytical mechanics offers other possibilities to obtain the equations of motion which,
in certain circumstances, can bring major advantages in the process of dynamic analysis of
a real mechanical system. During the last decades, researchers used different formulas to
obtain the equations of motion, observing certain peculiarities in the parametric descrip-
tion of the systems, which were successfully used to facilitate the modeling and shorten
the analysis time [10–17].

The introduction of equivalent forms for the description of a system also required the
development of specific calculation methods. The mathematical bases of system modeling
were developed. The final goal is to offer the researcher the possibility of easy modeling
and use of existing commercial software as far as possible, so that the most complex sys-
tems can be studied. The established method for analyzing these systems is FEM, and
researchers have tried to develop methods that involve FEM as a numerical method for
solving problems [18–20].

Modeling using alternative methods from analytical mechanics represents an impor-
tant aid in the analysis of engineering applications with minimal costs, but their effective
application involves the development of numerical methods oriented towards the respec-
tive formulations. For this reason, the potential of using these alternative forms is relatively
low. Numerical analysis methods that support the reduction of calculation time and cost
reduction are provided in [21]. Another integration procedure where the symbolic formal-
ism is used is described in [22]. The valability of the procedure is illustrated by comparing
the results with those obtained using other methods.

The bodies that make up an MBS can have rigid movements, but the elasticity of some
of them can cause elastic deformations to appear that cannot be neglected. In [23, 24]
such an analysis is made that very well suits the methodology applied in the general case.
Thus, the construction of the matrix coefficients that appear in the equations is done out-
side the finite element code. Some engineering applications built using this philosophy are
described in [25–29].

The use of FEM for modeling, together with the use of classical MBS analysis meth-
ods, involves significant computing resources and high costs. In order to reduce the size
of the studied systems, reduced-order models (ROM) have been recently used. An exam-
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ple of the application of this strategy is given in [30]. The presented application is for an
nPlan system, but the expansion in 3D does not involve problems except for the volume
of calculation. In this way, the effort and calculation time are significantly reduced.

In order to simplify the symbolic writing of the equations of motion, the topological
methods of describing the systems were used. In this way, the time required for model-
ing is reduced [31]. Along with this technique, similar or auxiliary techniques have been
imagined and described [32–37].

2 Finite element analysis of an elastic MBS
In the previous section, research was presented that uses FEM for modeling, insisting es-
pecially on the analytical methods proposed by the researchers. This section is focused on
the presentation of the context of FEM use, the level reached in the use of the method in
MBS applications, and the problems involved. The finite element method represents an
approximation method to determine the deformation field of an elastic body. For this, the
elastic body is discretized into independent bodies, linked together by nodes, which en-
sure the transmission of forces between elements. Each node is defined by parameters that
represent the independent coordinates of the element. The principle of the method is the
approximation of the displacement field of the element with known polynomial functions.
Each type of finite element chosen for the study is characterized by specific interpolation
functions (shape functions). In this way, the displacement of each point belonging to the
finite element is defined by the displacements or rotations of the nodes of the studied el-
ement. In this way, the differential equations of the mechanics of the continuous medium
can be applied, considering the functions that determine the known displacements to be
known analytical functions. For a single finite element, the evolution equations of the el-
ement can then be written, which are second-order differential equations with constant
coefficients. To obtain these equations, established methods in analytical mechanics are
used, such as, for example, the method of Lagrange’s equations. The matrix coefficients of
the obtained equations are determined by the shape functions chosen to define the finite
element.

The equations are obtained, for a finite element, generally in a local reference frame. The
next stage is the assembly of all the motion equations, written for each individual element,
into a system of differential equations that characterizes the motion and deformations of
the entire system. To achieve this, it is necessary to write all these equations of motion,
each related to a local reference system, in a unique global reference system. At this level,
all the mentioned operations are well documented and verified by commercial software.

An important problem is obtaining the equations of motion for a single element using a
method chosen in such a way that the number of operations required to solve the problem
is minimal.

The study of this problem has been done for a long time, the research carried out be-
ing presented in a rich literature. The first researches dealt with mechanical elements in
motion that can be discretized by one-dimensional finite elements and the motion was
considered planar [38–40]. A two-dimensional element is presented in [41]. More com-
plex and sophisticated elements were used in the last decade [42–47].

In the analysis of complex mechanical systems, Lagrange’s equations remain the main
method for the dynamic analysis of an MBS with elastic elements. Writing the equations of
motion for a finite element, the major step in modeling a system, requires the application
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of a method known from analytical mechanics, and Lagrange’s equations have proven their
effectiveness over time. They are currently probably the most used method in this analysis.

Analytical mechanics also offers alternative, equivalent study methods, along with La-
grange’s equations. The disadvantage of these methods is the use of concepts and notions
rarely used in applications, which is why they are used less. The industrial applications,
which at the moment are of particular complexity, still make these methods interesting
because they offer, for certain types of applications, advantages that can lead to easier
description and reduction of modeling costs. Of all these available methods, namely the
Gibbs–Appell formalism, Maggi’s equations, Kane’s equations, and Hamilton’s equations,
stood out as being used more often.

The predominant use of Lagrange’s equations is also due to the fact that the generalized
coordinates make possible a unified treatment of the studied problems, and also efficient
algorithms can be made for the numerical solution of the problems. Lagrange’s multipliers
can be eliminated by writing these equations, which makes solving problems significantly
easier. The number of unknowns is thus reduced to the number of generalized indepen-
dent coordinates that describe the system. In FEM, where the number of degrees of free-
dom (DOF) is very high, this property can lead to the significant decrease of the operations
that must be performed.

Gibs–Appell’s method introduces a new notion, namely the energy of accelerations, less
familiar to researchers. Instead, the number of derivation operations in this case is lower
than in the case of Lagrange’s method and there are cases in which the use of this method
can lead to savings in solving time [48, 49]. A disadvantage is the fact that five matrix
terms appear in the expression of acceleration, while only four in the expression of speed.
The lower number of differentiation operations compensates for this disadvantage [50–
52]. Gibs–Appell’s equations represent a less used method but which has recently been
reconsidered for its advantages, in the context of current industrial development [53–57].

Regarding Hamilton’s equations, there is a limited literature dealing with this subject.
They are starting to be reconsidered, in the context of the development of the use of nu-
merical methods. In this method, the second-order differential equations will be replaced
with first-order differential equations, but their number is doubled. However, the fact that
we are not obliged to pass within the numerical procedures from the second- to first-order
equations by introducing additional variables can be an advantage [58–61].

Other methods and contributions to the development of the field are presented in [62–
67].

3 Main notions and notations
3.1 Kinematics
In the following, some notations will be introduced, most of them devoted to mechanics
and FEM, which will be used in the presentation of alternative analysis methods [49]. We
will analyze a single finite element that is in general motion together with the body, having
at the same time an elastic deformation. This element is referred to as a local (mobile)
coordinate system. The motion of this local system is known. The elasticity of the elements
is manifested for all cases studied by the elastic deformation that the chosen point can
take. The motion of this local reference system in relation to a global reference system
is considered known. So the velocity v̄o and the acceleration āo of the origin of the local
reference frame and the angular velocity ω̄ and the angular acceleration ε̄ of the reference
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frame are known. The indices L (from local) and G (from global) will indicate the sizes
coresponding to local/global reference frame. An orthonormal operator [R] = [rij], i, j =
1, 2, 3 . . . transforms the components of a vector from the local system to the global one,
ai,G = rijaj,L, i, j = 1, 2, 3; [R] will represent the rotation matrix,

[R] =

⎡
⎢⎣

α11 α12 α13

α21 α22 α23

α31 α32 α33

⎤
⎥⎦ . (1)

The vector r̄O has the components (XO,1, XO,2, XO,3) in the global reference frame and
(xO,1, xO,2, xO,3) in the local reference frame. Similarly, r̄M has the components (XM,1, XM,2,
XM,3) and (xM,1, xM,2, xM,3), while r̄M′ has the components (XM′ ,1, XM′ ,2, XM′ ,3) and (xM′ ,1,
xM′ ,2, xM′ ,3), respectively. The position vector of the point M considering the origin O is
r̄ with the components (X1, X2, X3) and (x1, x2, x3) in the two reference frames and the
displacement vector of the point M, ū, has the components (u1, u2, u3). Here r̄M and r̄M′

represent the position vectors of the points M and M′, respectively, and r̄O is the position
vector of the origin.

The arbitrary point M of the finite element becomes, after deformation, the point M′.
Its coordinates are (in the global reference frame)

XM′ ,i = XO,i + αij(xj + uj); i, j = 1, 2, 3. (2)

The dependence between independent nodal displacements and the displacement of a
current point are approximated in FEA through the relation (due to the linear elasticity of
the material)

ui = Nijδj i = 1, 2, 3; j = 1, p, (3)

where

{δ}L =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ1

δ2
...
δp

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4)

is the vector of the independent coordinates and δ1, δ2, . . . , δp are the indepenent coordi-
nates. In the FEM, the dispacements are approximated using known shape functions. The
position of the point M′ is, considering Eq. (3), given by

XM′ ,i = XO,i + αijxj + αijNjkuk ; i, j = 1, 2, 3; k = 1, p. (5)

The components of the velocity vector of M′ are

ẊM′ ,i = ẊO,i + α̇ijxj + α̇ijNjkδk + αijNjk δ̇k ; i, j = 1, 2, 3; k = 1, p, (6)
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and the componenets of the acceleration are

ẌM′ ,i = ẌO,i + α̈ijxj + α̈ijNjkδk + 2α̇ijNjk δ̇k + αijNjk δ̈k ;

i, j = 1, 2, 3; k = 1, p.
(7)

If we are interested in expressing the velocity in the local coordinate system, we have:

xM′ ,i = xO,i + xj + Njkuk ; i, j = 1, 2, 3; k = 1, p, (8)

ẋM′ ,i = αjiẊM′ ,j = αjiẊO,j + αjiα̇jkxk + αjiα̇jkNkrδr + αjiαjkNkr δ̇r

= ẋO,i + αjiα̇jkxk + αjiα̇jkNkrδr + Nir δ̇r ; i, j, k = 1, 2, 3; r = 1, p,
(9)

since αjiαjk = δik , where δik is the Kronecker delta.

3.2 Kinetic energy
The kinetic energy has the expression

EC =
1
2

∫
V

ρ(ẋM′ ,i)2 dV (10)

=
1
2

∫
V

ρ(ẋO,i + αijα̇jkxk + αijα̇jkNkrδr + Nir δ̇r)2 dV

=
1
2

∫
V

ρ(ẋO,iẋO,i) dV +
1
2

∫
V

ραijαilα̇jkα̇lmxkxm dV

+
1
2

∫
V

ραijαimα̇jkα̇mnNkrNntδrδt dV

+
1
2

∫
V

ρNirNit δ̇r δ̇t dV +
∫

V
ρẋO,iαijα̇jkxk dV

+
∫

V
ρẋO,iαijα̇jkNkrδl dV +

∫
V

ρẋO,iNir δ̇r dV

+
∫

V
ραijαilα̇jkα̇lmxkNmrδr dV +

∫
V

ραijα̇jkxkNir δ̇r dV

+
∫

V
ραijα̇jkNkrNitδr δ̇t dV , i, j, l, k, m, n = 1, 2, 3; r, t = 1, p.

In the appendix, the expanded expression of the kinetic energy can be found.
Using the notations

m =
∫

V
ρ dV ; Jkm =

∫
V

ρxkxm dV , (11)

mkr,nt =
∫

V
ρNkrNnt dV ; mrt =

∫
V

ρNirNit dV , (12)

Sk =
∫

V
ρxk dV ; mI

O,kr =
∫

V
ρNkr dV , (13)

mk,mr =
∫

V
ρxkNmr dV ; αijαjk = δik , (14)
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one obtains

Ec =
1
2

m(ẋO,iẋO,i) +
1
2
αijαilα̇jkα̇lmJkm +

1
2
αijαimα̇jkα̇mnmkr,ntδrδt +

1
2

mrt δ̇r δ̇t

+ SkẋO,iαijα̇jk + mO,krẋO,iαijα̇jkδr + mO,irẋO,iδ̇r (15)

+ mk,mrαijαilα̇jkα̇lmδr + mk,irαijα̇jk δ̇r + mik,rtαijα̇jkδr δ̇t .

3.3 Potential energy
The internal work for a single finite element (potential energy) due to elastic deformation
is obtained via the consecrated relation

Ep =
1
2

∫
V

σijεij dV , (16)

where εij represents the strain tensor and σij the stress vector. The generalized Hooke’s
law can be written in the form

σij = Hijklεkl. (17)

Taking into account Eq. (2), the strains are [6]

εij = bijkuk = bijkNkrδr . (18)

Using Eqs. (17)–(18), one obtains

Ep =
1
2

∫
V

σijεij dV =
1
2

∫
V

HijklbklmbijpNmtNprδrδt dV . (19)

Matrix [k] represents the stiffnes matrix and has the elements

knr =
1
2

∫
V

HijklbklmbijpNmnNpr dV . (20)

With this notation, Eq. (19) becomes

Ep =
1
2

kijδiδj. (21)

3.4 Work
The generalized concentrated forces qiL, i = 1, p, and generalized volume (distributed)
forces qiL, i = 1, p, produce respectively work

W c = qiδi; i = 1, p (22)

and

W d = q∗
i δi; i = 1, p. (23)

The total work of these forces is

W =
(
W c + W d) =

(
qi + q∗

i
)
δi; i = 1, p. (24)



Scutaru et al. Boundary Value Problems         (2023) 2023:97 Page 8 of 19

3.5 Lagrangian
The Lagrangian for an element is [48]

L = Ec – Ep + W + W c. (25)

Using Eqs. (16) and (21)–(23), the Lagrangian takes the form

L =
1
2

m(ẋO,iẋO,i) +
1
2
αijαilα̇jkα̇lmJkm +

1
2
αijαimα̇jkα̇mnmkr,ntδrδt +

1
2

mrt δ̇r δ̇t

+ SkẋO,iαijα̇jk + mO,krẋO,iαijα̇jkδr + mO,irẋO,iδ̇r

+ mk,mrαijαilα̇jkα̇lmδr + mk,irαijα̇jk δ̇r + mik,rtαijα̇jkδr δ̇t

– krtδrδt + qrδr + q∗
r δr ; i, j, k, l, m = 1, 2, 3; r, t = 1, p. (26)

3.6 Momentum
To determine the generalized momenta, we use the relation

pr,L =
∂L
∂δ̇r

. (27)

It results in the following:

pr,L = mrt δ̇t + mO,irẋO,i + mk,irαijα̇jk + mik,rtαijα̇jkδt ; r = 1, p. (28)

Considering now the matrix m∗
ur chosen so that

m∗
urmrt = δut ; u, r, t = 1, p (29)

and premultiplying Eq. (28) with m∗
ur results in

m∗
urpr,L = δ̇u + m∗

urmO,irẋO,i + m∗
urmk,irαijα̇jk + m∗

urmik,rtαijα̇jkδt ; r = 1, p, (30)

wherefrom we obtain

δ̇u = m∗
urpr,L – m∗

urmO,irẋO,i – m∗
urmk,irαijα̇jk – m∗

urmik,rtαijα̇jkδt ; u, r, t = 1, p. (31)

3.7 Hamiltonian
The Hamiltonian is defined by the relation

H =
∂L
∂δ̇r

δ̇r – L, (32)

where for the Lagrangian Eq. (26) has been used.

3.8 Energy of accelerations
The energy of acceleration is a notion that can be used to obtain the motion equation with
the Gibs–Appell equations. Considering a solid body, the energy of acceleration becomes

Ea =
1
2

∫
V

ρa2 dV . (33)
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We have, differentiating (7) the following relations:

ẍM′ ,i = ẍO,i + α̇jiα̇jkxk + αjiα̈jkxk + α̇jiα̇jkNklδl + αjiα̈jkNklδl + 2αjiα̇jkNrkr δ̇r + Nir δ̈r ;

i, j, k = 1, 2, 3; r = 1, p.
(34)

Above we have used

αjiẌO,j = ẍO,i; αjiẊO,j = ẋO,i; αjiẊO,j = ẋO,i; αjiαjk = δik , (35)

where δik is the Kronecker delta.
Using for the acceleration the relation offered by Eq. (34), Eq. (33) becomes

Ea =
1
2

∫
V

ρa2 dV

=
1
2

∫
V

ρẍM′ ,iẍM′ ,i dV

=
1
2

∫
V

ρ(ẍO,i + α̇jiα̇jkxk + αjiα̈jkxk + α̇jiα̇jkNkrδr + αjiα̈jkNkrδr

+ 2αjiα̇jkNkr δ̇r + Nir δ̈r)2 dV .

(36)

All the terms of the energy of acceleration are presented in the appendix. More com-
ments concerning this notion are presented in [65].

4 Equivalent formulations (FEA for MBS)
4.1 Lagrange’s equations
The use of Lagrange’s equations offers the possibility of unified solution of MBS dynamics
problems. To solve a dynamics problem, the same steps apply. In addition, vector quanti-
ties are abandoned, using only scalar quantities. One must first establish the independent
generalized coordinates, calculate the kinetic and potential energies, and determine the
generalized forces. The method is more than 200 years old, but it has not lost its impor-
tance, yet. The classic Lagrange’s equations are

d
dt

(
∂L
∂δ̇i

)
–

∂L
∂δi

= 0; i = 1, p. (37)

Considering the Lagrangian expressed in Eq. (26), one successively obtains:

∂L
∂δ̇r

= mrt δ̇t + mO,irẋO,i + mk,irαijα̇jk

+ mik,rtαijα̇jkδr ; i, j, k, l, m = 1, 2, 3; r, t = 1, p, (38)

d
dt

∂L
∂δ̇r

= mrt δ̈t + mO,irẍO,i + mk,irα̇ijα̇jk + mk,irαijα̈jk + mik,rtα̇ijα̇jkδr

+ mik,rtαijα̈jkδr + mik,rtαijα̇jk δ̇r ; i, j, k, l, m = 1, 2, 3; r, t = 1, p, (39)

∂L
∂δr

= αijαimα̇jkα̇mnmkr,ntδt + mO,krẋO,iαijα̇jk + mk,mrαijαilα̇jkα̇lm

+ mik,rtαijα̇jk δ̇t – krtδt + qr + q∗
r ;
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i, j, k, l, m, n = 1, 2, 3; r, t = 1, p, (40)

d
dt

∂L
∂δr

–
∂L
∂δr

= mrt δ̈t + 2mik,rtαijα̇jk δ̇r + (krt – α̇jkα̇inmkn,rt + mik,rtαijα̈jk)δr

– mO,irẍO,i + mk,irαijα̈jk + mik,rtα̇ijα̇jkδr

– mO,krẋO,iαijα̇jk – qr – q∗
r = 0; i, j, k, l, m, n = 1, 2, 3; r, t = 1, p. (41)

The final form of the equations becomes

mrt δ̈t + 2mik,rtαijα̇jk δ̇r + (krt – α̇jkα̇inmkn,rt + mik,rtαijα̈jk)δr

= qr + q∗
r – mO,irẍO,i – mk,irαijα̈jk – mik,rtα̇ijα̇jkδr – mO,krẋO,iαijα̇jk ; (42)

i, j, k, l, m, n = 1, 2, 3; r, t = 1, p.

4.2 Gibbs–Appell’s equations
Gibbs–Appell’s equations represent an alternative to Lagrange’s equations. To use these,
it is necessary know the energy of acceleration, obtained in Eq. (33). The Gibbs–Appell’s
equations are [49, 52, 53, 55]

∂Ea

∂δ̈r
= Qr r = 1, p. (43)

The equations (33) have in their components the following terms:
• Ea2 contains the quadratic terms in accelerations,

Ea2 =
1
2

mrt δ̈r δ̈t r, t = 1, p; (44)

• Ea1 contains the linear terms in accelerations,

Ea1 = ẍO,iδ̈rmI
O,ir + (α̇jiα̇jk + αijα̈jk)δ̈rmk,mr + (α̇jiα̇jk + αijα̈jk)δr δ̈tmkr,mt

+ 2αjiα̇jk δ̇r δ̈tmkr,mt dV ; (45)

• Ea0 contains no terms with generalized accelerations that play no role in obtaining the
equations. These terms are not interesting for us.

So, the energy of acceleration can be written as

Ea = Eao + Ea1 + Ea2. (46)

Equation (41) can be written as

∂(Ea1 + Ea2)
∂δ̈r

= Qr r = 1, p. (47)

The generalized force vector is

Qr,L = krtδt + δr + δ∗
r . (48)
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If we differentiate, it results in

∂Ea2

∂δ̈r
= mrt δ̈t r, t = 1, p; (49)

∂Ea1

∂δ̈r
= ẍO,imI

O,ir + (α̇jiα̇jk + αjiα̈jk)mk,mr + (α̇jiα̇jk + αjiα̈jk)δrmkr,mt

+ 2αjiα̇jk δ̇rmkr,mt . (50)

Obviously,

∂Ea0

∂δr
= 0; r = 1, p, (51)

and performing all the calculations yields Eq. (42).
Applying the Lagrange’s equations, three differentiations ∂L

∂δ̇r
, d

dt
∂L
∂δr

, ∂L
∂δr

must be done. Us-
ing Gibbs–Appell’s equations, it is necessary to perform only a single differentiation ∂Ea

∂δr
[47].

Since it requires a smaller number of differentials, the number of calculations decreases
and therefore the time and cost involved in modeling is reduced. Obviously, the use of
FEM implies in current applications a very large number of finite elements and, as a con-
sequence, a very large number of calculations. The reduction of operations using Gibs–
Appell’s method instead of Lagrange’s classic method can lead to a significant reduction
in computer time.

4.3 Hamilton’s method
The use of the Lagrange’s formalism leads to a system of second-order differential equa-
tions. Technically, solving this system of second-order equations is done by transforming
it into a system of first-order differential equations of double dimension. Hamiltonian me-
chanics uses 2n unknowns, and the system of differential equations obtained is from the
beginning a system of differential equations of the first order, of size 2n. The unknowns
are the generalized coordinates and canonically conjugated moment:

pi,L = –
∂L
∂δi

; i = 1, p. (52)

So the main difference between Lagrange’s and Hamilton’s method is the use of the
canonical conjugated moment instead of the generalized velocities. The major advan-
tage of applying the method could be precisely the direct obtaining of a system of
first-order equations, which can be solved directly, using the usual commercial soft-
ware.

Hamilton’s equations are a first-order system of differential equations [57]. They are

δ̇r,L =
∂H
∂pr,L

; ṗr,L = –
∂H
δr

. (53)

From Eqs. (27)–(29), one obtains

δ̇r = m∗
rupu,L – m∗

rumO,iuẋO,i – m∗
rumk,iuαijα̇jk – m∗

rumik,utαijα̇jkδt ; u, r, t = 1, p;
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ṗr,L =
∂L
∂δr

= αijαimα̇jkα̇mnmkr,ntδt + mO,krẋO,iαijα̇jk + mk,mrαijαilα̇jkα̇lm (54)

+ mik,rtαijα̇jk δ̇t – krtδt + qr + q∗
r ; i, j, k, l, m, n = 1, 2, 3; r, t = 1, p.

These represent the equations of motion sought.
The main advantage of Hamilton’s method is that it gives us a system of first-order dif-

ferential equations, but in which the number of unknowns to be found is double. In the
case of using other methods, the differential equations obtained are of the second order.
Solving techniques require their transformation into first-order differential systems, by
introducing new variables. In the case of Hamilton’s method, these new variables are ob-
tained directly and have physical significance [57–61].

4.4 Maggi’s equations
A demonstration of applying Maggi’s equations to MBS can be found in [62, 67]. For a
system described by the independent coordinates q1, q2, . . . , qn connected with each other
through m linear relationships, we have

n∑
j=1

aij(q1, q2, . . . , qn, t)q̇j + bi(q1, q2, . . . , qn, t) = 0, i = 1, m. (55)

The form of the Maggi’s equations is

n∑
k=1

akj

[(
d
dt

(
∂Ec

∂ q̇k

)
–

∂Ec

∂qk

)
– Qk

]
= 0; j = 1, n – m. (56)

These n–m independent equations are the Maggi’s equations. It is possible now to analyze
and apply the equations to a single finite element. It is clear from Eq. (52) that Maggi’s
equations represent another form of the Gibbs–Appell’s formulation. Similar results for
other generalized media can be found in [68–77].

4.5 Kane’s equations
Starting from the known equations

N∑
i=1

(F̄i – miāi)δr̄i = 0, (57)

and considering that the studied mechanical system of N material points is described by
a number of p generalized coordinates, one can write

N∑
i=1

(F̄i – miāi)
∂ r̄i

∂qk
= 0; k = 1, p. (58)

In classical mechanics, one uses the relation [51, 64]

∂ r̄i

∂qk
=

∂ v̄i

∂ q̇k
; k = 1, p, i = 1, N . (59)
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Introducing the latter into (58) yields

N∑
i=1

(F̄i – miāi)
∂ v̄i

∂ q̇k
= 0; k = 1, p. (60)

Observing that

∂ v̄i

∂ q̇k
=

∂ v̄i

∂uk
= v̄(k)

i ; k = 1, n; i = 1, N . (61)

Equation (55) becomes

N∑
i=1

F̄i
∂ v̄i

∂uk
=

N∑
i=1

miāi
∂ v̄i

∂uk
; k = 1, n; i = 1, N , (62)

with F̄ibeing the external forces acting in nodes.
Now, for an elastic finite element considered as a solid, Eq. (62) becomes

N∑
i=1

F̄i
∂ v̄i

∂ q̇k
=

∫
V

ā
∂ v̄
∂ q̇k

dm, k = 1, n, (63)

where N is now the number of nodes of the finite element.
The acceleration of an arbitrary point is obtained using Eq. (34). Considering Eq. (9), we

have

∂ ẋM′ ,i
∂δ̇r

= Nit ; i, j, k = 1, 2, 3; r = 1, p, (64)

∂ ẋM′ ,i
∂δ̇t

ẍM′ ,i = Nit(ẍO,i + α̇jiα̇jkxk + αjiα̈jkxk + α̇jiα̇jkNklδl + αjiα̈jkNklδl

+ 2αjiα̇jkNrkr δ̇r + Nir δ̈r);

i, j, k = 1, 2, 3; t, r = 1, p.

(65)

The generalized forces Fr in our case act in nodal points of the finite element. After some
calculus, we obtain Eq. (4).

5 Conclusions and discussions
The main step in the case of using the FEM for the analysis of an MBS with elastic ele-
ments is writing the equations of motion. Then the operations related to the assembly of
the obtained system of differential equations, their integration, and the analysis of the re-
sults can be conducted according to the classic methods used in FEM procedures. These
procedures are well established and verified by numerous applications. The most impor-
tant stage in such an analysis remains writing the equations of motion. The difficulty in
obtaining them lies in the complexity of the system to be studied. Finding a formalism
that allows obtaining these equations as easily as possible is therefore an important objec-
tive of research in this field. Analytical mechanics proposes several formalisms to be able
to obtain the equations of motion, equivalent to each other, which ultimately provide the
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same equations. The established method for the analysis of these systems is the method of
Lagrange’s equations. The analysis of the specialized literature reveals this important role
played by the Lagrangian. The most important advantage is the fact that researchers in the
field of mechanics are familiar with this method and with the fundamental notions used
(kinetic energy, potential energy, work). Then Lagrangian mechanics operates only with
scalar quantities, and can approach the most complex systems. Analytical mechanics, on
the other hand, provides equivalent formulations which for certain types of systems with
different particularities offer advantages in modeling and shortening the analysis time,
therefore also the costs involved. These are Gibbs–Appell’s equations, Hamilton’s equa-
tions, Kane’s equations, Maggi’s equations, etc.

Analytical mechanics therefore offers a multitude of equivalent formulas, with any of
these methods being able to obtain, in the end, the equations of motion for a finite element.
The problem then is of choosing the most suitable method for the study of a concrete
problem. This generally depends on the experience of the researcher and his familiarity
with the concepts presented.

Obviously, most researchers will opt for the use of Lagrange’s equations, but there may
be cases in which another method proves its advantages. This happens against the back-
ground of the special development of numerical methods and the possibilities of numer-
ical simulation of problems. In the framework of this work, several equivalent formulas
used more frequently by researchers were presented, presenting the advantages and dis-
advantages of each method. It is up to the researcher and his experience to choose the
most suitable method for a certain type of problem. We mentioned the main advantages
of Lagrange’s method, in particular familiarizing the researchers with the method and the
fundamental notions used, as well as in its simplicity.

Gibbs–Appell’s equations can be easily obtained with a smaller number of operations
than Lagrange’s equations. In this way, the method becomes more economical and easier
to apply. The difficulty lies in introducing the notion of acceleration energy, which is less
familiar to researchers.

Maggi’s method is essentially equivalent to the Gibbs–Appell’s method and presents
some advantages in writing and in use. The most profitable method seems to be the
method of Hamilton’s equations, where one finally operates with a system of differential
equations of the first order. The disadvantage would be that the number of unknowns is
double as when solving differential equations of the second order.

If we take into account all the advantages and disadvantages of the presented methods,
it can be estimated that the equivalent methods of obtaining the equations of motion of-
fered by analytical mechanics will continue to develop in the study of dynamic systems
with elastic elements, being reevaluated and improved. This will happen due to the re-
quirements imposed by the current technological development.

Appendix

Ec =
1
2

(∫
V

ρ dV
)

(ẋO,iẋO,i) +
1
2

(∫
V

ρxkxm dV
)

αijαilα̇jkα̇lm

+
1
2

(∫
V

ρNkrNnt dV
)

αijαimα̇jkα̇mnδrδt
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+
1
2

(∫
V

ρNirNit dV
)

δ̇r δ̇t +
(∫

V
ρxk dV

)
ẋO,iαijα̇jk

+
(∫

V
ρNkr dV

)
ẋO,iαijα̇jkδr +

(∫
V

ρNir dV
)

ẋO,iδ̇r

+
(∫

V
ρxkNmr dV

)
αijαilα̇jkα̇lmδr +

(∫
V

ρxkNir dV
)

αijα̇jk δ̇r

+
(∫

V
ρNkrNit dV

)
αijα̇jkδr δ̇t i, j, l, k, m, n = 1, 2, 3; r, t = 1, p;

Ea =
1
2

(ẍO,iẍO,i)
(∫

V
ρ dV

)
+

1
2
αjiα̈jkαilα̈lm

∫
V

ρ(xkxm) dV

+
1
2
αjiαilα̈jkα̈lm

(∫
V

ρ(NkrNmt) dV
)

δrδt

+ 2αijα̇jkαilα̇lm

(∫
V

ρNkrNmt dV
)

δ̇r δ̇t +
1
2

(∫
V

ρNirNit dV
)

δ̈r δ̈t

+ ẍO,iαijα̈jk

(∫
V

ρxk dV
)

+ ẍO,iαijα̈jkδr

(∫
V

ρNkr dV
)

+ ẍO,i2αijα̇jk δ̇r

(∫
V

ρNkr dV
)

+ ẍO,iδ̈r

∫
V

ρNir dV

+
1
2

∫
V

ρα̇jiα̇jkxkα̇liα̇lmxm dV + ẍO,iα̇jiα̇jkδr

(∫
V

ρxk dV
)

+ ẍO,iαjiα̇jkδr

(∫
V

ρNkr dV
)

+
∫

V
ρα̇jiα̇jkxkαliα̈mxm dV +

∫
V

ρα̇jiα̇jkxkα̇liα̇lmNmrδr dV

+
∫

V
ρ(α̇jiα̇jkxkαliα̈lmNmrδr) dV

+ 2
∫

V
ρα̇jiα̇jkxkαliα̇lmNmr δ̇r dV +

∫
V

ρα̇jiα̇jkxkNir δ̈ dV

+
∫

V
ρα̇jiα̇jkNkrδrα̇jlα̇jlmNmrδr dV

+ αjiα̈jkαilα̈lmδr

(∫
V

ρxkNkr dV
)

+ 2αjiα̈jkαilα̇lmδ̇r

(∫
V

ρxkNkr dV
)

+ αjiα̈jk δ̈r

(∫
V

ρxkNir dV
)

+ 2αjiα̈jkδrαilα̇lmδ̇t

(∫
V

ρNkrNmt dV
)

+ αjiα̈jkδr δ̈r

(∫
V

ρNkrNit dV
)

+ 2αjiα̇jk δ̇r δ̈t

(∫
V

ρNkrNit

)
dV

+
∫

V
ρα̇jiα̇jkNkrδrαjlα̈lmNmrδr dV + 2

∫
V

ρα̇jiα̇jkNkrδrαjlα̇lmNmr δ̇r dV

+
∫

V
ρα̇jiα̇jkNkrδrNit δ̈t dV .
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Taking into account the previously defined notations (see Eqs. (12)–(14)), the expression
of the energy of accelerations becomes

Ea =
1
2

m(ẍO,iẍO,i) +
1
2
αjiα̈jkαilα̈lmJkm +

1
2
αjiαilα̈jkα̈lmmkr,mtδrδt

+ 2αijα̇jkαilα̇lmmkr,mt δ̇r δ̇t +
1
2

mrt δ̈r δ̈t + ẍO,iαijα̈jkSk

+ ẍO,iαijα̈jkδrmI
O,kr + ẍO,i2αijα̇jk δ̇rmI

O,kr + ẍO,iδ̈rmI
O,ir

+
1
2
α̇jiα̇jkα̇liα̇lmJkm + ẍO,iα̇jiα̇jkδrSk + ẍO,iαjiα̇jkδrmI

O,kr

+ α̇jiα̇jkαliα̈mJkm + α̇jiα̇jkα̇liα̇lmδrmk,mr + α̇jiα̇jkαliα̈lmδrmk,mr

+ 2α̇jiα̇jkαliα̇lmδ̇rmk,mr + α̇jiα̇jk δ̈rmk,ir + α̇jiα̇jkα̇jlα̇jlmδrδrmkr,mt

+ αjiα̈jkαilα̈lmδrmk,mr + 2αjiα̈jkαilα̇lmδ̇rmk,mr + αjiα̈jk δ̈rmk,ir

+ 2αjiα̈jkδrαilα̇lmδ̇tmkr,mt + αjiα̈jkδr δ̈rmkr,it + 2αjiα̇jk δ̇r δ̈tmkr,it

+ α̇jiα̇jkαjlα̈lmδrδtmkr,mt + 2α̇jiα̇jkαjlα̇lmδr δ̇tmkr,mt + α̇jiα̇jkδr δ̈tmkr,it .
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