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Abstract
We provide estimates for the eigenvalues of non-self-adjoint Sturm–Liouville
operators with Dirichlet boundary conditions for a shift of the special potential
4 cos2 x + 4iV sin 2x that is a PT-symmetric optical potential, especially when
|c| = |√1 – 4V2| < 2 or correspondingly 0 ≤ V <

√
5/2. We obtain some useful

equations for calculating Dirichlet eigenvalues also for |c| ≥ 2 or equally V ≥ √
5/2.

We discuss our results by comparing them with the periodic and antiperiodic
eigenvalues of the Schrödinger operator. We even approximate complex eigenvalues
by the roots of some polynomials derived from some iteration formulas. Moreover, we
give a numerical example with error analysis.
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1 Introduction and preliminary facts
In this paper, we consider the operator D(q) generated in L2[0,π ] by the differential ex-
pression

–y′′(x) + q(x)y(x) (1)

and Dirichlet boundary conditions

y(π ) = y(0) = 0, (2)

where q is the PT-symmetric optical potential of the form

q(x) = (1 + 2V )ei2x + (1 – 2V )e–i2x, V ≥ 0, (3)

which is a shift of 4 cos2 x + 4iV sin 2x.
Some physically interesting results have been obtained by considering the optical po-

tential (3). The detailed investigations of the periodic optical potentials were illustrated
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on (3) in the papers [9, 10]. For the first time, the mathematical explanations of the non-
reality of the spectrum of the Hill operator L(q), generated in L2(–∞,∞) by differential
expression (1) with potential (3), for V > 0.5 and finding the threshold 0.5 (the first crit-
ical point V1) were given by Makris et al. [9, 10]. Moreover, they sketched the real and
imaginary parts of the first two bands using numerical methods for V = 0.85. Midya et
al. [12] reduced the operator L(q) to the Mathieu operator, and using the tabular values,
they established that there is a second critical point V2 ∼ 0.888437 after which no parts of
the first and second bands remain real.

Some of the most valuable results were given by Veliev [19, 20]. In [19], he gave a com-
plete description, along with a mathematical proof, of the shape of the spectrum of the Hill
operator L(q) with potential (3), when V changes from 1/2 to

√
5/2. Then, he extended

his results for all V > 1/2 in [20].
The case V = 1/2 was considered for the first time by Gasymov [5], and it was proved that

the spectrum of the Hill operator L(q) is [0,∞). This case was also investigated in [6, 17].
Note that the optical potential (3) is a PT-symmetric potential. For the properties of the

general PT-symmetric potentials, see [1, 13, 18, 21] and references therein. Here, we only
note that the investigations of PT-symmetric periodic potentials were initiated by Bender
et al. [2].

It was proved by Veliev [15, see Theorem 1 and (26)] that, if ab = cd, where a, b, c,
and d are arbitrary complex numbers, then the Hill operators L(q) and L(p), gener-
ated in L2(–∞,∞) by expression (1) with the potentials q(x) = ae–i2x + bei2x and p(x) =
ce–i2x + dei2x, have the same Hill discriminant and hence the same Bloch eigenvalues and
spectrum. Therefore, the investigations of the operators Lt(q), for t ∈ (–1, 1], generated in
L2[0,π ] by the differential expression (1) and the boundary conditions

y(π ) = eiπ ty(0), y′(π ) = eiπ ty′(0), (4)

can be reduced to the investigations of the operators Ht(c), generated in L2[0,π ] by differ-
ential expression (1) and the boundary conditions (4) with the potential

p(x) = ce2ix + ce–2ix = 2c cos(2x), (5)

where c =
√

1 – 4V 2. In particular, the eigenvalues of L0(q) and L1(q) are called the peri-
odic and antiperiodic eigenvalues of the Hill operator L(q), respectively. It was also proved
by Veliev [16] that, if c 	= 0, then the number λ is an eigenvalue of multiplicity s of the op-
erator H0(c), generated in L2[0,π ] by expression (1) and the periodic boundary conditions
with potential (5), if and only if it is an eigenvalue of multiplicity s either of the operator
D(c) or of the operator N(c), where D(c) and N(c) are the operators generated in L2[0,π ]
by expression (1) and Dirichlet and Neumann boundary conditions, respectively, with po-
tential (5). The statement continues to hold if H0(c) is replaced by H1(c), where H1(c) is
the operator generated in L2[0,π ] by expression (1) and the antiperiodic boundary condi-
tions with potential (5). The eigenvalues of H0(c), H1(c), D(c), and N(c) are called periodic,
antiperiodic, Dirichlet and Neumann eigenvalues of the Hill operator H(c), generated in
L2(–∞,∞) by expression (1) with potential (5), respectively.

Therefore, it is known that (see also Summary 3 of [19]), if c 	= 0, then any periodic eigen-
value is either a Dirichlet eigenvalue or a Neumann eigenvalue. Similarly, any antiperiodic
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eigenvalue is either a Dirichlet eigenvalue or a Neumann eigenvalue. For this reason, to
consider the spectrum of the operator D(q), we can use the properties of both the PT-
symmetric potential (3) and the even potential (5). The eigenvalues of D(q) or D(c) are
called Dirichlet eigenvalues, and they are denoted by λn(q), for n ∈ Z

+, where Z+ is the set
of positive integers. We may also use the notation λn(c), n ∈ Z

+, for Dirichlet eigenvalues.
In this paper, we give estimates for Dirichlet eigenvalues and compare the results found

with the periodic and antiperiodic eigenvalues, in particular, when |c| < 2 or correspond-
ingly 0 ≤ V <

√
5/2. We also provide some useful equations for calculating Dirichlet eigen-

values for the case |c| ≥ 2 or equally V ≥ √
5/2. We even approximate complex eigenvalues

by the roots of some polynomials derived from some iteration formulas. Finally, we give a
numerical example for c2 = –2.157281295 with error analysis using Rouche’s theorem.

For ease of reading, we first present the main ideas of the proofs of the main results.
To give estimates for the small Dirichlet eigenvalues, we prove (See Theorem 1) first that
Dirichlet eigenvalues satisfy the equation

λ – n2 +
P2n

π
–

∞∑

k=1

Ak,n(λ) = 0,

for |c| < 2 if n is odd and for |c| < 3 if n is even, and n ≥ 1, where Pk =
∫ π

0 p(x) cos kxdx,
and the infinite series Ak,n is defined in (11). We consider the antiperiodic Dirichlet (AD)
eigenvalues λ2n–1, for n = 1, 2, . . . , in Theorem 1, and the periodic Dirichlet (PD) eigen-
values λ2n, for n = 1, 2, . . . , in Theorem 2. In particular, we consider the first Dirichlet
eigenvalues λ1 and λ2 in Theorem 1(a) and Theorem 2 (a), respectively, and prove that
for |c| < 2, λ1 is the root of equation (12) lying in the disk d1 = {λ ∈ C : |λ – 1| ≤ 2|c|} and
that for |c| < 3, λ2 is the root of (15) lying in the disk D1 = {λ ∈ C : |λ – 4| ≤ 2|c|}. Then,
to estimate eigenvalues numerically, we take finite summations instead of the infinite se-
ries in equations (12), (13), (15), and (16) and approximate the eigenvalues by the roots of
the polynomials derived from the mth approximations (17)–(20), the way it was done by
Veliev in [19].

Now, we state some preliminary facts. It is well known that the spectrum of the operator
D(q) is discrete, and for large enough n, there is one eigenvalue (counting with multiplic-
ity) in the neighborhood of n2. See the basic and detailed classical results in [3, 7, 8, 11]
and references therein. The eigenvalues of the operators D(0) are n2, for n ∈ Z

+, and all
eigenvalues of D(0) are simple.

It is also known that (see [4, 8]) if c is a real nonzero number, then all eigenvalues of the
operator Ht(c), generated in L2[0,π ] by expression (1) and the boundary conditions (4)
with potential (5), are real and simple. These results were stated more precisely in [19], as
follows:

Summary 1 Let 0 < c < ∞. Then, all the eigenvalues of Ht(c), for all t ∈ (–1, 1], are real
and simple, and the spectrum of the Hill operator H(c), generated in L2(–∞,∞) by ex-
pression (1) with potential (5), consists of the real intervals

�1 :=
[
λ0(c),μ–1(c)

]
, �2 :=

[
μ+1(c),λ–1(c)

]
,

�3 :=
[
λ+1(c),μ–2(c)

]
, �4 :=

[
μ+2(c),λ–2(c)

]
, . . . ,
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where λ0(c), λ–n(c), λ+n(c), for n = 1, 2, . . . are the eigenvalues of H0(c), and μ–n(c), μ+n(c),
for n = 1, 2 . . . are the eigenvalues of H1(c), and the following inequalities hold:

λ0(c) < μ–1(c) < μ+1(c) < λ–1(c) < λ+1(c) < μ–2(c) < μ+2(c) < λ–2(c) < λ+2(c) < · · · .

The bands �1, �2, . . . of the spectrum σ (H(c)) of H(c) are separated by the gaps

�1 :=
(
μ–1(c),μ+1(c)

)
, �2 :=

(
λ–1(c),λ+1(c)

)
, �3 :=

(
μ–2(c),μ+2(c)

)
, . . . .

In other notation, �n = {γn(t) : t ∈ [0, 1]}, where γ1(t),γ2(t), . . . are the eigenvalues of Ht(c),
called as Bloch eigenvalues corresponding to the quasimomentum t and satisfying γ1(t) <
γ2(t) < · · · . The Bloch eigenvalue γn(t) continuously depends on t, and γn(–t) = γn(t).
These statements continue to hold for Lt(q) and L(q) if 0 < V < 1/2.

By Theorem 9 of [20], for complex values of c, the eigenvalues of the operator H0(c) lie
in the disk Dn := {λ ∈C : |λ – (2n)2| ≤ 2|c|}, for n = 0, 1, 2, . . . and |c| < 3. Moreover, the disk
Dn, for n ≥ 2, has no common points with another disk Dm, for m 	= n and the boundary of
the disk Dn,ε := {λ ∈ C : |λ – (2n)2| ≤ 2|c| + ε}, for n = 2, 3, . . . , belongs to the resolvent set
of the operator H0(c), for all |c| < 3, if ε is a sufficiently small positive number. It implies
that the number of eigenvalues (counting the multiplicity) of H0(c) lying in Dn,ε , for n ≥ 2,
are the same for all |c| < 3. Since H0(0) has two eigenvalues in Dn,ε , for n ≥ 2, the operator
H0(c) has also two eigenvalues for |c| < 3. Letting ε tend to zero, we obtain that H0(c) has
two eigenvalues (counting the multiplicity) in Dn, for n ≥ 2 and |c| < 3. Similarly, we prove
that H0(c) has 3 eigenvalues in D0 ∪ D1. We denote them by λ0, λ–1, and λ+1.

Similarly, H1(c) has two eigenvalues (counting the multiplicity) in dn := {μ ∈ C : |μ –
(2n – 1)2| ≤ 2|c|}, for n = 1, 2, . . . and |c| < 2. We denote the (2n)th and (2n + 1)th periodic
eigenvalues by λ–n(c) and λ+n(c), for n = 1, 2, . . . ; the (2n – 1)th and (2n)th antiperiodic
eigenvalues by μ–n(c) and μ+n(c), for n = 1, 2, . . . , respectively.

Since a Dirichlet eigenvalue is either a periodic or an antiperiodic eigenvalue, we can use
the relevant disks in these statements. In general, λ2n–1, for n = 1, 2, . . . , is an antiperiodic
eigenvalue, called an antiperiodic Dirichlet (AD) eigenvalue, and λ2n, for n = 1, 2, . . . , is
a periodic eigenvalue, called a periodic Dirichlet (PD) eigenvalue. In particular, since the
first Dirichlet eigenvalue λ1 is an antiperiodic eigenvalue and the second Dirichlet eigen-
value λ2 is a periodic eigenvalue, λ1 lies in the disk d1 and λ2 lies in the disk D1. Thus,

∣∣λn(c) – λn(0)
∣∣ ≤ 2|c|,

for n ≥ 1, where λn(0) = n2 and c =
√

1 – 4V 2. Therefore, we have

n2 – 2|c| ≤ |λn| ≤ n2 + 2|c|.

If n = 2m, for m = 2, 3, . . . , then

∣∣λn – (2k)2∣∣ ≥ ∣∣(2m)2 – (2k)2∣∣ – 2|c| = 4|m – k||m + k| – 2|c|
≥ 4|2m – 1| – 2|c|,
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for |c| < 3 and k 	= ±m. Besides, if m ≥ 2, we have |λ2m| ≥ |λ4| ≥ 16 – 2|c| > 10 and

∣∣λn – (2k)2∣∣ ≥ ∣∣|λ4| – (2k)2∣∣ ≥ |λ4| – 4 ≥ 12 – 2|c| > 6, (6)

for |c| < 3 and k 	= ±m. In particular, if m = 1, we have |λ2| ≤ 4 + 2|c| < 10 and

∣∣λ2 – (2k)2∣∣ ≥ ∣∣|λ2| – (2k)2∣∣ ≥ 16 – |λ2| ≥ 12 – 2|c| > 6, (7)

for |c| < 3 and k ≥ 2. The analogous inequalities can be written for the case n = 2m – 1,
from the inequalities

(2m – 1)2 – 2|c| ≤ |λn| ≤ (2m – 1)2 + 2|c|,

for |c| < 2 and m = 1, 2, . . . . If m = 1, we have |λ1| ≤ 1 + 2|c| < 5 and

∣∣λ1 – (2k – 1)2∣∣ ≥ ∣∣|λ1| – (2k – 1)2∣∣ ≥ 9 – |λ1| ≥ 8 – 2|c| > 4, (8)

for |c| < 2 and k ≥ 2. Besides, if m ≥ 2, we have |λn| ≥ |λ3| ≥ 9 – 2|c| > 5 and

∣∣λn – (2k – 1)2∣∣ ≥ ∣∣|λ3| – (2k – 1)2∣∣ ≥ |λ3| – 1 ≥ 8 – 2|c| > 4, (9)

for k 	= ±m.

2 Main results
We start with the equation

(
λN – n2)(	N , sin nx) = (p	N , sin nx), (10)

which is obtained from

–	 ′′
N (x) + p(x)	N (x) = λN	N (x)

by multiplying both sides of the equality by sin nx, where 	N (x) is the eigenfunction corre-
sponding to the eigenvalue λN . Since the system of root functions {√2 sin kx/

√
π : k ∈ Z

+}
of D(0) forms an orthonormal basis for L2[0,π ], we have the decomposition

	n =
∞∑

k=1

2
π

(	n, sin kx) sin kx.

Using the decomposition

	n(x) =
∞∑

n1>–n

2
π

(
	n, sin(n + n1)x

)
sin(n + n1)x

of 	N (x) by the orthonormal basis {√2 sin(n + n1)x/
√

π : n1 > –n} and iterating equa-
tion (10) m times for N = n, the way it was done in the paper [22], we obtain

(
λn – n2 +

P2n

π
–

m∑

k=1

Ak,n(λn)

)
(	n, sin nx) = Rm(λn), (11)
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where Pk =
∫ π

0 p(x) cos kxdx,

A1,n(λ) =
1
π2

∑

n1 	=0,–2n

Pn1 (Pn1 – Pn1+2n)
λ – (n + n1)2 ,

Ak,n(λ) =
1

π k+1

∑

n1,n2,...,nk

Pn1 Pn2 · · ·Pnk (Pn1+n2+···+nk – Pn1+n2+···+nk +2n)
[λ – (n + n1)2] · · · [λ – (n + n1 + · · · + nk)2]

,

Rm(λ) =
1

πm+1

∑

n1,n2,...,nm+1

Pn1 Pn2 · · ·Pnm+1 (Pn1+n2+···+nm+1 – Pn1+n2+···+nm+1+2n)
[λ – (n + n1)2] · · · [λ – (n + n1 + · · · + nm+1)2]

.

Here, the sums are taken under the conditions ns = ±2,
∑s

j=1 nj 	= 0, –2n for s = 1, 2, . . . , m +
1. Note that for the potential of the form (5), we have P2 = P–2 = cπ and Pk = 0 for k 	= ±2.

We stress that the iteration formula (11) was used in [22] for large eigenvalues to obtain
asymptotic formulas. In this paper, we find conditions on potentials (3) and (5) for which
the iteration formula (11) is also valid for the small eigenvalues, as m tends to infinity. We
also note that it is not easy to give such conditions, there are many technical calculations.
Since the potential p is the even potential of the form (5), we have A2k,2n(λ2n) = 0, after
some calculations, for k = 1, 2, . . . . Now, to give the main results, we prove the following
lemmas. Without loss of generality, we assume that 	n(x) is the normalized eigenfunction
corresponding to the eigenvalue λn.

First, we state the following lemma for AD eigenvalues λ2n–1, for n = 1, 2, . . . :

Lemma 1 The statements
(a) limm→∞ Rm(λ2n–1) = 0 and (b) |(	2n–1, sin(2n – 1)x)|2 > 0
are valid in the following cases:
Case 1. If |c| < 2, for all n ≥ 1,
Case 2. If |c| < 2s, for n ≥ 1 + s and s = 1, 2, . . . .

Proof Case 1. (a) By the definition of Rm(λn) and the conditions imposed on the sum-
mations, the number of summands of R2m(λn) is not greater than 4m. On the other hand,
since ‖	n‖ = 1 and ‖ sin kx‖ =

√
π/

√
2, by the Schwarz inequality, we have |(p	n, sin kx)| ≤√

2πc. First, we estimate R2m(λ1), corresponding to the first Dirichlet eigenvalue λ1. Con-
sidering the greatest summands of R2m(λ1) in absolute value and taking (8)–(9) into ac-
count, we obtain

∣∣R2m(λ1)
∣∣ <

4m|P2|2m+1|(p	1, sin 3x)|
π2m+1|λ1 – 9|m+1|λ1 – 25|m ≤ 2|c|

√
π√
2

4m|c|2m+1

(8 – 2|c|)m+1(24 – 2|c|)m

< 4
√

π√
2

4m22m+1

4m+120m =
√

2π

(
1
5

)m

,

for |c| < 2. Similarly, for n = 2,

∣∣R2m(λ3)
∣∣ <

2m|P2|2m+1|(p	3, sin x)|
π2m+1|λ3 – 1|2m+1 +

4m|P2|2m+1|(p	3, sin 5x)|
π2m+1|λ3 – 25|m+1|λ3 – 49|m

≤ 2|c|
√

π√
2

2m|c|2m+1

(8 – 2|c|)2m+1 + 2|c|
√

π√
2

4m|c|2m+1

(16 – 2|c|)m+1(40 – 2|c|)m

< 4
√

π√
2

2m22m+1

42m+1 + 4
√

π√
2

4m22m+1

12m+136m =
√

2π

(
1
2

)m

+
√

2π

3

(
1

27

)m

,
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for |c| < 2. By the same way, for n ≥ 3, we have

∣∣R2m(λ2n–1)
∣∣ <

4m|P2|2m+1|(p	2n–1, sin(2n – 3)x)|
π2m+1|λ2n–1 – (2n – 3)2|m+1|λ2n–1 – (2n – 5)2|m

≤ 2|c|
√

π√
2

4m|c|2m+1

(16 – 2|c|)m+1(24 – 2|c|)m

< 4
√

π√
2

4m22m+1

12m+120m =
√

2π

3

(
1

15

)m

,

for |c| < 2. Therefore, limm→∞ Rm(λ2n–1) = 0, for all n ≥ 1 and |c| < 2.
(b) Suppose the contrary, (	2n–1, sin(2n – 1)x) = 0. Since the system of root functions

{√2 sin kx/
√

π : k ∈ Z
+} of D(0) forms an orthonormal basis for L2[0,π ], we have the de-

composition

π

2
	2n–1 =

(
	2n–1, sin(2n – 1)x

)
sin(2n – 1)x +

∑

k∈Z+,k 	=n

(
	2n–1, sin(2k – 1)x

)
sin(2k – 1)x

for the normalized eigenfunction 	2n–1 corresponding to the eigenvalue λ2n–1 of D(q). By
Parseval’s equality, we obtain

∑

k∈Z+,k 	=n

∣∣(	2n–1, sin(2k – 1)x
)∣∣2 =

π

2
.

First, we consider the case n = 1. Using relation (10) and the Bessel inequality and tak-
ing (8)–(9) into account, we obtain

π

2
=

∑

k∈Z+,k 	=1

∣∣(	1, sin(2k – 1)x
)∣∣2 =

∑

k∈Z+,k 	=1

|(p	1, sin(2k – 1)x)|2
|λ1 – (2k – 1)2|2

≤ 1
(8 – 2|c|)2

∑

k∈Z,k 	=±1

∣∣(p	2, sin(2k – 1)x
)∣∣2 <

2|c|2π
(8 – 2|c|)2 <

π

2
,

for |c| < 2, which is a contradiction. Similarly, in the case n ≥ 2, we have

∑

k∈Z+,k 	=n

∣∣(	2n–1, sin(2k – 1)x
)∣∣2 =

∑

k∈Z+,k 	=n

|(p	2n–1, sin(2k – 1)x)|2
|λ2n–1 – (2k – 1)2|2

≤ 1
(8 – 2|c|)2

∑

k∈Z,k 	=n

∣∣(p	2n–1, sin(2k – 1)x
)∣∣2

<
2|c|2π

(8 – 2|c|)2 <
π

2
,

for |c| < 2, which contradicts
∑

k∈Z+,k 	=n |(	2n–1, sin(2k – 1)x)|2 = π/2 and completes the
proof for Case 1.

Case 2. Now, consider the case |c| < 2s and n ≥ 1 + s for s ≥ 1. Using (2n – 1)2 – 2|c| ≤
|λ2n–1| ≤ (2n – 1)2 + 2|c|, we obtain for k 	= n,

∣∣λ2n–1 – (2k – 1)2∣∣ ≥ ∣∣λ2n–1 –
(
2(n – 1) – 1

)2∣∣ ≥ (2n – 1)2 – 2|c| – (2n – 3)2
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= 8n – 8 – 2|c| ≥ 8(1 + s) – 8 – 2(2s) = 4s,

and for k 	= n, n – 1, we have

∣∣λ2n–1 – (2k – 1)2∣∣ ≥ ∣∣λ2n–1 –
(
2(n + 1) – 1

)2∣∣ ≥ (2n + 1)2 – (2n – 1)2 – 2|c|
= 8n – 2|c| ≥ 8(1 + s) – 2(2s) = 4s + 8.

Therefore, for |c| < 2s, n ≥ 1 + s and s = 1, 2, . . . , using these inequalities and arguing as in
the proof of (a) for Case 1, we complete the proof of (a) for Case 2.

For the proof of (b), again assume the contrary (	2n–1, sin(2n – 1)x) = 0. Then,

π

2
=

∑

k∈Z+,k 	=n

∣∣(	2n–1, sin(2k – 1)x
)∣∣2 =

∑

k∈Z+,k 	=n+1

|(p	2n–1, sin(2k – 1)x)|2
|λ2n–1 – (2k – 1)2|2

≤ 1
(4s)2

∑

k∈Z,k 	=n+1

∣∣(p	2n+1, sin(2k – 1)x
)∣∣2 <

2|c|2π
(4s)2 <

8s2π

16s2 <
π

2
,

and for |c| < 2s – 1, n ≥ s and s = 2, 3, . . . , which contradicts
∑

k∈Z+,k 	=n |(	2n–1, sin(2k –
1)x)|2 = π/2 and completes the proof for Case 2. �

Now we state the analogous lemma for PD eigenvalues λ2n, for n = 1, 2, . . . :

Lemma 2 The statements
(a) limm→∞ Rm(λ2n) = 0 and (b) |(	2n, sin 2nx)|2 > 0
are valid in the following cases:
Case 1. If |c| < 3, for all n ≥ 1,
Case 2. If |c| < 2s – 1, for n ≥ s and s = 2, 3, . . . .

Proof Case 1. (a) Arguing as in the proof of Lemma 1, first, we estimate R2m(λ2), corre-
sponding to the second Dirichlet eigenvalue λ2. Considering the greatest summands of
R2m(λ2) in absolute value and taking (6)–(7) into account, we obtain

∣∣R2m(λ2)
∣∣ <

4m|P2|2m+1|(p	2, sin 4x)|
π2m+1|λ2 – 16|m+1|λ2 – 36|m ≤ 2|c|

√
π√
2

4m|c|2m+1

(12 – 2|c|)m+1(32 – 2|c|)m

< 6
√

π√
2

4m32m+1

6m+126m <
3
√

2π

2

(
3

13

)m

,

for |c| < 3. Similarly, for n ≥ 2, we have

∣∣R2m(λ2n)
∣∣ <

4m|P2|2m+1|(p	2n, sin(2n – 2)x)|
π2m+1|λ2n – (2n – 2)2|m+1|λ2n – (2n – 4)2|m

≤ 2|c|
√

π√
2

4m|c|2m+1

(12 – 2|c|)m+1(16 – 2|c|)m < 6
√

π√
2

4m32m+1

6m+110m <
3
√

2π

2

(
3
5

)m

,

for |c| < 3. Therefore, limm→∞ Rm(λ2n) = 0, for all n ≥ 1 and |c| < 3.
(b) Suppose the contrary, (	2n, sin 2nx) = 0. Since the system of root functions

{√2 sin kx/
√

π : k ∈ Z
+} of D(0) forms an orthonormal basis for L2[0,π ], we have the
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decomposition

π

2
	2n = (	2n, sin 2nx) sin 2nx +

∑

k∈Z+,k 	=n

(	2n, sin 2kx) sin 2kx

for the normalized eigenfunction 	2n corresponding to the eigenvalue λ2n of D(q). By
Parseval’s equality, we obtain

∑

k∈Z+,k 	=n

∣∣(	2n, sin 2kx)
∣∣2 =

π

2
.

First, we consider the case n = 1. Using relation (10) and the Bessel inequality and tak-
ing into account (6)–(7), we obtain

π

2
=

∑

k∈Z+,k 	=2

∣∣(	2, sin 2kx)
∣∣2 =

∑

k∈Z+,k 	=1

|(p	2, sin 2kx)|2
|λ2 – (2k)2|2

≤ 1
(12 – 2|c|)2

∑

k∈Z,k 	=1

∣∣(p	2, sin 2kx)
∣∣2 <

2|c|2π
(12 – 2|c|)2 <

π

2
,

for |c| < 3, which is a contradiction. Similarly, in the case n ≥ 2, we have

∑

k∈Z+,k 	=n

∣∣(	2n, sin 2kx)
∣∣2 =

∑

k∈Z+,k 	=n

|(p	2n, sin 2kx)|2
|λ2n – (2k)2|2

≤ 1
(12 – 2|c|)2

∑

k∈Z,k 	=±n

∣∣(p	2n, sin 2kx)
∣∣2 <

2|c|2π
(12 – 2|c|)2 <

π

2
,

which contradicts
∑

k∈Z+,k 	=n |(	2n, sin 2kx)|2 = π/2 and completes the proof for Case 1.
Case 2. Now, consider the case |c| < 2s – 1 and n ≥ s for s ≥ 2. Using (2n)2 – 2|c| ≤ |λn| ≤

(2n)2 + 2|c|, we obtain for k 	= n,

∣∣λ2n – (2k)2∣∣ ≥ ∣∣λ2n –
(
2(n – 1)

)2∣∣ ≥ (2n)2 – 2|c| –
(
2(n – 1)

)2

= 4(2n – 1) – 2|c| ≥ 4(2s – 1) – 2(2s – 1) = 4s – 2,

and for k 	= n, n – 1, we have

∣∣λ2n – (2k)2∣∣ ≥ ∣∣λ2n –
(
2(n + 1)

)2∣∣ ≥ (
2(n + 1)

)2 – (2n)2 – 2|c|
= 4(2n + 1) – 2|c| ≥ 4(2s + 1) – 2(2s – 1) = 4s + 6.

Therefore, for the case |c| < 2s – 1, n ≥ s and s = 2, 3, . . . , using these inequalities and argu-
ing as in the proof of (a) for Case 1, we complete the proof of (a) for Case 2.

For the proof of (b), again suppose the contrary (	2n–1, sin(2n – 1)x) = 0. Then,

∑

k∈Z+,k 	=n

∣∣(	2n, sin 2kx)
∣∣2 =

∑

k∈Z+,k 	=n

|(p	2n, sin 2kx)|2
|λ2n – (2k)2|2

≤ 1
(4s – 2)2

∑

k∈Z,k 	=±n

∣∣(p	2n, sin 2kx)
∣∣2 <

2|c|2π
(4s – 2)2
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<
2(2s – 1)2π

(4s – 2)2 <
π

2
,

for |c| < 2s – 1, n ≥ s and s = 2, 3, . . . , which contradicts
∑

k∈Z+,k 	=n |(	2n, sin 2kx)|2 = π/2
and completes the proof for Case 2. �

Now, letting m tend to infinity in equation (11), we obtain the following results. First,
we consider the antiperiodic Dirichlet (AD) eigenvalues λ2n–1, for n = 1, 2, . . . :

Theorem 1 (a) If |c| < 2, then the first antiperiodic Dirichlet eigenvalue λ1 is the root of

λ – 1 + c –
c2

λ – 9
–

∞∑

k=1

A2k+1,1(λ) = 0, (12)

lying in the disk d1 = {λ ∈ C : |λ – 1| ≤ 2|c|}, where Ak,n is defined in (11), and the series
∑∞

k=1 A2k+1,1(λ) converges uniformly to an analytic function on the disk d1. Moreover, (12)
has exactly one root (counting with multiplicity) in d1, and this root coincides with the first
Dirichlet eigenvalue λ1.

(b) If |c| < 2 and n ≥ 2, then λ2n–1 is an eigenvalue of D(q) if and only if it is the root of
the equation

λ – (2n – 1)2 –
∞∑

k=1

Ak,2n–1(λ) = 0, (13)

lying in the disk dn := {λ ∈C : |λ– (2n – 1)2| ≤ 2|c|} and the series
∑∞

k=1 Ak,2n–1(λ) converges
uniformly to an analytic function on the disk dn.

(c) If |c| < 2s, then the statements of (b) are still valid for n ≥ 1 + s and s = 1, 2, . . . .

Proof (a) By Lemma 1, letting m tend to infinity in the equation (11), we obtain

λn – n2 +
P2n

π
–

∞∑

k=1

Ak,n(λn) = 0, (14)

where Pk =
∫ π

0 p(x) cos kxdx, P2 = cπ , Pk = 0 for k 	= ±2. For n = 1, we have A2k,1(λ1) = 0,
for k = 1, 2, . . . , and A1,1(λ1) = c2/(λ – 9). Substituting these values in (14), we obtain (12).

Now, we prove that the root of (12) lying in the disk d1 is an eigenvalue of the operator
D. The equation f1(λ) := λ – 1 + c – c2/(λ – 9) = 0 has one root in the disk d1 and

∣∣f1(λ)
∣∣ =

∣∣∣∣λ – 1 + c –
c2

λ – 9

∣∣∣∣ ≥ ∣∣|λ – 1|–∣∣c
∣∣∣∣–

|c|2
|λ – 9|

∣∣∣∣

≥ 2|c| – |c| –
|c|2

8 – 2|c| = |c| –
|c|2

8 – 2|c| ,

for all λ ∈ c1 := {λ ∈ C : |λ – 1| = 2|c|}. We define

g1(λ) := λ – 1 + c –
c2

λ – 9
–

∞∑

k=1

A2k+1,1(λ).
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Estimating the summands of |A2k+1,1(λ1)|, we obtain

∣∣A2k+1,1(λ1)
∣∣ <

2k–1|c|2k+2

|λ1 – 9|k+1|λ1 – 25|k ≤ 2k–1|c|2k+2

(8 – 2|c|)k+1(24 – 2|c|)k ,

for k ≥ 1, and by the geometric series formula, we obtain

∞∑

k=1

∣∣A2k+1,1(λ1)
∣∣ <

|c|4
(8 – 2|c|)[(8 – 2|c|)(24 – 2|c|) – 2|c|2]

<
1

18
.

Hence

∣∣g1(λ) – f1(λ)
∣∣ =

∣∣∣∣∣

∞∑

k=1

A2k+1,1(λ)

∣∣∣∣∣ ≤
∞∑

k=1

∣∣A2k+1,1(λ)
∣∣

<
|c|4

(8 – 2|c|)[(8 – 2|c|)(24 – 2|c|) – 2|c|2]
<

1
18

,

for all λ ∈ c1. Therefore, |g1(λ)– f1(λ)| < |f1(λ)| holds for all λ ∈ c1, and by Rouche’s theorem,
g1(λ) has one root in the disk d1. Hence, the operator D has one eigenvalue (counting with
multiplicity) lying in d1, which is the root of (12). On the other hand, equation (12) has
exactly one root (counting with multiplicity) in d1. Thus, λ ∈ d1 is an eigenvalue of D if
and only if it is the root of (12) and the root of (12) coincides with the eigenvalue λ1 of D.

Now, to estimate
∑∞

k=1 |A′
2k+1,1(λ)|, for |λ – 1| ≤ 2|c| and |c| < 2, we first estimate the

summands of |A′
2k+1,1(λ1)| by differentiating A2k+1,1(λ1) with respect to λ1:

∣∣A′
2k+1,1(λ1)

∣∣ <
3k|c|2k+2

|λ1 – 9|k+2|λ1 – 25|k ≤ 3k|c|2k+2

(8 – 2|c|)k+2(24 – 2|c|)k ,

for k ≥ 1, and by the geometric series formula, we obtain

∞∑

k=1

∣∣A′
2k+1,1(λ1)

∣∣ <
3|c|4

(8 – 2|c|)2[(8 – 2|c|)(24 – 2|c|) – 3|c|2]
<

3
51

.

Therefore, the series
∑∞

k=1 A2k+1,1(λ) converges uniformly to an analytic function on the
disk d1.

(b) Let fn(λ) := λ – (2n – 1)2 – A1,2n–1(λ) – A2,2n–1(λ) and

gn(λ) := λ – (2n – 1)2 – A1,2n–1(λ) – A2,2n–1(λ) –
∞∑

k=3

Ak,2n–1(λ).

Then, fn(λ) has one root in the disk dn and

∣∣fn(λ)
∣∣ =

∣∣λ – (2n – 1)2 – A1,2n–1(λ) – A2,2n–1(λ)
∣∣

≥ ∣∣∣∣λ – (2n – 1)2∣∣–
∣∣A1,2n–1(λ)

∣∣–
∣∣A2,2n–1(λ)

∣∣∣∣

≥ ∣∣∣∣λ – (2n – 1)2∣∣–
∣∣A1,3(λ3)

∣∣–
∣∣A2,3(λ3)

∣∣∣∣

≥ 2|c| –
|c|2

8 – 2|c| –
|c|2

16 – 2|c| –
|c|3

(8 – 2|c|)2 ,
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for all λ ∈ cn := {λ ∈C : |λ – (2n – 1)2| = 2|c|}, where

A1,3(λ3) =
c2

λ3 – 1
+

c2

λ3 – 25
, A2,3(λ3) = –

c3

(λ3 – 1)2 .

Using the estimates for |Ak,3(λ3)|,

∣∣A2k+1,3(λ3)
∣∣ <

|c|2k+2

|λ3 – 1|2k+1 +
(3/2)k–1|c|2k+2

|λ3 – 25|k+1|λ3 – 49|k

≤ |c|2k+2

(8 – 2|c|)2k+1 +
(3/2)k–1|c|2k+2

(16 – 2|c|)k+1(40 – 2|c|)k ,

∣∣A2k,3(λ3)
∣∣ <

|c|2k+1

|λ3 – 1|2k ≤ |c|2k+1

(8 – 2|c|)2k ,

for
∑∞

k=3 |Ak,3(λ3)|,

∞∑

k=3

∣∣Ak,3(λ3)
∣∣ <

|c|4
(8 – 2|c|)2(8 – 3|c|) +

2|c|4
(16 – 2|c|)[2(16 – 2|c|)(40 – 2|c|) – 3|c|2]

<
1
2

+
2

639
=

643
1278

,

for the derivative of Ak,3(λ3) with respect to λ3,

∣∣A′
2k+1,3(λ3)

∣∣ <
(3/2)2k+1|c|2k+2

|λ3 – 1|2k+2 +
(3/2)2k+1|c|2k+2

|λ3 – 25|k+2|λ3 – 49|k

≤ (3/2)2k+1|c|2k+2

(8 – 2|c|)2k+2 +
(3/2)2k+1|c|2k+2

(16 – 2|c|)k+2(40 – 2|c|)k ,

∣∣A′
2k,3(λ3)

∣∣ <
(3/2)2k|c|2k+1

|λ3 – 1|2k+1 ≤ (3/2)2k|c|2k+1

(8 – 2|c|)2k+1 ,

and finally for
∑∞

k=3 |A′
k,3(λ3)|,

∞∑

k=1

∣∣A′
k+2,3(λ3)

∣∣ <
27|c|4

4(8 – 2|c|)3(16 – 7|c|)

+
27|c|4

2(16 – 2|c|)2[4(16 – 2|c|)(40 – 2|c|) – 9|c|2]
<

27
32

+
1

8.47
<

17
20

,

and arguing as in the proof of (a), we obtain the proof of (b).
(c) It is obvious by Lemma 1 (Case 2). �

Now, we consider the periodic Dirichlet (PD) eigenvalues λ2n, for n = 1, 2, . . . :

Theorem 2 (a) If |c| < 3, then the first periodic Dirichlet eigenvalue λ2 is the root of

λ – 4 –
c2

λ – 16
–

∞∑

k=1

A2k+1,2(λ) = 0, (15)
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lying in the disk D1 := {λ ∈ C : |λ – 4| ≤ 2|c|}, and the series
∑∞

k=1 A2k+1,2(λ) converges uni-
formly to an analytic function on the disk D1. Moreover, (15) has exactly one root (counting
with multiplicity) in D1, and this root coincides with the eigenvalue λ2 of the operator D.

(b) If |c| < 3 and n ≥ 2, then λ2n is an eigenvalue of D(q) if and only if it is the root of the
equation

λ – (2n)2 –
∞∑

k=1

A2k–1,2n(λ) = 0, (16)

lying in the disk Dn := {λ ∈ C : |λ – (2n)2| ≤ 2|c|}, and the series
∑∞

k=1 A2k–1,2n(λ) converges
uniformly to an analytic function on the disk Dn.

(c) If |c| < 2s – 1, then the statements of (b) are still valid for n ≥ s and s = 2, 3, . . . .

Proof (a) Let F1(λ) := λ – 4 – c2

λ–16 and

G1(λ) := λ – 4 –
c2

λ – 16
–

∞∑

k=1

A2k+1,2(λ).

Then, F1(λ) has one root in the disk D1, and

∣∣F1(λ)
∣∣ =

∣∣∣∣λ – 4 –
c2

λ – 16

∣∣∣∣ ≥
∣∣∣∣|λ – 4| –

|c|2
|λ – 16|

∣∣∣∣

≥ 2|c| –
|c|2

12 – 2|c| ,

for all λ ∈ C1 := {λ ∈C : |λ – 4| = 2|c|}. Using the estimates for |A2k+1,2(λ2)|,

∣∣A2k+1,2(λ2)
∣∣ <

2k–1|c|2k+2

|λ2 – 16|k+1|λ2 – 36|k ≤ 2k–1|c|2k+2

(12 – 2|c|)k+1(32 – 2|c|)k ,

for
∑∞

k=1 |A2k+1,2(λ2)|,

∞∑

k=1

∣∣A2k+1,2(λ2)
∣∣ <

|c|4
(12 – 2|c|)[(12 – 2|c|)(32 – 2|c|) – 2|c|2]

<
9

92
,

for the derivative of A2k+1,2(λ2) with respect to λ2,

∣∣A′
2k+1,2(λ2)

∣∣ <
3k|c|2k+2

|λ2 – 16|k+2|λ2 – 36|k ≤ 3k|c|2k+2

(12 – 2|c|)k+2(32 – 2|c|)k ,

and finally for
∑∞

k=1 |A′
2k+1,2(λ2)|,

∞∑

k=1

∣∣A′
2k+1,2(λ2)

∣∣ <
3|c|4

(12 – 2|c|)2[(12 – 2|c|)(32 – 2|c|) – 3|c|2]
<

9
172

,

and arguing as in the proof of Lemma 1(a), we obtain the proof of (a).
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(b) Let Fn(λ) := λ – (2n)2 – A1,2n(λ) and

Gn(λ) := λ – (2n)2 – A1,2n(λ) –
∞∑

k=1

A2k+1,2n(λ).

Then, Fn(λ) has one root in the disk Dn and

∣∣Fn(λ)
∣∣ =

∣∣λ – (2n)2 – A1,2n(λ)
∣∣ ≥ ∣∣∣∣λ – (2n)2∣∣ –

∣∣A1,2n(λ)
∣∣∣∣

≥ ∣∣∣∣λ – (2n)2∣∣ –
∣∣A1,4(λ4)

∣∣∣∣ ≥ 2|c| –
|c|2

12 – 2|c| –
|c|2

20 – 2|c| ,

for all λ ∈ Cn := {λ ∈C : |λ – (2n)2| = 2|c|}, where

A1,4(λ4) =
c2

λ4 – 4
+

c2

λ4 – 36
.

Using the estimates for |A2k+1,4(λ4)|,

∣∣A2k+1,4(λ4)
∣∣ <

(3/2)k–1|c|2k+2

|λ4 – 36|k+1|λ4 – 64|k ≤ (3/2)k–1|c|2k+2

(20 – 2|c|)k+1(48 – 2|c|)k ,

for
∑∞

k=1 |A2k+1,4(λ4)|,
∞∑

k=1

∣∣A2k+1,4(λ4)
∣∣ <

2|c|4
(20 – 2|c|)[2(20 – 2|c|)(48 – 2|c|) – 3|c|2]

<
1

99
,

for the derivative of A2k+1,4(λ4) with respect to λ4,

∣∣A′
2k+1,4(λ4)

∣∣ <
(3/2)k+2|c|2k+2

|λ4 – 36|k+2|λ4 – 64|k ≤ (3/2)k+2|c|2k+2

(20 – 2|c|)k+2(48 – 2|c|)k ,

and finally for
∑∞

k=1 |A′
2k+1,4(λ4)|,

∞∑

k=1

∣∣A′
2k+1,4(λ4)

∣∣ <
27|c|4

4(20 – 2|c|)2[2(20 – 2|c|)(48 – 2|c|) – 3|c|2]
<

1
400

,

and arguing as in the proof of Lemma 1(a), we obtain the proof of (b).
(b) It is obvious by Lemma 2 (Case 2). �

Now, to estimate eigenvalues numerically, we take finite summations instead of the infi-
nite series in the equations (12), (13), (15), and (16). If we consider the mth approximation

λ – 1 + c –
c2

λ – 9
–

m∑

k=1

A2k+1,1(λ) = 0, (17)

for the first eigenvalue λ1, the mth approximation

λ – 4 –
c2

λ – 16
–

m∑

k=1

A2k+1,2(λ) = 0 (18)
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for the second eigenvalue λ2, and the mth approximations

λ – (2n – 1)2 –
2m∑

k=1

Ak,2n–1(λ) = 0, (19)

and

λ – (2n)2 –
m∑

k=1

A2k–1,2n(λ) = 0, (20)

for the other eigenvalues λ2n–1 and λ2n, n = 2, 3, . . . , of D, then we have the following esti-
mates for the remaining terms:

∣∣∣∣∣

∞∑

k=m+1

A2k+1,1(λ1)

∣∣∣∣∣ ≤
∞∑

k=m+1

∣∣A2k+1,1(λ1)
∣∣

<
2m|c|2m+4

(8 – 2|c|)m+1(24 – 2|c|)m[(8 – 2|c|)(24 – 2|c|) – 2|c|2]

<
1

18

(
1

10

)m

,

for |c| < 2,
∣∣∣∣∣

∞∑

k=m+1

A2k+1,2(λ2)

∣∣∣∣∣ ≤
∞∑

k=m+1

∣∣A2k+1,2(λ2)
∣∣

<
2m|c|2m+4

(12 – 2|c|)m+1(32 – 2|c|)m[(12 – 2|c|)(32 – 2|c|) – 2|c|2]

<
9

92

(
3

26

)m

,

for |c| < 3,
∣∣∣∣∣

∞∑

k=2m+1

Ak,2n–1(λ2n–1)

∣∣∣∣∣ ≤
∞∑

k=2m+1

∣∣Ak,3(λ3)
∣∣

<
|c|2m+2

(8 – 2|c|)2m(8 – 3|c|)

+
2(3/2)m–1|c|2m+2

(16 – 2|c|)m(40 – 2|c|)m–1[2(16 – 2|c|)(40 – 2|c|) – 3|c|2]

<
2

4m +
16
71

(
1

72

)m

,

for |c| < 2, and
∣∣∣∣∣

∞∑

k=m+1

A2k–1,2n(λ2n)

∣∣∣∣∣

≤
∞∑

k=m+1

∣∣A2k–1,4(λ4)
∣∣
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<
2(3/2)m|c|2m+4

(20 – 2|c|)m+1(48 – 2|c|)m[2(20 – 2|c|)(48 – 2|c|) – 3|c|2]
<

27
2681

(
9

392

)m

,

for |c| < 3. Obviously, we obtain better approximations as m grows. Besides, for a fixed m,
this method gives better approximations as n grows. Now, we approach the eigenvalues
by the roots of the polynomials derived from the mth approximations (17)–(20), as it was
done in [19]. For example, for m = 2 and n = 1 in (17), we have the approximation

Q1(λ) := λ – 1 + c –
c2

λ – 9
–

c4

(λ – 9)2(λ – 25)

–
c6

(λ – 9)2(λ – 25)2(λ – 49)
–

c6

(λ – 9)3(λ – 25)2 = 0, (21)

for m = 2 and n = 2 in (18),

Q2(λ) := λ – 4 –
c2

λ – 16
–

c4

(λ – 16)2(λ – 36)

–
c6

(λ – 16)2(λ – 36)2(λ – 64)
–

c6

(λ – 16)3(λ – 36)2 = 0, (22)

for m = 3 and n = 3 in (19), we have

Q3(λ) := λ – 9 –
c2

λ – 1
–

c2

λ – 25
+

c3

(λ – 1)2 –
c4

(λ – 1)3 –
c4

(λ – 25)2(λ – 49)
+

c5

(λ – 1)4

–
c6

(λ – 1)5 –
c6

(λ – 25)3(λ – 49)2 –
c6

(λ – 25)2(λ – 49)2(λ – 81)
+

c7

(λ – 1)6

= 0, (23)

and for m = 3 and n = 4 in (20),

Q4(λ) := λ – 16 –
c2

λ – 4
–

c2

λ – 36
–

c4

(λ – 36)2(λ – 64)

–
c6

(λ – 36)3(λ – 64)2 –
c6

(λ – 36)2(λ – 64)2(λ – 100)
= 0. (24)

Then,

P1(λ) := (λ – 9)3(λ – 25)2(λ – 49)Q1(λ), (25)

P2(λ) := (λ – 16)3(λ – 36)2(λ – 64)Q2(λ), (26)

P3(λ) := (λ – 1)6(λ – 25)3(λ – 49)2(λ – 81)Q3(λ) (27)

and

P4(λ) := (λ – 4)(λ – 36)3(λ – 64)2(λ – 100)Q4(λ) (28)

are polynomials of degree 7, 7, 13, and 8, respectively. By the same token, we can derive
polynomials to approximate the other Dirichlet eigenvalues, for n ≥ 5.

Now, we present a numerical example.
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Example 1 For m = 2 and c2 = –2.157281295, Veliev [19] approximated the first two pe-
riodic eigenvalues, say μ0 and μ2, which are also Neumann eigenvalues. Besides, we ap-
proximated [14] the first two antiperiodic eigenvalues, one of which is the first Dirichlet
eigenvalue λ1. We also approximated [14] the third periodic eigenvalue, which is the sec-
ond Dirichlet eigenvalue λ2. In this paper, we have obtained the same values for Dirichlet
eigenvalues using completely different iteration formulas.

Now, we show that the first Dirichlet eigenvalue λ1 is the complex eigenvalue lying inside
the circle

C =
{
λ ∈C :

∣∣λ – (1.26575008922 – 1.52020432568i)
∣∣ = 1.7 × 10–6}.

The root of the polynomial P1(λ) defined by (25), lying in the disk D1 =
{λ ∈ C : |λ – 1| ≤ 2|c|}, is r1 = (1.26575008922 – 1.52020432568i). The other roots
of P1(λ) are r2 = (8.96777697119 – 0.142338162679i), r3 = (8.79563202223 +
0.0317230792875i), r4 = (8.97007606112 + 0.162097407292i), r5 = (25.0005579806 +
0.00577397577187i), r6 = (25.0002071021 – 0.00582061314113i) and r7 =
(48.9999997735 + 0.00000000692262634543i). Using the decomposition

Q1(λ) =
(λ – r1)(λ – r2) · · · (λ – r7)
(λ – 9)3(λ – 25)2(λ – 49)

,

by direct calculations, we obtain |Q1(λ)| > 4.6113 × 10–6, for all λ ∈ C. On the other hand,
one can easily calculate that

∑∞
k=1 |A2k+1(λ)| < 4.4786 × 10–6, for all λ ∈ C. The proof fol-

lows from Rouche’s theorem and Theorem 1(a); equation (12) has only one root inside the
circle C, and λ1 is the complex eigenvalue lying inside C.

One can show in a similar way that the second Dirichlet eigenvalue λ2 is the real eigen-
value lying inside the circle

D =
{
λ ∈ C : |λ – 4.1814942277| = 1.7 × 10–6},

using Rouche’s theorem and Theorem 2(a).
Similarly, we find the first 8 Dirichlet eigenvalues numerically for c2 = –2.157281295 as

follows:

λ1 = 1.26575008922 – 1.52020432568i,

λ2 = 4.1814942277,

λ3 = 8.86899351832 + 0.0514847337328i,

λ4 = 15.9263450168,

λ5 = 24.9551222753 – 0.0000466505625109i,

λ6 = 35.96920215,

λ7 = 48.9775356736 + 0.00000000701304988868i,

λ8 = 63.9828818845.
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Moreover, separating the Dirichlet eigenvalues from the periodic and antiperiodic
eigenvalues obtained in [14], we obtain the Neumann eigenvalues numerically. The first 9
Neumann eigenvalues for c2 = –2.157281295 are as follows:

μ1 = 1.26575008922 + 1.52020432568i,

μ0 = 2.08869892467 – 0.000232839091042i,

μ2 = 2.08869892467 + 0.000232839091042i,

μ3 = 8.86899351832 – 0.0514847337328i,

μ4 = 15.9304406409,

μ5 = 24.9551222753 + 0.0000466505625109i,

μ6 = 35.9692007691,

μ7 = 48.9775356736 – 0.00000000701304988868i,

μ8 = 63.982881884.
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