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Abstract
This paper solves fractional differential equations using the Shehu transform in
combination with the q-homotopy analysis transform method (q-HATM). As the
Shehu transform is only applicable to linear equations, q-HATM is an efficient
technique for approximating solutions to nonlinear differential equations. In
nonlinear systems that explain the emergence of stripes in 2D systems, the
Newell–Whitehead–Segel equation plays a significant role. The findings indicate that
the outcomes derived from the tables yield superior results compared to the existing
LTDM in the literature. Maple is utilized to depict three-dimensional surfaces and find
numerical values that are displayed in a table.
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1 Introduction
Leibnitz created arbitrary-order derivatives shortly after integer-order derivatives, and
this topic has attracted the interest of numerous academics recently. As soon as its poten-
tial was known, fractional calculus (FC) quickly replaced classical calculus as the preferred
modeling tool for practical issues. FC theory provides a superbly methodical framework
for understanding the physical world. The specific explanation it offers for nonlinear com-
plex systems has recently attracted the attention of numerous experts. Using fractional
models of differential equations has the benefit of being nonlocal, which can be used in
any model. Locality is preserved by derivatives of integer order, but nonlocality is intro-
duced by those of fractional order. This demonstrates that the future state of a physical
system is dependent on not only its current state but also its past states. Models built with
the use of fractional-order derivatives are thus more accurate representations of reality.
Classical derivatives and fractional derivatives are both mathematical concepts related to
the rate of change of a function, but they differ in their definition and application. While
classical derivatives deal with integer orders and provide information about instantaneous
rates of change, fractional derivatives extend this concept to noninteger orders, offering
a way to model systems with memory or long-range dependence. Fractional calculus is a
field that has found applications in diverse scientific and engineering disciplines [1].
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However, the fractional order varies based on time and space. The scenario leads to a
rapidly expanding field of FPDEs with fractional operators of variable order. Several po-
tent numerical approaches were established in the scientific literature, and numerous em-
inent scholars contributed to this topic. These techniques include the adomian decompo-
sition method (ADM), the homotopy perturbation method (HPM), the homotopy analy-
sis method (HAM), the collocation method, the Sumudu transform method (STM), the
conformable Shehu homotopy perturbation method (CSHPM), the conformable q-Shehu
homotopy analysis transform method (Cq-SHATM), the conformable sumudu decom-
position method, the conformable Laplace decomposition method, and the differential
transform method (DTM) [2–32].

In recent years, there have been studies on ST in the literature [33–40]. Using the q-
homotopy Shehu analysis transform method (q-HSATM), we analyze and find an approxi-
mated analytical solution for the time-fractional NWS equation in the current framework.
The methodology under consideration has been tweaked, and it is now a sophisticated hy-
brid of q-HATM and the Shehu transform (ST). Since q-HATM is a modified method of
HAM, it avoids the need for linearization, discretization, and perturbation, and it also
requires less memory and fewer calculations than traditional HAM and no complicated
polynomials, integrations, or physical parameters. Recently, many researchers have found
it to be highly helpful in interpreting results for many types of nonlinear problems due
to its consistency and effectiveness. Srivastava et al. determine the q-HATM solution for
the model of the vibration equation and analyze its behavior [41]. Veeresha et al. examine
the approximation of an analytical solution for a smoking epidemic model of fractional
order [42]. Singh et al. suggest that the efficiency of q-HATM may be shown in the cou-
pled system [43]. Numerical simulations of the Gardner and Cahn–Hilliard equations are
presented by Prakasha et al., who verify that the proposed method is more accurate than
alternative classical techniques [44]. Veeresha et al. provide an illustrative example of the
novel numerical surfaces used in the mathematical model of cancer chemotherapy [45].
The solution for the combined modified Boussinesq and approximate long wave was re-
ported by Veeresha et al. [46]. Using the energy-dependent Schrödinger potential as an
example, Veeresha et al. demonstrated the superior performance of the suggested strategy
over the coupled fractional reduced differential transform method (CFRDTM) for solving
the associated coupled equation [47]. The proposed method is also being considered by
many researchers as a means to obtain an approximate analytical solution to a wide range
of issues [48, 49].

The fluctuations in the sand, the lines on seashells, and many other striped patterns like
these can be modeled by amplitude equations. The NWSE is one of the most important
amplitude equations in applied sciences. It shows how stripes appear in two-dimensional
systems [50–53]. The NWSE has the form [50, 51, 54]

∂αu
∂tα

= a
∂2u
∂x2 + hu – cum, 0 < α < 1, t ≥ 0, x ∈ R, (1)

where m is a positive integer, a, h and c real numbers.
The Shehu transform is used to solve linear equations such as the Laplace transform.

However, to solve nonlinear equations, q-homotopy analysis must be used together with
a numerical method such as the transform method. Therefore, in this study, the Shehu
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transform and the q-homotopy analysis transformation method were combined. This pa-
per aims to present a new method, the q-SHATM and to use it to obtain new numerical
solutions for a NWS equation.

In light of developments, this paper proposes to investigate the use of the q-HSATM to
solve the time-fractional Newell–Whitehead–Segel equation numerically, and to compare
the results with those obtained using a more recent technique.

The first aim of this study is to introduce the q-homotopy Shehu analysis transform
method. The second aim is to solve a time-fractional Newell–Whitehead–Segel equation
for the first time with the newly produced hybrid method. Several previously unmentioned
solutions in the literature are retrieved and their graphic characteristics are plotted in
their entirety. The main motivation of writing this paper is to obtain the new numerical
solutions of a time-fractional Newell–Whitehead–Segel equation by using a new hybrid
method, namely the q-homotopy Shehu analysis transform method (q-HSATM). Also, it
has been observed that the results obtained from the table give better results than the
LTDM [50] in the literature.

The structure of this paper is as follows. In Sect. 2, we provide a quick recap of some
of the preliminary definitions of the Caputo fractional derivative and other conclusions
that can be helpful in the study of fractional differential equations. Considering the issue
at hand, a potential q-HSATM solution procedure is presented in Sect. 3. Convergence
of the suggested approach is given in Sect. 4. The approximate solutions are found using
q-HSATM on several numerical test situations presented in Sect. 5. Section 6 contains the
discussion and results. Finally, the conclusion is given.

2 Preliminaries
Several fundamental definitions are provided in this section.

Definition 1 ([19, 55, 56]) The Riemann–Liouville fractional integral is described as

Iaf (x) =

⎧
⎨

⎩

1
�(a)

∫ x
0 (x – t)a–1f (t) dt, a > 0, x > 0,

I0f (x) = f (x), a = 0.
(2)

Definition 2 ([19, 55, 56]) The Caputo fractional derivative (CFD) is given by

Daf (x) = Ia–nDnf (x) =
1

�(n – a)

∫ x

0
(x – t)n–a–1f (n)(t) dt, (3)

where n – 1 < a ≤ n, n ∈ N , x > 0, f ∈ Cn
–1.

Definition 3 ([57]) The Mittag–Leffler function Ea is defined as

Ea(z) =
∞∑

n=0

za

�(na + 1)
, a > 0. (4)

Definition 4 ([33]) The Shehu transform (ST) of the function f (t) is given by

S
[
f (t)

]
= V [s, u] =

∫ ∞

0
f (t)e– st

u dt, s > 0, u > 0. (5)
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Definition 5 ([33]) If V (s, u) is the ST of the function f (t), then the ST of CFD is defined
by

S
[
Dαf (t)

]
=

(
s
u

)α

V(s, u) –
n–1∑

k=0

(
s
u

)α–k–1

f (k)(0), n – 1 < α ≤ n. (6)

3 The methodology of the q-homotopy Shehu analysis transform method
In this section, the q-HSATM for nonlinear FPDEs is presented. In order to illustrate the
technique for the suggested method, the nonlinear FPDEs are written in standard operator
form

Da
t u(x, t) + Au(x, t) + Nu(x, t) = g(x, t), t > 0, n – 1 < α ≤ n, (7)

with the initial condition

u(x, 0) = h(x), (8)

where A is a linear operator, N is a nonlinear operator, g(x, t) is a source term, and Da
t is a

time-fractional derivative operator of order α.
Now, by performing a Shehu transform on Eq. (7) and using the initial condition, it is

acquired as

S
[
u(x, t)

]
–

n–1∑

k=0

(
s
u

)–k–1
∂ku(x, t)

∂tk

∣
∣
∣
∣
t=0

+
(

u
s

)α

S
[
Au(x, t) + Nu(x, t) – g(x, t)

]
= 0. (9)

The nonlinear operator by the assistance of HAM for a real function ϕ(x, t; q) is defined
as

N
[
ϕ(x, t; q)

]
= S

[
ϕ(x, t; q)

]
–

u
s
ϕ(x, t; q)

(
0+)

(10)

+
(

u
s

)α{
S
[
Au(x, t) + Nu(x, t) – g(x, t)

]}
, (11)

where qε[0, 1
n ].

This establishes a homotopy as follows:

(1 – nq)S
[

ϕ(x, t; q) –
u
s
ϕ(x, t; q)

(
0+)

]

= hqH(x, t)N
[
ϕ(x, t; q)

]
, (12)

where, h �= 0 is an auxiliary parameter and S represents the Shehu transform. For q = 0 and
q = 1

n , the results in Eq. (12) are, respectively, provided as

ϕ(x, t; 0) = u0(x, t), ϕ

(

x, t;
1
n

)

= u(x, t). (13)

Therefore, by amplifying q from 0 to 1
n , the solution ϕ(x, t; q) converges from u0(x, t) to

the solution u(x, t). Employing the Taylor theorem around q and expanding ϕ(x, t; q), it is
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obtained as

ϕ(x, t; q) = u0(x, t) +
∞∑

i=1

um(x, t)qm, (14)

where

um(x, t) =
1

m!
∂mϕ(x, t; q)

∂qm

∣
∣
∣
∣
q=0

. (15)

Equation (14) converges at q = 1
n for the appropriate u0(x, t), n, and h. Then, we have one

of the solutions of the original nonlinear equation of the form

u(x, t) = u0(x, t) +
∞∑

m=1

um(x, t)
(

1
n

)m

. (16)

If we differentiate the zeroth-order deformation Eq. (13) m times with respect to q and
we divide by m!, respectively, then for q = 0, it is obtained as

S
[
um(x, t) – kmum–1(x, t)

]
= hH(x, t)Rm(−→u m–1), (17)

where the vectors are defined by

−→u m =
{

u0(x, t), u1(x, t), . . . , um(x, t)
}

. (18)

When the inverse Shehu transform to Eq. (17) is applied, then it is obtained as

um(x, t) = kmum–1(x, t) + hS–1[H(x, t)Rm(−→u m–1)
]
, (19)

where

Rm(−→u m–1) = S
[
um–1(x, t)

]
–

(

1 –
km

n

)
u
s

u0(x, t) +
(

u
s

)α

S
(
Aum–1(x, t)

+ Hm–1(x, t) – g(x, t)
)

(20)

and

km =

⎧
⎨

⎩

0, m ≤ 1,

n, m > 1.
(21)

Here, Hm is a homotopy polynomial and presented as

Hm–1 =
1

(m – 1)!
∂m–1ϕ(x, t; q)

∂qm–1

∣
∣
∣
∣
q=0

(22)

and

ϕ(x, t; q) = ϕ0 + qϕ1 + q2ϕ2 + · · · , (23)



Bektaş and Anaç Boundary Value Problems         (2024) 2024:38 Page 6 of 13

um(x, t) = (km + h)um–1(x, t) –
(

1 –
km

n

)
u
s

u0(x, t) + hS–1
[((

u
s

)α

S
(
Aum–1(x, t)

+ Hm–1(x, t) – g(x, t)
)
]

. (24)

By utilizing q-HSATM, the series solution is defined by

u(x, t) =
∞∑

i=0

um(x, t)
(

1
n

)m

. (25)

4 Convergence analysis
Theorem 1 (Uniqueness Theorem [42, 58]) The solution for the nonlinear fractional dif-
ferential Eq. (7) obtained by q-HSATM is unique for ∀αε(0, 1), where α = (n+�)+�(ρ +δ)T .

Proof The solution of nonlinear FPDEs Eq. (7) is presented as

u(x, t) =
∞∑

i=0

um(x, t)
(

1
n

)m

, (26)

where

um(x, t) = (km + h)um–1(x, t) –
(

1 –
km

n

)
u
s

u0(x, t)

+ hS–1
[((

u
s

)α

S
(
Aum–1(x, t) + Hm–1(x, t) – g(x, t)

)
)]

. (27)

Assume that u and w are two different solutions of Eq. (7), then with the help of the
aforementioned equation, we obtain

|u – w| =
∣
∣
∣
∣(n + h)(u – w)

+ hS–1
[(

u
s

)α

S
(
A(u – w) + N(u – w)

)
]∣
∣
∣
∣. (28)

Now, using the convolution theorem for the Shehu transform, it is obtained as

|u – w| ≤ (n + h)|u – w| + h
∫ t

0

(∣
∣A(u – w)

∣
∣ + N(u – w)

) (t – τ )α

�(1 + α)
dτ

≤ (n + h)|u – w|

+ h
∫ t

0

(
ρ|u – w| + δ|u – w|) (t – τ )α

�(1 + α)
dτ . (29)

Then, using the integral mean-value theorem, it yields

|u – w| ≤ (n + h)|u – w| + h
(
ρ|u – w| + δ|u – w|)T

≤ α|u – w|. (30)

As a result, we have (1 – τ )|w – u| ≤ 0. As τ ∈ (0, 1), |w – u| = 0, which implies that w = u.
Hence, the solution is unique. �
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Theorem 2 (Convergence theorem [58]) Assume that X is a Banach space and F : X→X
is a nonlinear mapping. If the inequality

∥
∥G(a) – G(h)

∥
∥ ≤ γ ‖a – h‖, ∀a, b ∈ X (31)

exists, then G has a fixed point in view of Banach fixed point theory [59]. Furthermore, for
the arbitrary choice of a0, b0∈X, the sequence created by the q-HSATM converges to a fixed
point of G and

‖wm – wn‖ ≤ γ n

1 – γ
‖w1 – w0‖, ∀a, b ∈ X. (32)

Proof Let us take a Banach space (C[J], ‖.‖) of all continuous functions on J with the norm
expressed as ‖g(t)‖ = maxt∈J |g(t)|.

Now, we demonstrate that the sequence {wn} is a Cauchy sequence in the Banach space:

‖wm – wn‖ = max
t∈J

|wm – wn|

= max
t∈J

∣
∣
∣
∣(n + h)(wm–1 – wn–1) + h(cSα)–1

[(
u
s

)α

S
(
A(wm–1 – wn–1)

+ N(wm–1 – wn–1)
)
]∣
∣
∣
∣

≤ max
t∈J

[

(n + h)|wm–1 – wn–1| + h(cSα)–1
[(

u
s

)α

S
(
A|wm–1 – wn–1|

]

+ N |wm–1 – wn–1|
)
]]

. (33)

Now, utilizing the convolution theorem for the Shehu transform, it is obtained as

‖wm – wn‖ ≤ max
t∈J

[

(n + h)|wm–1 – wn–1| + (n + h)|wm–1 – wn–1|

+ h
∫ t

0

(
A|wm–1 – wn–1| + N |wm–1 – wn–1|

) (t – η)α

α
dη

]

≤ max
t∈J

[

(n + h)|wm–1 – wn–1| + (n + h)|wm–1 – wn–1|

+ h
∫ t

0

(
ρ|wm–1 – wn–1| + δ|wm–1 – wn–1|

) (t – η)α

α
dη

]

. (34)

Next, by the application of the integral mean-value theorem [59], it is obtained as

‖wm – wn‖ ≤ max
t∈J

[
(n + h)|wm–1 – wn–1| + h

(
ρ|wm–1 – wn–1| + δ|wm–1 – wn–1|

)
T

]

≤ τ‖wm–1 – wn–1‖. (35)

Let m = n + 1, then we obtain

‖wn+1 – wn‖ ≤ τ‖wn – wn–1‖ ≤ τ 2‖wn–1 – wn–2‖ ≤ · · · ≤ τ n‖w1 – w0‖. (36)
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By using the triangular inequality, we have

‖wm – wn‖ ≤ ‖wn+1 – wn‖ + ‖wn+2 – wn+1‖ + · · · + ‖wm – wm–1‖
≤ [

τ n + τ n+1 + · · · + τm–1]‖w1 – w0‖
≤ τ n[1 + τ + τ 2 + · · · + τm–n–1]‖w1 – w0‖

≤ τ n
[

1 – τm–n–1

1 – τ

]

‖w1 – w0‖. (37)

Since τ ∈ (0, 1), 1 – τm–n–1 < 1, then we obtain

‖wm – wn‖ ≤ τ n

1 – τ
‖w1 – w0‖. (38)

For ‖w1 – w0‖ < ∞, so as m → ∞ then ‖wm – wn‖ → 0. Thus, the sequence {wn} is a
Cauchy sequence in C[J], and so the sequence is convergent. �

5 The numerical solutions of the time-fractional Newell–Whitehead–Segel
equation

Let us assune a = 1, h = 2, c = 3, and m = 2 for the nonlinear time-fractional Newell–
Whitehead–Segel equation (NTFNWSE) [52, 60]:

∂αu(x, t)
∂tα

=
∂2u(x, t)

∂x2 + 2u(x, t) – 3u2(x, t), 0 < α < 1 (39)

with initial condition

u(x, 0) = β , (40)

where β is an arbitrary constant.
Now, by applying the Shehu transform to Eq. (39) and by using Eq. (40), then it is ob-

tained as

S
[
u(x, t)

]
–

u
s

u(x, 0) –
(

u
s

)α

S
[
∂2u(x, t)

∂x2 + 2u(x, t) – 3u2(x, t)
]

= 0. (41)

The nonlinear operator by using Eq. (41) is described by

N
[
ϕ(x, t; q)

]
= S

[
ϕ(x, t; q)

]
–

u
s

u(x, 0)

–
(

u
s

)α

S
[

∂2ϕ(x, t; q)
∂x2 + 2ϕ(x, t; q) – 3u2ϕ(x, t; q)

]

. (42)

By applying the proposed algorithm, the mth-order deformation equation is defined by

S
[
um(x, t) – kmum–1(x, t)

]
= hRm(−→u m–1), (43)
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where

Rm(−→u m–1) = S
[−→u m–1(x, t)

]
–

u
s

u(x, 0) –
(

1 –
km

n

)(
u
s

)α

× S

[
∂2um–1(x, t)

∂x2 + 2um–1(x, t) – 3
m–1∑

i=0

ui(x, t)um–1–i(x, t)

]

. (44)

On applying the inverse Shehu transform to Eq. (43), it is obtained as

um(x, t) = kmum–1(x, t) + hS–1[Rm(−→u m–1)
]
. (45)

By the use of the initial condition, it is acquired as

u0(x, t) = β . (46)

To find the values of u1(x, t), putting m = 1 in Eq. (45), it is obtained as

u1(x, t) =
h(3β2 – 2β)tα

�(α + 1)
. (47)

Similarly, to find values of u2(x, t), putting m = 2 in Eq. (45), it is found as

u2(x, t) =
h(n + h)(3β2 – 2β)tα

�(α + 1)
–

h2(–18β3 + 18β2 – 4β)t2α

�(2α + 1)
. (48)

In this way, the other terms are generated. Thus, the q-HSATM solution of Eq. (39) has
the form

u(x, t) = β +
h(3β2 – 2β)tα

�(α + 1)
+

h(n + h)
�(α + 1)

(
3β2 – 2β

)
tα

–
h2(–18β3 + 18β2 – 4β)t2α

�(2α + 1)
. (49)

Substituting the values of α = 1, n = 1, h = –1 in Eq. (49), the obtained results
∑M

m=1 um(x, t)( 1
n )m converge to the analytical solutions u(x, t) = – 2

3 β exp(2t)
– 2

3 +β–β exp(2t)
of NTFN-

WSE when M → ∞.
Figure 1 demonstrates a 3D graph of the q-HSATM solution, the exact solution, and the

absolute error in Eq. (49) for h = –1, n = 1, α = 1, β = 1.
Figure 2 shows a 2D graph of Eq. (49) for different values of α.
Table 1 shows the comparison of the absolute errors of the methods ATHPM, LTDM,

and q-HSATM.

6 Result and discussion
For Eq. (39), the graphs of the temperature u(x, t) for different values of α = 0.9, α = 0.7,
α = 0.6, and α = 1 are drawn. Figure 1 shows three-dimensional graphs of the q-HSATM
solution, the exact solution, and the absolute error at h = –1, n = 1, α = 1, β = 1. For in-
creasing values of t, the two-dimensional graphs of the numerical solutions to this equa-
tion for various values α and the value β = 1 are depicted in Fig. 2. Figure 2 shows that the
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Figure 1 (a) u(x, t) solution of q-HSATM (b) Exact solution of u(x, t) (c) Nature of absolute error
= |uexact – uq–HSATM| at h = –1, n = 1, α = 1, β = 1

Figure 2 u(x, t) solution of q-HSATM with respect to t when ∀x ∈R and β = 1 with different values of α
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Table 1 Comparative study between ATHPM [61], LTDM [50], and q-HSATM for the numerical
solutions u(x, t) at α = 1 and β = 0.01

t |uexact – uATHPM| |uexact – uLTDM| |uexact – uq–HSATM|
0.001 1× 10–12 7.56× 10–7 1× 10–12

0.002 9× 10–11 1.51× 10–6 9× 10–11

0.003 3.2× 10–10 2.26× 10–6 3.2× 10–10

0.004 7.7× 10–10 3.02× 10–6 7.7× 10–10

0.005 1.5× 10–9 3.78× 10–6 1.5× 10–9

0.006 2.6× 10–9 4.53× 10–6 2.6× 10–9

0.007 4.1× 10–9 5.20× 10–6 4.1× 10–9

0.008 6.1× 10–9 6.00× 10–6 6.1× 10–9

0.009 8.7× 10–9 6.80× 10–9 8.7× 10–9

0.010 1.2× 10–8 7.05× 10–6 1.2× 10–8

temperature u(x, t) rises as any values of the space variable x and the time variable t in-
creases. It can be seen in Fig. 2 that as the α value approaches one, the temperature u(x, t)
converges. It is shown in Table 1 that the absolute errors of the third-order q-HSATM so-
lution were obtained. Table 1 indicates that the absolute error increases significantly when
any values of the space variable x and the value of time t increases. Table 1 demonstrates
that while the q-HSATM yields the same results as ATHPM, it yields far more robust re-
sults than LTDM.

7 Conclusion
This work investigates the performance of NTFNWSE using q-HSATM. It is imperative
to illustrate the influence of the fractional operator incorporated into the model being
examined. Furthermore, the MAPLE software has been utilized to construct 2D and 3D
graphs that depict the solutions to this equation for different values of α. The variability
of the general structure of surface graphs created by the Maple software for Eq. (39) is
evident. In addition, MAPLE software was used to obtain the graphs of the numerical so-
lutions of this equation for the various α and β = 1 values. For NTFNWSE, it is observed
that the general structure of surface graphs plotted in Maple software differs. The numer-
ical solutions for NTFNWSE have been quickly and successfully obtained. Therefore, it
may be extrapolated that q-HSATM is overly effective and robust for obtaining numerical
solutions for various fractional nonlinear partial differential equations.
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