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Abstract
This paper is focused on the Riemann problem for a 2× 2 hyperbolic system of
conservation laws with a time-gradually-degenerate damping. Two kinds of
non-self-similar solutions involving the delta-shocks and vacuum are obtained using
the variable substitution method. The generalized Rankine-Hugoniot relation and
entropy condition are clarified for the delta-shock. Furthermore, the vanishing
viscosity method proves the existence, uniqueness, and stability of non-self-similar
solutions.
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1 Introduction
This paper is concerned with a 2 × 2 hyperbolic system of conservation laws with time-
dependent damping

⎧
⎨

⎩

ut + ( u2

2 )x = – μ

1+t u,

vt + (vu)x = 0,
(1.1)

where t ∈ R+ represents the time variable, x ∈ R stands for the space variable, u = u(x, t)
is given smooth function, the sign of v = v(x, t) remains unchanged, and the external term
– μ

1+t u with physical parameter μ > 0 is a time-gradually-degenerate damping [1, 2].
The first equation of system (1.1) with μ = 0 is said to be the Burgers equation, which

can be used to model various phenomena, such as shock waves in gas dynamics and hy-
drodynamics turbulence [3–6]. The homogeneous system (1.1) can model the evolution
of density inhomogeneities in matter in the universe [7]. The Riemann solutions involving
delta-shocks of the homogeneous case (1.1) were obtained using the vanishing viscosity
approach [8, 9]. De la cruz [10] discussed the Riemann problem for the homogeneous
system (1.1) with damping term –αu (α > 0). De la cruz and Juajibioy [11] showed the
existence of Riemann solutions involving delta-shock for a 2 × 2 system of conservation
laws with linear damping by employing vanishing viscosity method. Beyond these, there
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are many studies about various nonlinear differential equations with damping. For exam-
ple, Yang and Zhou [12] considered the degenerate fractional Kirchhoff wave equation
with structural damping or strong damping and proved the well-posedness and the exis-
tence of global attractor in the natural energy space by the Faedo-Galerkin method and
energy estimates. Di and Song [13] proved the global existence and non-global existence
of the initial-boundary value problem for a quasilinear viscoelastic equation with strong
damping and source terms. Yang, Ning, and Chen [14] proved the exponential stability of
the nonlinear Schrödinger equation with locally distributed damping on a compact Rie-
mannian manifold. As regards the delta-shocks, we refer the reader to papers [8, 15–30]
for more details.

However, it is noticeable that the damping term is usually closely related to time. With
this in mind, we first discuss the Riemann problem for (1.1) with initial data

(u, v)|t=0 =
(
u(x, 0), v(x, 0)

)
=

⎧
⎨

⎩

(u–, v–) x < 0,

(u+, v+) x > 0.
(1.2)

System (1.1) may be changed to a homogeneous conservative form through the transform
u = w

(1+t)μ . With the characteristic analysis, we obtain two kinds of solutions for the mod-
ified system (2.1). To be exact, the solution is made up of two contact discontinuities and
vacuum provided that the initial data satisfy u– < u+. The solution is in the form of a delta-
shock when the initial data satisfy u– > u+. By solving the generalized Rankine-Hugoniot
relation under the over-compressive entropy condition, the position, strength, and propa-
gation speed of the delta-shock are obtained. Then, we use the relation between variables
u and w to construct two kinds of Riemann solutions for the original system (1.1) with
initial data (1.2). Additionally, the generalized Rankine-Hugoniot relation is also verified.
Under the impact of the time-dependent damping, the Riemann solutions are no longer
self-similar. The contact discontinuities and delta-shock curves are monotone increasing
(decreasing) and concave (convex).

Since the existence and uniqueness of the delta-shock solution are established, a natu-
ral question arises: is it stable? Taking a cue from the scalar conservation law with time-
dependent viscosity

Ut +
(
F(U)

)

x = Q(t)Uxx, Q(t) > 0,

we introduce the time-dependent viscous perturbation

⎧
⎨

⎩

ut + ( u2

2 )x = ε( 1
(1+t)μ

∫ t
0

1
(1+s)μ ds)uxx – μ

1+t u,

vt + (vu)x = 0,
(1.3)

to analyze the stability of the solutions involving delta-shock and vacuum to (1.1)-(1.2),
where

∫ t

0

1
(1 + s)μ

ds =

⎧
⎨

⎩

ln(1 + t), μ = 1,
1

1–μ
( 1

(1+t)μ–1 – 1), μ �= 1.
(1.4)



Li Boundary Value Problems        (2023) 2023:109 Page 3 of 20

The hyperbolic systems of conservation laws with time-dependent viscosity Q(t) = εt were
independently proposed by Tupciev [31] and Dafermos [32]. By applying this method, Tan,
Zhang, and Zheng [21] initially studied the delta-shock for a nonstrictly hyperbolic system
of conservation laws. Later, the method was used to study the delta-shock for various
systems of conservation laws, see papers [20, 22, 33–37]. We refer to works [10, 11], for
the nonhomogeneous triangular systems of conservation laws with nonlinear function
Q(t).

As can easily be seen, although the solutions of (1.1)-(1.2) are non-self-similar, the so-
lutions of (2.1)-(2.2) retain a similar structure if the initial data belong to a bounded total
variation space. With the introduction of the transformation u = w

(1+t)μ , (1.3) becomes the
modified viscous system (4.1), which is a viscous approximation of the modified system
(2.1). One can observe that if (w, v) is the solution of the problem (4.1) and (2.2), then
(u, v) = ( w

(1+t)μ , v) is the solutions of the problem (1.3) with (1.2). Therefore, so long as we
prove the stability of solutions to (2.1)-(2.2) under viscous perturbation, the stability of
solutions of (1.1)-(1.2) to viscous perturbation can be obtained because ε is independent
of t. We first establish the existence of the solutions depending on the similarity variable
ξ = x

∫ t
0

1
(1+s)μ ds

for the modified viscous system (4.1) with (2.2). Then, we investigate the

limits of the solutions to the system (4.1) with (2.2) as ε → 0+. It is discovered that when
u– > u+, the limit of solutions to (4.1) with (2.2) is identical with the delta-shock solution
of (2.1)-(2.2). The limit function of vε is a sum of a step function and a Dirac delta function.
Apart from that, it is also shown that when u– < u+, the vacuum solution of (2.1)-(2.2) is
just the limit of the solution of the system (4.1) with (2.2) as ε → 0+. So, the stability of
solutions of (2.1)-(2.2) and (1.1)-(1.2) to viscous perturbation is proved.

This paper includes six parts. Section 2 discusses the Riemann problem for a modified
homogeneous system. Section 3 constructs the Riemann solutions of (1.1)-(1.2). Section 4
proves the existence of solutions to the modified viscous system (4.1) with (2.2). Section 5
analyzes the limiting behavior of solutions of (4.1) and (2.2) as ε → 0+. Section 6 gives the
conclusion.

2 Riemann solutions for (2.1)
In this section, we construct the Riemann solutions to the modified homogeneous system
(2.1) with the same Riemann initial data. For convenience, we assume that v ≥ 0 through-
out the paper. Inserting u = w

(1+t)μ into (1.1), we obtain the following homogeneous con-
servative system, after some manipulation,

⎧
⎨

⎩

wt + ( w2

2(1+t)μ )x = 0,

vt + ( wv
(1+t)μ )x = 0.

(2.1)

Meanwhile, the initial data become

(
w(x, 0), v(x, 0)

)
=

⎧
⎨

⎩

(u–, v–) x < 0,

(u+, v+) x > 0.
(2.2)

The double eigenvalue of system (2.1) is λ = w
(1+t)μ , and the corresponding right eigenvector

is −→r = (0, 1)T satisfying ∇λ · −→r = 0. Consequently, (2.1) is nonstrictly hyperbolic, and
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λ is linearly degenerate. The linear degeneracy excludes the possibility of the solutions
containing rarefaction and shock waves.

A bounded discontinuity at x = x(t) satisfies the Rankine-Hugoniot condition

⎧
⎨

⎩

–σ (t)[w] + [ w2

2(1+t)μ ] = 0,

–σ (t)[v] + [ wv
(1+t)μ ] = 0,

(2.3)

where σ (t) = x′(t), [w] = wl – wr with wl = w(x(t) – 0, t), wr = w(x(t) + 0, t), in which [w] de-
notes the jump of w across the discontinuity. Unlike the classical systems of conservation
laws, the propagation speed of discontinuity is related to the time t.

Solving (2.3) yields the contact discontinuity

J : σ (t) =
wl

(1 + t)μ
=

wr

(1 + t)μ
. (2.4)

It stands to reason that if wl = wr , the two states (wl, vl) and (wr , vr) can be connected using
a contact discontinuity J .

We now construct the Riemann solutions by means of the constants, vacuum and con-
tact discontinuity. When u– < u+, the Riemann solution, which is composed of two contact
discontinuities J1 and J2 with the vacuum state (denoted by Vac) between them, can be ex-
pressed as

(w, v)(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

(u–, v–), x < u–
∫ t

0
1

(1+s)μ ds,

Vac, u–
∫ t

0
1

(1+s)μ ds ≤ x ≤ u+
∫ t

0
1

(1+s)μ ds,

(u+, v+), x > u+
∫ t

0
1

(1+s)μ ds,

(2.5)

where the integral
∫ t

0
1

(1+s)μ ds is given explicitly by (1.4).
When u– > u+, the singularity of solution must happen, which is caused by the super-

position of linearly degenerate characteristics in some specific initial data. Motivated by
[8, 20], the solution containing delta-shock should be kept in mind. For this purpose, the
definitions of two-dimensional weighted delta function and delta-shock solution are in-
troduced as follows.

Definition 2.1 A two-dimensional weighted delta function η(s)δS supported on a smooth
curve S = {(x(s), t(s)) : c ≤ s ≤ d} is defined by

〈
η(s)δS,φ(x, t)

〉
=

∫ d

c
η(s)φ

(
x(s), t(s)

)
ds (2.6)

for all test functions φ ∈ C∞
0 (R × R+).

Definition 2.2 A pair (w, v) is referred to as a delta-shock solution to (2.1) in the sense of
distributions if there exists a smooth curve S and a weight η ∈ C1(S) such that w and v are
represented in the following form

v(x, t) = v0(x, t) + η(t)δS, w(x, t) = w0(x, t), w(x, t)|S = wδ(t), (2.7)
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where v0(x, t) = vl(x, t) – [v]H(x – x(t)), w0(x, t) = wl(x, t) – [w]H(x – x(t)), in which
(wl, vl)(x, t) and (wr , vr)(x, t) are piecewise smooth solutions to (2.1), H(x) is the Heavi-
side function, which is equal to zero for x < 0 and to one for x > 0, and it satisfies

〈w,φt〉 +
〈

w2

2(1 + t)μ
,φx

〉

= 0, 〈v,φt〉 +
〈

wv
(1 + t)μ

,φx

〉

= 0 (2.8)

for all test functions φ ∈ C∞
0 (R × R+) in which

〈
wv

(1 + t)μ
,φ

〉

=
∫ +∞

0

∫ +∞

–∞
w0v0

(1 + t)μ
φ dx dt +

〈
η(t)ωδ(t)
(1 + t)μ

δS,φ
〉

,

and v has the similar integral identities as above.

In the light of these definitions, we seek a solution with the discontinuity x = x(t) ∈ C1

for system (2.1) of the form

(w, v)(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

(wl, vl)(x, t), x < x(t),

(wδ(t),η(t)δ(x – x(t))), x = x(t),

(wr , vr)(x, t), x > x(t).

(2.9)

If a pair (w, v) of the form (2.9) satisfies the relation

⎧
⎪⎪⎨

⎪⎪⎩

dx(t)
dt = σ (t) = wδ (t)

(1+t)μ ,

–[w]σ (t) + [ w2

2(1+t)μ ] = 0,
dη(t)

dt = –[v]σ (t) + [ wv
(1+t)μ ],

(2.10)

then it is said to be a solution to system (2.1) in the sense of distributions. The proof is
similar to that [20, 33], so we omit it.

System (2.10) reflecting the exact relationship among the limit states on two sides of
the discontinuity, the weight, propagation speed and the location of the discontinuity is
referred to as the generalized Rankine-Hugoniot relation.

Furthermore, to guarantee that such a discontinuity is unique, the delta entropy condi-
tion

λ(wr , vr) <
dx(t)

dt
< λ(wl, vl) (2.11)

should be added. (2.11) tells us that all characteristics on both sides of the discontinuity
are incoming.

A discontinuity of the form (2.9), satisfying (2.10) and (2.11), is known as a delta-shock
of the system (2.1), symbolized by δ.

In the following, the generalized Rankine-Hugoniot relation will be applied to the case
u– > u+. At this time, the solution is a delta-shock in the following form

(w, v)(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

(u–, v–), x < x(t),

(wδ(t),η(t)δ(x – x(t))), x = x(t),

(u+, v+), x > x(t).

(2.12)
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Under the delta entropy condition

u+

(1 + t)μ
<

wδ(t)
(1 + t)μ

<
u–

(1 + t)μ
, (2.13)

we solve the generalized Rankine-Hugoniot relation (2.10) with initial condition

t = 0 : x(0) = 0,η(0) = 0 (2.14)

to derive

⎧
⎪⎪⎨

⎪⎪⎩

wδ = u–+u+
2 , σ (t) = u–+u+

2(1+t)μ ,

x(t) = u–+u+
2

∫ t
0

1
(1+s)μ ds,

η(t) = (u––u+)(v–+v+)
2

∫ t
0

1
(1+s)μ ds,

(2.15)

where
∫ t

0
1

(1+s)μ ds is shown in (1.4).

3 Riemann solutions to (1.1)-(1.2)
In view of discussion in the above section, we construct the solutions of the original system
(1.1) with initial data (1.2) in terms of (u, v)(x, t) = ( w

(1+t)μ , v)(x, t).
When the initial data satisfy u– < u+, the Riemann solution to (1.1) with (1.2) can be

shown as

(u, v)(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

( u–
(1+t)μ , v–), x < u–

∫ t
0

1
(1+s)μ ds,

Vac, u–
∫ t

0
1

(1+s)μ ds ≤ x ≤ u+
∫ t

0
1

(1+s)μ ds,

( u+
(1+t)μ , v+), x > u+

∫ t
0

1
(1+s)μ ds.

(3.1)

In addition, we have

d(u±
∫ t

0
1

(1+s)μ ds)
dt

=
u±

(1 + t)μ
,

d2(u±
∫ t

0
1

(1+s)μ ds)
dt2 = –

μu±
(1 + t)μ+1 .

According to the signs of u– and u+, it can be concluded that the contact discontinuities
curves are either monotone increasing and concave or monotone decreasing and convex.

Definition 3.1 If there exists a smooth curve S and a weight η ∈ C1(S) such that u and v
are represented in the following form

v(x, t) = v0(x, t) + η(t)δS, u(x, t) = u0(x, t), u(x, t)|S = uδ(t), (3.2)

then a pair (u, v) is called a delta-shock type solution to (1.1) in the sense of distributions,
where v0(x, t) = vl(x, t)–[v]H(x–x(t)), u0(x, t) = ul(x, t)–[u]H(x–x(t)), in which (ul, vl)(x, t)
and (ur , vr)(x, t) are piecewise smooth solutions to the system (1.1), and it satisfies

〈u,φt〉 +
〈

u2

2
,φx

〉

=
〈

μ

1 + t
u,φ

〉

, 〈v,φt〉 + 〈uv,φx〉 = 0 (3.3)

for all φ ∈ C∞
0 (R × R+), where 〈uv,φ〉 =

∫ +∞
0

∫ +∞
–∞ u0v0φ dx dt + 〈η(t)uδ(t)δS,φ〉.
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When the initial data satisfy u– > u+, we look for the Riemann solution of (1.1)-(1.2) in
the following form

(u, v)(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

( u–
(1+t)μ , v–), x < x(t),

(uδ(t),η(t)δ(x – x(t))), x = x(t),

( u+
(1+t)μ , v+), x > x(t)

(3.4)

satisfying the generalized Rankine-Hugoniot relation

⎧
⎪⎪⎨

⎪⎪⎩

dx(t)
dt = uδ(t),

–[u]uδ(t) + [ u2

2 ] = 0,
dη(t)

dt = –[v]uδ(t) + [uv],

(3.5)

in which the jumps across the discontinuity are

[u] =
u–

(1 + t)μ
–

u+

(1 + t)μ
, [uv] =

u–v–

(1 + t)μ
–

u+v+

(1 + t)μ
. (3.6)

Also, the over-compressive entropy condition

u+

(1 + t)μ
< uδ(t) <

u–

(1 + t)μ
(3.7)

should be satisfied to ensure the uniqueness of the solution.
Considering (3.7), we solve the generalized Rankine-Hugoniot relation (3.5) taking into

account the initial value (2.14) to obtain the x(t), uδ(t) and η(t).
Consequently, when u+ < u–, the solution is a delta-shock in the following form

(u, v)(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

( u–
(1+t)μ , v–), x < (u–+u+)

2
∫ t

0
1

(1+s)μ ds,

( (u–+u+)
2(1+t)μ ,η(t)δ(x – x(t))), x = (u–+u+)

2
∫ t

0
1

(1+s)μ ds,

( u+
(1+t)μ , v+), x > (u–+u+)

2
∫ t

0
1

(1+s)μ ds,

(3.8)

where η(t) is displayed in (2.15). Moreover, we have

d( u–+u+
2

∫ t
0

1
(1+s)μ ds)

dt
=

u– + u+

2(1 + t)μ
,

d2( u–+u+
2

∫ t
0

1
(1+s)μ ds)

dt2 = –
μ(u– + u+)
2(1 + t)μ+1 ,

which means that the delta-shock curve is either monotone increasing and concave or
monotone decreasing and convex.

In the following context, we show that the delta-shock solution satisfies (1.1) in the sense
of distributions. For any φ ∈ C∞

0 (R ×R+), by means of the integration by parts and Green’s
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formula, one can calculate

〈u,φt〉 +
〈

u2

2
,φx

〉

–
〈

μu
1 + t

,φ
〉

=
∫ +∞

0

∫ x(t)

–∞
u–

(1 + t)μ
φt dx dt +

∫ +∞

0

∫ +∞

x(t)

u+

(1 + t)μ
φt dx dt

+
∫ +∞

0

∫ x(t)

–∞
1
2

(
u–

(1 + t)μ

)2

φx dx dt +
∫ +∞

0

∫ +∞

x(t)

1
2

(
u+

(1 + t)μ

)2

φx dx dt

–
∫ +∞

0

∫ x(t)

–∞
μu–

(1 + t)μ+1 φ dx dt –
∫ +∞

0

∫ +∞

x(t)

μu+

(1 + t)μ+1 φ dx dt

=
∫ +∞

0

∫ x(t)

–∞

(
u–

(1 + t)μ
φ

)

t
dx dt +

∫ +∞

0

∫ +∞

x(t)

(
u+

(1 + t)μ
φ

)

t
dx dt

+
∫ +∞

0

∫ x(t)

–∞

(
1
2

(
u–

(1 + t)μ

)2

φ

)

x
dx dt +

∫ +∞

0

∫ +∞

x(t)

(
1
2

(
u+

(1 + t)μ

)2

φ

)

x
dx dt

=
∮ (

–
u–

(1 + t)μ
φ dx +

1
2

(
u–

(1 + t)μ

)2

φ dt
)

+
∮ (

–
u+

(1 + t)μ
φ dx +

1
2

(
u+

(1 + t)μ

)2

φ dt
)

=
∫ +∞

0

(

–
u–

(1 + t)μ
dx
dt

+
u+

(1 + t)μ
dx
dt

+
1
2

(
u–

(1 + t)μ

)2

–
1
2

(
u+

(1 + t)μ

)2)

φ dt

= 0

and

〈v,φt〉 + 〈vu,φx〉

=
∫ +∞

0

∫ x(t)

–∞

{

(v–φ)t +
(

v–u–

(1 + t)μ
φ

)

x

}

dx dt

+
∫ +∞

0

∫ +∞

x(t)

{

(v+φ)t +
(

v+u+

(1 + t)μ
φ

)

x

}

dx dt +
∫ +∞

0
η(t) dφ

=
∮ {

–v–φ dx +
v–u–

(1 + t)μ
φ dt

}

+
∮ {

–v+φ dx +
v+u+

(1 + t)μ
φ dt

}

–
∫ +∞

0
φ dη(t)

=
∫ +∞

0

(

–v–
dx
dt

+
v–u–

(1 + t)μ
+ v+

dx
dt

–
v+u+

(1 + t)μ
–

dη(t)
dt

)

φ dt

= 0.

4 Existence of solutions to the system (4.1) and (2.2)
This section shows the existence of solutions to the modified viscous system (4.1) and
(2.2). Substituting u = w

(1+t)μ into the system (1.3) yields

⎧
⎨

⎩

wt + ( w2

2(1+t)μ )x = ε( 1
(1+t)μ

∫ t
0

1
(1+s)μ ds)wxx,

vt + ( vw
(1+t)μ )x = 0.

(4.1)
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Seeking the solutions depending on the variable ξ = x
∫ t

0
1

(1+s)μ ds
, one acquires

⎧
⎨

⎩

–ξwξ + ( w2

2 )ξ = εwξξ ,

–ξvξ + (vw)ξ = 0
(4.2)

and

(w, v)(±∞) = (u±, v±). (4.3)

Theorem 4.1 For every fixed ε > 0 and u– �= u+, there is a unique and monotonic smooth
solution for the problem

⎧
⎨

⎩

–ξwξ + ( w2

2 )ξ = εwξξ ,

w(±∞) = u±.
(4.4)

Proof Motivated by [32], we deal with the altered problem
⎧
⎨

⎩

–ξwξ + ν( w2

2 )ξ = εwξξ ,

w(±R) = u±,
(4.5)

where ν ∈ [0, 1], R is a real number that is big enough. Integrating (4.5) over (ξ0, ξ ) yields

w(ξ ) – w(ξ0) = w′(ξ0)
∫ ξ

ξ0

exp

(∫ s

ξ0

νw(r) – r
ε

dr
)

ds. (4.6)

We assume that u– > u+, the case u– < u+ can be treated similarly. If ξ1 is a critical point of
w(ξ ) satisfying w′(ξ1) = 0, then we infer from (4.5) that w(n)(ξ1) = 0 for n ≥ 2. Consequently,
w(ξ ) is constant in [–R, R], which leads to a contradiction. It follows from (4.6) that the
monotonicity of w(ξ ) depends on w′(ξ0). If w′(ξ0) > 0, then we have w(ξ ) > w(ξ0), which is
impossible as u– > u+. Hence, the solution of (4.5) is monotone decreasing. Considering
w′(ξ ) < 0, we estimate

∥
∥w(ξ )

∥
∥

L∞ = sup
ξ∈[–R,R]

∣
∣w(ξ )

∣
∣ ≤ max

{|u–|, |u+|},

which is independent of ν and R. By Theorem 3.1 in [32], the existence of a solution of
(4.4) on (–∞, +∞) is obtained.

Now we plan to show the uniqueness of the solution. Assume that w1(ξ ) and w2(ξ ) are
two smooth solutions of (4.4) and denote W (ξ ) = w2(ξ ) – w1(ξ ). Then W (ξ ) is a smooth
solution of the boundary value problem

⎧
⎨

⎩

–ξWξ + (Wh)ξ = εWξξ ,

W (±∞) = 0,
(4.7)

where h(ξ ) = w2(ξ )+w1(ξ )
2 . Multiplying the first equation of (4.4) by exp( ξ2

2ε
) gives

d
dξ

(

w′(ξ ) exp

(
ξ 2

2ε

))

=
w(ξ )

ε
w′(ξ ) exp

(
ξ 2

2ε

)

.
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Integrating the above formula, we obtain

∣
∣w′(ξ )

∣
∣ ≤ ∣

∣w′(0)
∣
∣ exp

(
2 max{|u–|, |u+|}|ξ | – ξ 2

2ε

)

.

Hence, we deduce

∣
∣W ′(ξ )

∣
∣ ≤ (∣

∣w′
1(0)

∣
∣ +

∣
∣w′

2(0)
∣
∣
)

exp

(
2 max{|u–|, |u+|}|ξ | – ξ 2

2ε

)

.

This shows that W ′(ξ ) tends to zero when |ξ | → ∞ for any fixed ε > 0. As a result, we have
limξ→±∞ ξW (ξ ) = 0 if limξ→±∞ W (ξ ) = 0.

Suppose that W (ξ ) is not a null function. Let α and β be two consecutive zeros of W (ξ )
satisfying –∞ ≤ α < β ≤ +∞. By means of the boundedness of h(ξ ), we integrate (4.7)
over (α,β) to get

∫ β

α

W (ξ ) dξ = ε
(
W ′(β) – W ′(α)

)
.

If W (ξ ) > 0 for ξ ∈ (α,β), then we obtain W ′(β) > W ′(α), which contradicts W ′(β) ≤
W ′(α). Similarly, if W (ξ ) < 0, one can also derive a contradiction. Consequently, we ar-
rive at W (ξ ) = 0. �

Theorem 4.2 Assume that w(ξ ) is the solution of (4.4), then the problem
⎧
⎨

⎩

–ξvξ + (vw)ξ = 0,

v(±∞) = v±
(4.8)

has a weak solution v ∈ L1[–∞,∞]

v(ξ ) =

⎧
⎨

⎩

v1(ξ ) = v– exp(
∫ ξ

–∞
–w′(s)
w(s)–s ds), ξ < ξα ,

v2(ξ ) = v+ exp(
∫ +∞
ξ

w′(s)
w(s)–s ds), ξ > ξα ,

(4.9)

where ξα satisfies ξα = w(ξα).

Proof Integrating (4.8) over (–∞, ξα) and (ξα , +∞) yields (4.9). Furthermore, we have

lim
ξ→ξ–

α

v1(ξ ) = +∞, lim
ξ→ξ+

α

v2(ξ ) = +∞.

Next, we show that v(ξ ) ∈ L1[ξ1, ξ2] for any interval [ξ1, ξ2] containing ξα . We integrate
(4.8) over [ξ1, ξ ] for ξ1 < ξ < ξα to obtain

v1(ξ )
(
w(ξ ) – ξ

)
– v1(ξ1)

(
w(ξ1) – ξ1

)
+

∫ ξ

ξ1

v1(r) dr = 0, (4.10)

which may be written in the following form
⎧
⎨

⎩

a(ξ )p′(ξ ) + p(ξ ) = A1,

p(ξ1) = 0
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by setting

p(ξ ) =
∫ ξ

ξ1

v1(r) dr, A1 = v1(ξ )
(
w(ξ1) – ξ1

)
, a(ξ ) = w(ξ ) – ξ .

Solving for p(ξ ) from the above equation, we have

p(ξ ) = A1

{

1 – exp

(

–
∫ ξ

ξ1

dr
a(r)

)}

.

Noticing that a(ξ ) > 0 and a(ξ ) = O(|ξ – ξα|) as ξ → ξ–
α , one deduces

lim
ξ→ξ–

α

∫ ξ

ξ1

v1(r) dr = A1. (4.11)

Therefore,

lim
ξ→ξ–

α

v1(ξ )
(
w(ξ ) – ξ

)
= 0. (4.12)

Similarly, we have

lim
ξ→ξ+

α

∫ ξ

ξ2

v2(r) dr = v2(ξ2)
(
w(ξ2) – ξ2

)
(4.13)

and

lim
ξ→ξ+

α

v2(ξ )
(
w(ξ ) – ξ

)
= 0. (4.14)

(4.11) and (4.13) show that v(ξ ) ∈ L1[ξ1, ξ2].
We now show v(ξ ) satisfying

–
∫ ξ2

ξ1

(
vw(ξ ) – vξ

)
φ′ dξ +

∫ ξ2

ξ1

vφ dξ = 0 (4.15)

for every test function φ ∈ C∞
0 [ξ1, ξ2]. In fact, for ξ1 < σ1 < ξα < σ2 < ξ2, we have

I = –
∫ ξ2

ξ1

(
vw(ξ ) – vξ

)
φ′ dξ +

∫ ξ2

ξ1

vφ dξ ,

=
(∫ σ1

ξ1

+
∫ σ2

σ1

+
∫ ξ2

σ2

)
(
vφ – v

(
w(ξ ) – ξ

)
φ′)dξ

= I1 + I2 + I3.

(4.16)

For the first term I1 and the third term I3, we have

|I1| =
∣
∣
∣
∣–φ(σ1)v1(σ1)

(
w(σ1) – σ1

)
+

∫ σ1

ξ1

((
v1(ξ )

(
w(ξ ) – ξ

))′ + v1(ξ )
)
φ dξ

∣
∣
∣
∣

=
∣
∣φ(σ1)v1(σ1)

(
w(σ1) – σ1

)∣
∣ → 0, as σ1 → ξ–

α ,
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|I3| =
∣
∣φ(σ2)v2(σ2)

(
w(σ2) – σ2

)∣
∣ → 0, as σ2 → ξ+

α .

In virtue of v(ξ ) ∈ L1[ξ1, ξ2], the second term I2 is estimated as follows

|I2| ≤
∫ σ2

σ1

∣
∣φ –

(
w(ξ ) – ξ

)
φ′∣∣|v|dξ → 0, as σ1 → ξ–

α ,σ2 → ξ+
α .

By virtue of the fact that I is independent of ξ1 and ξ2, (4.15) holds. And so, v(ξ ) is a weak
solution of (4.8). This finishes the proof. �

5 Limit solutions of (4.1) and (2.2) as ε falls to zero
This section analyzes the limit of solutions of (4.1) and (2.2) as ε falls to zero. It is shown
that the solutions of (2.1)-(2.2) are stable.

Case 1 u– > u+.

Lemma 5.1 Let ξε
α be the unique point satisfying ξε

α = wε(ξε
α ), ξα = limε→0+ ξε

α (pass to a
subsequence if necessary). Then, for any β > 0,

lim
ε→0+

wε
ξ (ξ ) = 0, for |ξ – ξα| ≥ β ,

lim
ε→0+

wε(ξ ) =

⎧
⎨

⎩

u–, for ξ ≤ ξα – β ,

u+, for ξ ≥ ξα + β

uniformly in the above intervals.
Denote (wε , vε) by (w, v) when there is no confusion.

Proof Take ξ3 = ξα + β/2, and let ε be so small that ξε
α < ξ3 – β/4. Integrating the first

equation of (4.2) twice over (ξ3, ξ ) provides

w(ξ3) – w(ξ ) = –w′(ξ3)
∫ ξ

ξ3

exp

(∫ r

ξ3

w(s) – s
ε

ds
)

dr

≥ –w′(ξ3)
∫ ξ–ξ3

0
exp

(
2(u+ – ξ3)r – r2

2ε

)

dr.

Passing to the limit ξ → +∞, we have

u– – u+ ≥ –w′(ξ3)
∫ +∞

0
exp

(
2(u+ – ξ3)r – r2

2ε

)

dr ≥ –w′(ξ3)εC1,

in which C1 is a positive constant independent of ε. Thus, we get

∣
∣w′(ξ3)

∣
∣ ≤ u– – u+

εC1

and

∣
∣w′(ξ )

∣
∣ ≤ u– – u+

εC1
exp

(∫ ξ

ξ3

w(s) – s
ε

ds
)

.
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Additionally, as

w(s) – s = w(s) – w
(
ξε
α

)
+ ξε

α – s =
(
w′(ν) – 1

)(
s – ξε

α

) ≤ –β/4, ξε
α < ν < s,

we have

∣
∣w′(ξ )

∣
∣ ≤ u– – u+

εC1
exp

(

–
β

4ε
(ξ – ξ3)

)

,

which shows that

lim
ε→0+

wε
ξ (ξ ) = 0, uniformly for ξ ≥ ξα + β .

When ξ > ξ4 ≥ ξα + β , we have

w(ξ4) – w(ξ ) = –w′(ξ4)
∫ ξ

ξ4

exp

(∫ r

ξ4

w(s) – s
ε

ds
)

dr

yielding

∣
∣w(ξ ) – w(ξ4)

∣
∣ ≤ ∣

∣w′(ξ4)
∣
∣
∫ ξ

ξ4

exp

(∫ r

ξ4

–β

4ε
ds

)

dr =
4ε

β

∣
∣w′(ξ4)

∣
∣

{

1 – exp

(
β

4ε
(ξ4 – ξ )

)}

.

If we pass to the limit ξ → +∞, we conclude

∣
∣u+ – w(ξ4)

∣
∣ ≤ 4ε

β

∣
∣w′(ξ4)

∣
∣,

which shows that

lim
ε→0+

wε(ξ ) = u+, uniformly for ξ ≥ ξα + β .

By a similar reasoning, we can obtain the result for ξ ≤ ξα –β . The Lemma 5.1 is proved. �

Lemma 5.2 For any β > 0,

lim
ε→0+

vε(ξ ) =

⎧
⎨

⎩

v–, for ξ < ξα – β ,

v+, for ξ > ξα + β

uniformly.

Proof Take ε0 > 0 so small that |ξε
α – ξα| < β/2 whenever 0 < ε ≤ ε0. For any ξ1 ≤ ξα – β

and ε ≤ ε0, we have ξ1 ≤ ξε
α – β/2 and

v(ξ1) = v– exp

(∫ ξ1

–∞
–w′(s)

w(s) – s
ds

)

.

For any s ∈ (–∞, ξ1], we have

w(s) – s = w(s) – w
(
ξε
α

)
+ ξε

α – s =
(
w′(ς ) – 1

)(
s – ξε

α

) ≥ β/2, s < ς < ξε
α .
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So, we arrive at

1 ≤ exp

(∫ ξ1

–∞
–w′(s)

w(s) – s
ds

)

≤ exp

(
2
β

(
u– – w(ξ1)

)
)

→ 1 as ε → 0+,

where we have used the Lemma 5.1. As a result, we get

lim
ε→0+

vε(ξ ) = v–, uniformly for ξ < ξα – β .

The other half can be derived analogously. This completes the proof. �

In the following, we analyze the limiting behavior of vε in the neighborhood of ξ = ξα as
ε → 0+. Setting

σ = ξα = lim
ε→0+

ξε
α = lim

ε→0+
wε

(
ξε
α

)
= w(σ ) = wδ , (5.1)

we have

u+ < σ < u–. (5.2)

Take ψ ∈ C∞
0 [ξ1, ξ2] (ξ1 < σ < ξ2) such that ψ(ξ ) ≡ ψ(σ ) for ξ in a neighborhood � of

ξ = σ (ψ is called a sloping test function). When 0 < ε < ε0, ξε
α ∈ � ⊂ (ξ1, ξ2). It follows

from (4.2) that

–
∫ ξ2

ξ1

(
(wε)2

2
– wεξ

)

ψ ′ dξ +
∫ ξ2

ξ1

wεψ dξ = ε

∫ ξ2

ξ1

wεψ ′′dξ (5.3)

and

–
∫ ξ2

ξ1

(
vεwε – vεξ

)
ψ ′ dξ +

∫ ξ2

ξ1

vεψ dξ = 0. (5.4)

Using (5.4) for α1,α2 ∈ � s.t. α1 < σ < α2, we calculate

∫ ξ2

ξ1

(
vεwε – vεξ

)
ψ ′ dξ =

∫ α1

ξ1

(
vεwε – vεξ

)
ψ ′ dξ +

∫ ξ2

α2

(
vεwε – vεξ

)
ψ ′ dξ .

Using Lemmas 5.1-5.2, we have

lim
ε→0+

∫ ξ2

ξ1

(
vεwε – vεξ

)
ψ ′dξ

=
∫ α1

ξ1

(v–u– – v–ξ )ψ ′ dξ +
∫ ξ2

α2

(v+u+ – v+ξ )ψ ′ dξ

= (v–u– – v–α1 – v+u+ + v+α2)ψ(σ ) +
∫ α1

ξ1

v–ψ(ξ ) dξ +
∫ ξ2

α2

v+ψ(ξ ) dξ .
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Passing to the limit α1 → σ – and α2 → σ + in the above formula, we find

lim
ε→0+

∫ ξ2

ξ1

(
vεwε – vεξ

)
ψ ′dξ =

(
–σ (v– – v+) + (v–u– – v+u+)

)
ψ(σ )

+
∫ ξ2

ξ1

H(ξ – σ )ψ(ξ ) dξ ,

where H(x) is a step function: H(x) = v– for x < 0 and H(x) = v+ for x > 0. Using (5.4), we
arrive at

lim
ε→0+

∫ ξ2

ξ1

(
vε – H(ξ – σ )

)
ψ(ξ ) dξ =

(
–σ (v– – v+) + (v–u– – v+u+)

)
ψ(σ ) (5.5)

for all sloping test functions ψ ∈ C∞
0 [ξ1, ξ2]. By the approximation process, (5.5) holds for

all ψ ∈ C∞
0 [ξ1, ξ2].

Analogously, from (5.3), we can conclude that

–σ (u– – u+) +
(

u2
–

2
–

u2
+

2

)

= 0 (5.6)

in the limit ε → 0+. It follows from (5.6) that σ = wδ = u–+u+
2 . Consequently, vε converges to

a sum of a step function and a weighted Dirac delta function with the weight (u––u+)(v–+v+)
2

in the weak star topology of C∞
0 (R).

It is important to note that the strength (v–+v+)(u––u+)
2 differs from the η(t) in (2.15). The

reason is caused by the introduction of the similarity variable ξ = x
∫ t

0
1

(1+s)μ ds
.

Case 2 u– < u+.

Lemma 5.3 For any β > 0,

lim
ε→0+

wε
ξ (ξ ) = 0, for ξ ≤ u– – β or ξ ≥ u+ + β ,

lim
ε→0+

(
wε , vε

)
(ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

(u–, v–), ξ < u– – β ,

(ξ , 0), u– – β ≤ ξ ≤ u+ + β ,

(u+, v+), ξ > u+ + β ,

(5.7)

uniformly in the above intervals.

Proof Take ξ3 = u+ + β . Integrating the first equation of (4.2) twice over [ξ3, ξ ] gives

w(ξ ) – w(ξ3) = w′(ξ3)
∫ ξ

ξ3

exp

(∫ r

ξ3

w(s) – s
ε

ds
)

dr

≥ w′(ξ3)
∫ ξ–ξ3

0
exp

1
2ε

(
2(u– – ξ3)r – r2)dr.

We obtain

u+ – u– ≥ w′(ξ3)
∫ +∞

0
exp

1
2ε

(
2(u– – ξ3)r – r2)dr ≥ w′(ξ3)εC2
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in going to the limit ξ → +∞, which provides

∣
∣w′(ξ3)

∣
∣ ≤ u+ – u–

εC2
,

where C2 is a constant independent of ε. So, we have

∣
∣w′(ξ )

∣
∣ ≤ u+ – u–

εC2
exp

(∫ ξ

ξ3

w(s) – s
ε

ds
)

.

As w(s) – s ≤ u+ – ξ3 < –β/2, we get

∣
∣w′(ξ )

∣
∣ ≤ u+ – u–

εC2
exp

(
–β

2ε
(ξ – ξ3)

)

giving

lim
ε→0+

wε
ξ (ξ ) = 0, uniformly for ξ ≥ u+ + β .

We now take ξ4 satisfying ξ > ξ4 ≥ u+ + β . Then, one has

∣
∣w(ξ ) – w(ξ4)

∣
∣ =

∣
∣w′(ξ4)

∣
∣
∫ ξ

ξ4

exp

(∫ r

ξ4

w(s) – s
ε

ds
)

dr

≤ ∣
∣w′(ξ4)

∣
∣
∫ ξ

ξ4

exp

(∫ r

ξ4

–β

2ε
ds

)

dr

=
2ε

β

∣
∣w′(ξ4)

∣
∣

{

1 – exp

(
β

2ε
(ξ4 – ξ )

)}

.

If we pass to the limit ξ → +∞, we obtain

∣
∣u+ – w(ξ4)

∣
∣ ≤ 2ε

β

∣
∣w′(ξ4)

∣
∣,

which means that

lim
ε→0+

wε(ξ ) = u+, uniformly for ξ ≥ u+ + β .

Furthermore, for ξ > ξ3, we have

v+ ≥ v(ξ ) = v+ exp

(∫ +∞

ξ

w′(s)
w(s) – s

ds
)

≥ v+(u+ – ξ )
w(ξ ) – ξ

→ v+, as ε → 0+,

which indicates that

lim
ε→0+

vε(ξ ) = v+, uniformly for ξ ≥ u+ + β .

In a similar manner, the conclusion for ξ ≤ u– – β can be obtained.
Now, we are in a position to analyze the limit solutions on [u– – β , u+ + β]. Set G(ξ ) =

w(ξ ) – ξ . Suppose that ξ1 and ξ2 satisfying –∞ < ξ1 < ξ2 < +∞ are two consecutive zeros
of G(ξ ). Integrating (4.2) over (ξ1, ξ2) yields ε ln w′(ξ2)

w′(ξ1) =
∫ ξ2
ξ1

G(ξ ) dξ . If G(ξ ) > 0 on (ξ1, ξ2),
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then we obtain w′(ξ2) > w′(ξ1), which contradicts w′(ξ2)–1 ≤ 0 and w′(ξ1)–1 ≥ 0. Similarly,
if G(ξ ) < 0, one can also deduce a contradiction. Consequently, G(ξ ) possesses a unique
zero point. Let ξε

α be the unique point satisfying w(ξε
α ) = ξε

α ∈ [u– – β , u+ + β]. Then, from
(4.2), we have w′′(ξ ) > 0 for ξ ∈ (–∞, ξε

α ), while w′′(ξ ) < 0 for ξ ∈ (ξε
α , +∞). Consequently,

we obtain

G′(ξ ) = w′(ξ ) – 1 ≤ w′(ξε
α

)
– 1 ≤ 0

giving

w(u+ + β) – (u+ + β) ≤ w(ξ ) – ξ ≤ w(u– – β) – (u– – β).

If we pass to the limit ε → 0+, we arrive at –β ≤ limε→0+ (w(ξ )–ξ ) ≤ β . Since β is arbitrary,
one deduces limε→0+ (w(ξ ) – ξ ) = 0 yielding

lim
ε→0+

vε(ξ ) = 0, uniformly for u– – β ≤ ξ ≤ u+ + β .

In consequence, a vacuum solution is obtained.
Consequently, we draw a conclusion. �

Theorem 5.4 Let (wε , vε)(ξ ) be the solution of (4.2)-(4.3) and u– < u+. Then,

lim
ε→0+

(
wε , vε

)
(ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

(u–, v–), ξ < u–,

(ξ , 0), u– ≤ ξ ≤ u+,

(u+, v+), ξ > u+.

Theorem 5.4 shows that the vacuum Riemann solution to (2.1)-(2.2) is stable under vis-
cous perturbation.

According to the above discussions, we have the following conclusion.

Theorem 5.5 Assume that (wε , vε)(x, t) is the solution depending on the variable ξ =
x

∫ t
0

1
(1+s)μ ds

of (4.1) with (2.2). Then, the limit, limε→0+ (wε , vε)(x, t) = (w, v)(x, t) exists in the

sense of distributions, and (w, v)(x, t) solves (2.1) with (2.2). The (w, v)(x, t) can be shown
explicitly as

(w, v)(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

(u–, v–), x < u–+u+
2

∫ t
0

1
(1+s)μ ds,

( u–+u+
2 , ( (u––u+)(v–+v+)

2
∫ t

0
1

(1+s)μ ds)δ(x – x(t))), x = u–+u+
2

∫ t
0

1
(1+s)μ ds,

(u+, v+), x > u–+u+
2

∫ t
0

1
(1+s)μ ds,

when u– > u+, and

(w, v)(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(u–, v–), x < u–
∫ t

0
1

(1+s)μ ds,

( x
∫ t

0
1

(1+s)μ ds
, 0), u–

∫ t
0

1
(1+s)μ ds ≤ x ≤ u+

∫ t
0

1
(1+s)μ ds,

(u+, v+), x > u+
∫ t

0
1

(1+s)μ ds

when u– < u+.



Li Boundary Value Problems        (2023) 2023:109 Page 18 of 20

Remark 5.6 From Theorem 5.5, one can observe that the limits of solutions depending
on ξ = x

∫ t
0

1
(1+s)μ ds

of (4.1) and (2.2) are just the Riemann solutions of (2.1) with (2.2) as

ε → 0+. Besides, it is not hard to see that if (wε , vε) solves the problem (4.1) and (2.2),
then (uε , vε) = ( wε

(1+t)μ , vε) solves the problem (1.3) and (1.2). Note that ε is independent
of t, then the limit, limε→0+ (uε , vε)(x, t) = ( w

(1+t)μ , v)(x, t) = (u, v)(x, t), exists in the sense of
distributions. (u, v)(x, t) solves (1.1)-(1.2) and can be expressed by

(u, v)(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

( u–
(1+t)μ , v–), x < u–+u+

2
∫ t

0
1

(1+s)μ ds,

( u–+u+
2(1+t)μ , ( (u––u+)(v–+v+)

2
∫ t

0
1

(1+s)μ ds)δ(x – x(t))), x = u–+u+
2

∫ t
0

1
(1+s)μ ds,

( u+
(1+t)μ , v+), x > u–+u+

2
∫ t

0
1

(1+s)μ ds

for u– > u+, and

(u, v)(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( u–
(1+t)μ , v–), x < u–

∫ t
0

1
(1+s)μ ds,

( x
∫ t

0
1

(1+s)μ ds(1+t)μ
, 0), u–

∫ t
0

1
(1+s)μ ds ≤ x ≤ u+

∫ t
0

1
(1+s)μ ds,

( u+
(1+t)μ , v+), x > u+

∫ t
0

1
(1+s)μ ds

for u– < u+. Hence, the solutions of (1.1) with (1.2) to viscous perturbations are stable.

6 Conclusion
This paper solves the Riemann problem for a 2 × 2 hyperbolic system of conservation
laws with a time-gradually-degenerate damping. Two kinds of solutions involving the
delta-shocks and vacuum are constructed explicitly by means of the variable substitu-
tion method. Under the influence of the time-dependent damping, the Riemann solu-
tions are non-self-similar. The contact discontinuities and delta-shock curves are mono-
tone increasing (decreasing) and concave (convex). Moreover, with the vanishing viscosity
method, the stability of the non-self-similar solutions containing delta-shock and vacuum
is proved by introducing a time-dependent viscous system.
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