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1 Introduction
Boundary value problems (BVPs) for ordinary or partial differential equations have re-
ceived wide attention due to their importance in engineering, physics, material mechan-
ics, and chemotaxis mechanisms; see, for example, [1-6] and the references therein.

Since fractional-order models are more accurate than integer-order models, fractional
differential equations, which have profound physical backgrounds and rich theoretical
connotations, have attracted much attention. Recently, many scholars have studied the
properties of solutions to some BVPs of fractional differential equations using the Banach
contraction mapping principle, Leray-Schauder nonlinear alternative, Guo-Krasnoselskii
fixed point theorem, monotone iterative technique, and so on [7-16].

As stated in [17], BVPs with integral boundary conditions have various applications in
applied fields, such as blood flow problems, chemical engineering, thermo-elasticity, un-
derground water flow, and population dynamics. Recent results on BVPs of fractional dif-
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ferential equations with integral boundary conditions can be seen in [17-22]. However, it
is necessary to point out that all the equations in the papers mentioned above only include
a single fractional derivative.

In 2014, Choudhary and Daftardar-Gejji [23] discussed the antiperiodic BVP of nonlin-

ear multi-order fractional differential equation

S MCD%u(t) = f(tu(t), telo,T],
u(0) = —u(T),

(1.1)

where 1, € R,i=0,1,...,n, 1, 70,0 < g < 3 < --- <&y, < 1. They proved the existence
and uniqueness of solutions to the BVP (1.1) in terms of the two-parametric functions of
the Mittag-Leftler type. It is worth mentioning that the equation in (1.1) is a generalization
of the classical relaxation equation and governs some fractional relaxation processes.

In 2020, Choi et al. [24] investigated the existence and uniqueness of solutions to the

BVP of nonlinear multi-order fractional differential equation

(CDg,u)(®) + X, M®)(CDG u)(E) + Y () (C DY u)(2)
+ot)u(t) =f(tu), tel0,1],
u(l)=p [y us)ds, — w'(0)+u'(1)=0,

where 1 <oj <oy < <, <a<2,0<B1<Pa< - <PBu<l,0<pu<l, i €C[0,1]
(i=1,2,...,n), t; € C[0,1] (i=1,2,...,m), o € C[0,1].

Motivated by the aforementioned works, in this paper, we consider the existence and
uniqueness of solutions to the following BVP of nonlinear multi-order fractional differen-

tial equation with integral boundary conditions

(CDG,u)(t) + 3212, M) (Dt u)(e)

+ 3w (OCDYw)e) + Y0, &) D u)(@)

+ 30 w(8) (DY u)(0) + o ()u(d) + f(t,ult) =0, te[0,1],
w'©0)=u"(0)=0,  w(0)=n fyuls)ds,  u(l)=n; [, uls)ds.

(1.2)

Throughout this paper, we always assume that 0 < §; <8 <+~ < g <1<y <pyr<---<
Vp<2<Pr<Pa<--<Bu<3<ar<ay< <oy <o <4y +2(1-n2) #0, Ay, wj, &k, 0,0
[0,1] > Rand f: [0,1] x R — R are continuous.

Remark 1 1f we let A;(t) = u;(t) = &(t) = wi(t) =o(t) =0 for t € [0,1] and n; = = 1 in
(1.2), then the BVP (1.2) is reduced to the model in [20].

Remark 2 This paper is motivated greatly by [24]. Compared with [24], the existence re-
sults in this paper are established under new and simpler conditions, indicating that our

works are not a trivial generalization of [24].

The main tools used in this paper are the following theorems.
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Theorem 1 (see [25]) Let X be a Banach space. Assume that 2 is an open bounded subset
of X with 0 € Q, and let T : Q — X be a compact operator such that

I Tull < llull, wued. (1.3)

Then T has a fixed point in Q.

Theorem 2 (see [26]) Let (X, d) be a complete metric space and T : X — X be contractive.
Then T has a unique fixed point in X.

2 Preliminaries
First of all, for the reader’s convenience, we mainly introduce some definitions and lemmas
of the Riemann-Liouville fractional integrals and fractional derivatives and the Caputo
fractional derivatives on a finite interval of the real line. For details, one can refer to [27,
28].

In this section, we always assume that N = {1,2,3,...}, u > 0 and [u] denotes the integer
part of x.

Definition 1 (see [27]) The Riemann-Liouville fractional integrals I}, u and I;" u of order
w on [0,1] are defined by

1 ' u(s)ds
0= 55 | 5=

and

1 U u(s)ds
()@ = T (1) /t (s—t)l-n’

respectively, where

+00
() = / s#le* ds.
0

Definition 2 (see [27]) The Riemann-Liouville fractional derivatives Dy, and D} u of
order p on [0,1] are defined by

d n
(Db, u)(t) = (E) (L) (1)

~ 1 d\" [t u(s)ds
" T(n-p) <E> /0 (¢ = sp-m1

and
d n
(D" ) (6) = (‘E) () 8)

~ 1 d\" ' us)ds
‘rm—m(‘%) o (s— gyt

respectively, where n = [u] + 1.
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Definition 3 (see [27]) Let Dj, [u(s)](¢) = (Dy,u)(t) and D}_[u(s)](t) = (D} u)(t) be the
Riemann-Liouville fractional derivatives of order . Then the Caputo fractional deriva-
tives Dfy, u and D}’ u of order 11 on [0, 1] are defined by

n-1 (k)
(CDL.u)(t) := (Dg+ |:u(s) - kfo)skD(t)

and

n-1 (k)
(CDiu)(t) := (D’f_ |:u(s) Y kfl) 1- s)kD ),

k=0

respectively, where

n=[u]+1 forué¢N; n=pu forueN. (2.1)
Lemma 1 (see [27]) Let n be given by (2.1) and u € C"[0,1). Then

(I&CD&u)(t) =u(t) +co+ 1t + >+ +cyqt™ Y,
wherec; € R,i=0,1,...,n—1.

Lemma 2 (see [28]) Let v > . Then the equation (“Dy, 15, u)(t) = (Iy, " u)(t), t € [0,1] is
satisfied for u € C[0, 1].

Lemma 3 (see [27]) Let n be given by (2.1). Then the following relations hold:
(1) Fork €{0,1,2,...,n—1}, °D}, tk = 0;

Cpt gv-1 _ L) v—p-1
(2) If v > n, then =Dy, "™ = =5t ™7

3 Results
Let C[0, 1] be the Banach space of all continuous functions defined on [0, 1] with the norm

leell = max [u(t)].

Lemma 4 Lety € C[0,1] be a given function. Then the BVP

(“Dgv(6) +y() =0, te[0,1],
v'(0) =v"(0) =0, (3.1)
V(0) =y fol v(s) ds, V(1) =n fol v(s)ds

has a unique solution

1
We) = f Gt sy(s)ds, telo,1],
0

where

(2t = Dy + 2] (1 = )* = 2[(£ = )y + o) (1 — 5)*

Gl(t,s) = (1 +2(1 - )T (e + 1)
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) ?

9l g<s<t<1,
0, 0<t<s<l.

Proof In view of the equation in (3.1) and Lemma 1, we have
w(t) = —(18‘+y)(t) —co—cit—ot? —c3t, tel0,1],

which, together with the boundary conditions in (3.1), shows that

1
v(t) = —(I8,) (@) + [(£ = Dny + n2 ] /0 v(s)ds + (I§,y)(1), £€[0,1]. (3.2)

From (3.2), we get

/0 1 v(s)ds

= 2 a—1
m +2(1— 1) [F(a / (1—5)""y(s)ds - / 1- s)ds] (3.3)

Therefore, it follows from (3.2) and (3.3) that the BVP (3.1) has a unique solution

v(t)

(2t —1)n; +2 !
(71 +2(1 = )]0 (@) Jo

2[(t = 1)m + na]

1
~ +2(1—,72)]1~(a+1)/0 (1-9)%y(s)ds

/t{_(t —s)! N (2t = D)+ 2]ee(1 = 5)°7" = 2[(t = Dy + 1] (1 =5
0 I(a) [ +2(1 =)l (e + 1)

/1{ (2 = Dy +2]er(1 = 5)*71 = 2[(¢ = Dy + 2] (1 = s
+

(1-5)""y(s)ds

_ _ -l
= F()_/(t )T y(s)ds +

r } y(s)ds

)0(
[ +2(1 - )]T(a + 1) }ﬂﬂm

1
=f G(t,s)y(s)ds, te€]0,1]. O
0

Remark 3 Since G(t,s) defined in Lemma 4 is continuous on [0, 1] x [0, 1], there exists a
constant M > 0 such that

|G(t,s)| <M for (t,5) € [0,1] x [0,1]. (3.4)

Lemma 5 Ify € C[0,1] is a solution of the equation

¥(2) =f<t,/0 G(z,5)y(s) ds> Z)‘ OIE)(0)

—me“@ﬂ Zan“”m

ot 5[ 2”1
_Z”M DO~ T mIr =8 (3.5)

Page 5 of 14
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)@ - (Igrly)u)]t”’}

1
+ o(t)/ G(t,8)y(s)ds, te][0,1],
0

then u(t) := fol G(t,8)y(s)ds, t € [0,1] is a solution of the BVP (1.2) in C*[0, 1]. Conversely,
ifu € C%[0,1] is a solution of the BVP (1.2), then y(t) := —(°D&, u)(t), t € [0,1] is a solution
of the equation (3.5) in C[0, 1], where G(t,s) is defined as in Lemma 4.
Proof First, suppose that y € C[0, 1] is a solution of the equation (3.5). We prove that the
function u(t) = fol G(t,8)y(s)ds, t € [0,1] is a solution of the BVP (1.2) in C¥[0, 1].

In fact, by Lemma 4, we know

(CDg+u)(t) +y()=0, te[0,1] (3.6)
and
1 1
u”(0) =u"(0) =0, u'(0) = / u(s) ds, u(l) = 772/ u(s) ds. (3.7)
0 0
In view of Lemma 1 and (3.6), we obtain
(18‘+y)(t) =—u(t) —co—c1t — cot* — c3t, t€0,1],

which, together with (3.7), implies that

o _ Qt-Dm+2 ., C2[E-Dm+m] g
(5,7)(6) = —ult) + m +2(1—1n2) () m +2(1—1n2) U5:°)0). (3.8)
te[0,1].
So, it follows from (3.8) and Lemmas 2 and 3 that
(Io; “y) (&) = =(“Dgiu)(®), i=1,2,...,m,te[0,1], (3.9)
(Iff;ﬂ"y)(t) = —(CDgiu)(t), j=1,2,...,mte(0,1], (3.10)
(Io, ") (@) = = (“Dgku)(®), k=1,2,...,p,t €[0,1] (3.11)
and
(I6."9)(®) = ~(°Dg,u)(®)
2m [ = (I3 )], (3.12)

+
[m +2(1 = n2)IT'(2-6y)
[=1,2,...,q,t €[0,1].
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Substituting (3.9)-(3.12), y(t) = —(°D%, u)(¢) and fol G(t,3)y(s) ds = u(t) into (3.5), we get

m n p
(Dg,u)®) + > 1) (CDEu) O + > wy(e) (DY) (1) + Y E(e) (DY) (0

i=1 j=1 k=1

q
+ Zwl(t)(cDgﬁru)(t) +oQu(®) +f(tut) =0, tel0,1],

=1

which, together with (3.7), shows that u(t) = fol G(t,s)y(s)ds, t € [0,1] is a solution of the
BVP (1.2).
Next, suppose that # € C*[0, 1] is a solution of the BVP (1.2), that is, u € C*[0, 1] satisfies

the equation

(°DE,u) (t)+ZA O (CDGu) &) + ) ui(t) CD0+u t)+Z§k(t )(CDYu)(t)
i=1 j=1
(3.13)

q
+ 300D} u)(©) + o (ule) + f(t,u®) =0, te[0,1]

=1

and the boundary conditions

1 1
u’(0)=u"(0) =0, u'(0) :m/o u(s) ds, u(l)zm/ u(s) ds

0

We prove that the function y() = —(“D%, u)(¢), t € [0,1] is a solution of the equation (3.5)
in C[0,1].
In fact, in view of Lemma 4, we know

1
u(t) = / G(¢t,s)y(s)ds, te[0,1]. (3.14)
0

Furthermore, by the expression of G(Z,s), we may obtain

2t -1 +2

2[(t = Dm1 + n2]
n +2(1—-mn2)

u(t) = =(15,)(0) + M +2(1—1n2)

(Z5.7) (1) - (f'y) ), telo1],

which, together with Lemmas 2 and 3, implies that

(“Dgiu)(®) = -(Ig, “y)(®), i=1,2,...,m,t€[0,1], (3.15)
DY u)® = (1. ")), j=1,2...,mte(0,1], (3.16)
(“Dku)®) = —(Ig, *y) (), k=1,2,...,p,t €[0,1] (3.17)
and
2m

(CDg,u)(®) = ~(I5,"y) () + 7)(1) - (I3:1y) (D],

[m +2(1-m)]I'(2 - 5)[( (3.18)

1=1,2,...,q,t€[0,1].

Page 7 of 14
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Substituting (3.14)-(3.18) and (“D§, u)(¢) = —y(t) into (3.13), we get (3.5). This indicates
that y(t) = —(“D%, u)(2), t € [0,1] is a solution of equation (3.5). O

Now, we define an operator T : C[0,1] — CI[0,1] by
0 :f<t, /0 G(t,)y) ds) ZA O “) @)

—ZM,(t) (Io,"5) () - Zsk(r) 157%9) (1)

! 0(—(31 2”1
‘Z“”“){(I(“ DO~ - mIr@ =3
[ - 5w

1
a(t)/ G(t,8)y(s)ds, te][0,1].
0

Obviously, if y is a fixed point of T, then u(¢) = fol G(t,s)y(s)ds, t € [0,1] is a solution of the
BVP (1.2).
For convenience, in the remainder of this paper, we denote

o+2
I'a +2)

_ 2m
m +2(1-n2)

and
n

Sy ] +i 51
py IMNoa—a; +1) Fa-pBi+1) 1F(oz e+ 1)

j=1

S o[ —— s G4 o
, o .
- M T@=5+1) T@2-4)

Theorem 3 Assume that there exists a constant r > 0 such that

b= -G 3.19
(0N M) [f(t,2)] < 27 (3.19)

Then the BVP (1.2) has at least one solution.

Proof Let Q = {y € C[0,1]: |ly|| < 7}. Then, for any y € Q, by (3.4), we know

1
/ G(t,8)y(s)ds| <Mr, te€]0,1]. (3.20)
0

On the one hand, for any y € Q, in view of (3.20), we get

(Ty)(@)]
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- Z ,LL]‘(t)( O+ (t Z %-k(t Ot yk
j=1

q
_ Ia—ﬁl _ 2m1
zzzlwl(t){( 0 ) A= T3

m

1
[(15.9) ) - (Isrly)u)]t“l} +o(t) / G(t,s)y(s) ds
! 1 ! a—a;j—1

- . # ' _ q)e-Bi-1
DCEl ey [ €=t as

(s)‘ ds

C 1 ! a—yr—1
DN e A Tl

+Z‘w1 { e 81)/(t—s)“_‘3’_1}y(s)|ds

2m
+
n +2(1—-1n,)

1 1 1 »
F(2—51)|:F(ot)/0 (1-9)*"|y(s)| ds

1 1 " 1
+ F—./o (1-19) |y(s)|ds:|} + |o(t)|‘/0 G(¢,5)y(s)ds

(¢ +1)
-l ~ il
<( orlr]lff(Mer]V( x)| i; F(a—ai+1)+jZ=1:F(a—ﬂj+l)
p q
1] 1 C
kZ T PE— *;"“””[r(a_aﬁl) + m_&)} + ||a||M}||y||
< max [ft,%)| + Cor, te[0,1], (3.21)

(t,x)€[0,1] x [-Mr,Mr]

which shows that T'(2) is uniformly bounded.
On the other hand, for any y € Q and t,, £, € [0,1] with ¢, < £,, we have

|(Ty) (&) - (Ty) (1)

1 1
< }j(tg,/o‘ G(t2,9)y(s) ds) —f(tl,/o G(t1,8)y(s) ds)

m

+ Z[M(tl)( W) (t1) - Milt2) (I, 'y (82)]

i=1

n

D[, y) ) = i) (15, ) ()]

Jj=1

»p

+ D [Ee) (I, 9) (1) - &) (I, 9) (12)]

k=1
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Z{ [0)] tl tl) wl(tZ)([a )(tZ)]

+ 2m
[ +2(1 = n)IC(2-8))

[(12.9) (D - (175 W] [wr(e2)ty™ - or(e)ey 5’1”

1 1
o (t) / Gltars)y(s) ds — o (1) f Gltr,s)y(s) ds
0 0

1 1
| Gewsyysyds) —f(t, | Gltas)y(s)d
p(tz /0 (b0 5)y(s) s) f(t1 /0 (20 5)y(s) s)
1 1
| Gleysys)ds) —f(t, | G, s)y(s)d
+P<t1 /O (t2,8)y(s) S) f <t1 /0 (t1,8)y(s) S)

+Z|A(t1>|| 0r ) (t1) = (157 9) (&) + [ (To:“y) (&) || Miltr) = 2i(t)]

IA

n

S @06 9) @) — (157y) @) + (0577 9) )] [1(8) — 1y(82)] ]
j=1

+

[|&@)|| (Lo, ™) (81) = (I, *9) ()| + |(Io, ™) (&2)| | (81) = &k (22)]]

M= IM-

+

{Uwz(tnn(“’ )(t1) = (157"19) (&) + |(15°) (82) || n(tr) — n(ta)]

~
I
—

1
r'2-:6)

2m
+
n +2(1—12)

leorte)| (27 = 77 + Jeon(e2) — o) |1 ‘”]}

[ (@) ]+ (5 ) )]

+ ’U(tz)‘

1 1
/ G(ty,8)y(s)ds — / G(t1,8)y(s)ds
0 0

+|o () —o (1)

1
/ G(t1,8)y(s)ds
0

1 1
| Gsyys)ds ) —fla, | Gtas)yGs)d
p(tz /0 (t2r5)y(s) s) f(h /0 (20 5)y(s) s)
1 1
+ P(tl’/o G(tz,s)y(s)ds) —f<t1,/0 G(tl,s)y(s)ds>

m

N Z m[zumu(@ — 1)+ [2(0) - ha(22)]]

IA

Y el = 2 )= e

p
> m[u&n(tsw —57%) + |a(t) - &(B)]]

k=1

q
+lz{ﬁ[nwzu( 657 = 67) + |o(tn) - (0]
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C
+ G 1_’"81)[”601”( Pl —ti 51) |a)l(t2)—a)l(t1)|]}

1
ol [ 16(es) - Gles)| ds + Mo @) - o),
0

which, together with the fact that f(¢t,x) and G(t,s) are uniformly continuous on [0, 1] x

[-Mr, Mr] and [0, 1] x [0, 1], respectively, implies that T(<2) is equicontinuous.
Therefore, by Arzela-Ascoli theorem, we know that 7': @ — C[0, 1] is compact.
Moreover, for any y € €2, in view of (3.19) and (3.21), we obtain

’(Ty (¥) | [f(t,x)| +Cr<(1-C)r+Cyr=r=|y|, tel01],

(tx)€l0, 1]><[ Mr,Mr]
which shows that

1Tyl < liyll,  yeods.

So, it follows from Theorem 1 that the operator T has a fixed point y* € &, and so,

u*(t) = fol G(t,5)y*(s)ds, t € [0,1] is a solution of the BVP (1.2). O
Theorem 4 Assume that there exists a constant 0 < L < = C2 such that
V(t,xl) —f(t,x2)| <Llx; —xy| forallte[0,1],x1,x €R. (3.22)

Then the BVP (1.2) has a unique solution.

Proof For any y1,y, € C[0, 1], in view of (3.4) and (3.22), we have

[(Ty)(@®) - (Ty2)(®)]

1 1
< P(t’/o G(t,s)yl(s)ds) —f<t,/0 G(t,s)yg(s)ds>

¥ ZA(t) 157" (= y0) ()| +

Zu,(t) 7 =) (®)

p
+ Z E) (L5, (02 = 1)) (0)
k=1

Dt(;l 2’71
0 {( 02 =)0+ T =8

I=1

(@5, 01 —92) ) + (552 02 —yl))(l)]tl“”}

+

1
o (t) / Glt,5)(31(5) ~ ya(s)) ds

m

<L +Z!Ai(t)\(13+‘””lyl—yzl)(t)
i-1

1
/0 G(t,9)(71(s) - 32(s)) ds
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+ 3 | @] (15, -l e Zlék £)|(Io, 1y = 321)(0)
j=1

+Z|wl(t)|{ (157" 91— 921)(®)

2m
n +2(1—1,)

1
@ g LBy =2 @) + (51 —y2|)(1>]}

1
+ o (2)] ‘/0 G(t,5)(71(s) = y2(s)) ds

n

12l [ ? [
{LM Z IMNa-a;+1) ZF(O[ ,B,+1)+Zl"(a Vi + 1)

1

k=
q
1
M
+;”w’"[F(a—sz+1) ra- 51 +lel ]llm ~

:(LM"'CZ)”)}I_)}Z”’ te [0)1];
and so,

1 Ty1 = Tyall = (LM + Co)lly1 = y2l,

which, together with LM + C, < 1, implies that 7T is a contractive mapping. So, it follows
from Theorem 2 that the operator T has a unique fixed point y** eC [0 1]. Therefore, by
Lemma 5, we know that the BVP (1.2) has a unique solution u** fo (¢, 8)y**(s) ds,
te[0,1]. O

Example 1 We consider the BVP

(CD% u)(2) + 0.1/%( CDéu)(t) + O.Ze"z(CD0%+u)(t) + 0.6:2(CD§+u)(t)
+ ‘{—6— cos tu(t) + (¢ — %) W) +1=0, te[0,1], (3.23)

W'©0)=u"(0)=0,  w(©0)=2[ uls)ds,  u(l)=1 us)ds.

Since o = %, N = g and 7, = %,we may choose M = %, and so, in view of 8; = %, y) = %,

81= 1,050 = 0, w1 (6) = 0.1V/2, £1(8) = 0.2¢ ™, 1 (¢) = 0.6£> and o (£) = ¥Z cost for t € [0, 1],

a direct computation shows that C, = %

Now that f(£,x) = (t - 22)/a% + 1 for (£,) € [0,1] x R, if we let L = 2%, then

“16 ’

LM+ Cy~096<1

and

V(t,xl)—f(t,xz)l=‘(t——)(¢7 NET )'

|x1 _x2|

<L
Var+1+/xd +
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L 1| + |oa] P
< 1—%2
Vat+1+y/as +1

§L|x1—x2|, te [0,1],x1,x2€R,

which indicates that (3.22) is satisfied.
Therefore, it follows from Theorem 4 that the BVP (3.23) has a unique solution.
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