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Abstract
In this paper, we consider the second-order Hamiltonian system

ẍ + V ′(x) = 0, x ∈R
N .

We use the monotonicity assumption introduced by Bartsch and Mederski (Arch.
Ration. Mech. Anal. 215:283–306, 2015). When V is even, we can release the strict
convexity hypothesis, which is used by Bartsch and Mederski combined with the
monotonicity assumption. When V is noneven, we weaken the strict convexity
assumption and introduce another hypothesis (see (V10)). Then in both cases, we can
build the homomorphism between the Nehari manifold and the unit sphere of some
suitable space. Using the Nehari manifold method introduced by Szulkin (J. Funct.
Anal. 257:3802–3822 2009), we prove the existence of T -periodic solutions with
minimal period T .

Keywords: Periodic solution; Second-order Hamiltonian system; Nehari manifold;
Minimal period

1 Introduction
Consider the second-order Hamiltonian system

ẍ + V ′(x) = 0, x ∈R
N , (1.1)

where N is a positive integer, V : RN → R is a potential function, and V ′ denotes the
gradient of V . In 1978, Rabinowitz [27] proved that, for any T > 0, system (1.1) possesses
a nonconstant T-periodic solution under the following assumptions:

(V 1) V ∈ C1(RN ,R), V (0) = 0, and V (x) ≥ 0 for all x ∈R
N ;

(V 2) V (x) = o(|x|2) as |x| → 0 in R
N ;

(V 3) ((AR)-condition) there exist constants μ > 2 and r0 > 0 such that

0 < μV (x) ≤ (
V ′(x), x

)
, |x| ≥ r0.

Since the minimal period of this solution may be T/k for some positive integer k, Rabi-
nowitz conjectured that system (1.1) possesses a T-periodic solution with minimal period
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T under assumptions (V 1)–(V 3). This is the so-called Rabinowitz minimal periodic so-
lution conjecture. Since then, this conjecture has been studied by many mathematicians
[1, 10, 12–15, 20–24, 34].

If V is convex and superquadratic, then its Fenchel conjugate function is subquadratic.
Then the dual variational functional attains its minimum energy at some point, which
corresponds to a T-periodic solution with minimal period T . Using this fact, Ambrosetti
and Mancini [1] studied the following second-order Hamiltonian system:

–ẍ = Qx + V ′(x). (1.2)

If Q is positive definite and V is convex, using the Clark dual, they proved that for any
T > 0, system (1.2) possesses a sequence of solutions vσ with minimal period T , where
σ = 2π/T > ωn, and ωn denotes the eigenvalues of Q. Moreover, ‖vσ‖ → 0 as T → 2π/ωn,
whereas ‖vσ‖L∞ → ∞ as T → 0. For more results on the assumption, we refer to [1, 12,
13].

Releasing the convexity assumption, many mathematicians assumed that V (x) is twice
continuously differentiable. Then we can define a Maslov-type index and prove an iterative
formula. This formula can be used to estimate the minimal period of periodic solutions.
This method was firstly introduced by Long [21], who studied second-order even Hamil-
tonian system (1.1) under assumptions (V 2), (V 3), and

(V 1′) V ∈ C2(RN ,R), and V (x) ≥ 0 for all x ∈R
N ;

(V 4) V (x) is even, i.e., V (–x) = V (x) for all x ∈R
N .

He proved that system (1.1) possesses a T-periodic solution with minimal period T or T/3
when V satisfies (V 1′) and (V 2)–(V 4). For more results for even Hamiltonian systems, we
refer to [14, 15] and references therein. For a second-order noneven Hamiltonian system,
Long showed that system (1.1) possesses a T-periodic solution with minimal periodic T/k
for some integer k satisfying 1 ≤ k ≤ n + 2 [22] or 1 ≤ k ≤ n + 1 [23]. For more results for
noneven Hamiltonian systems, we refer to [20] and references therein.

There is a third-type condition, the global (AR)-condition:
(V 3′) there exists a constant θ > 1 such that

0 < θ
(
V ′(x), x

) ≤ (
V ′′(x)x, x

)
, x ∈R

N \ {0}.

For V satisfying (V 1′), (V 3′), and (V 4), Xiao [34] proved the existence of a T-periodic so-
lution with minimal period T . In 2020, Xiao and Shen [33] generalized (V 3′) and assumed
that

(V 2′) V ′(x) = o(|x|) as x → 0 in R
N ;

(V 5) V (x)/|x|2 → ∞ as |x| → ∞;
(V 6) there exist p > 2 and C > 0 such that |V ′(x)| ≤ C(1 + |x|p–1);
(V 7) for all x ∈R

N with |x| = 1, the map s 	→ (V ′(sx), x)/s is nondecreasing on (0,∞).
Using the Nehai manifold method and a disturbed technique, they still proved the ex-
istence of a T-periodic solution with minimal period T under assumptions (V 1), (V 2′),
and (V 4)–(V 7). As is well known, the Nehari manifold method [26] can be used to study
the existence of ground state solutions to partial differential equations [2–4, 6, 16–19, 25,
28–31]) and periodic solutions to ordinary differential equations and difference equations
[33]. To use the Nehari manifold method, we need to build a homomorphism between the
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Nehari manifold and a suitable subspace. To do this, we need to introduce some mono-
tonicity assumptions on F to prove the following inequality:

g(s, v) = f (x, u)
[

1
2
(
s2 – 1

)
u + sv

]
+ F(x, u) – F(x, su + v) < 0, (1.3)

where F(x, u) is nonlinear term, and f (x, u) = ∇uF(x, u), s ∈ R
+ and u, v ∈ R (u, v ∈

R
N , respectively). Those monotonicity hypotheses are divided into two cases: the low-

dimensional and high-dimensional cases. In the low-dimensional case, Szulkin and Weth
[29] introduced the following assumption:

(S) the map u 	→ f (x, u)/|u| is strictly increasing on (–∞, 0) and (0,∞).
They proved inequality (1.3) and built the homomorphism mentioned above. For more
results on this direction, we refer to [8, 17, 18, 29, 30]. In the high-dimensional case, the
proof of (1.3) is more complicated. In 2015, Bartsch and Mederski [3] introduced the fol-
lowing assumptions:

(BM1) if (f (x, u), v) = (f (x, v), u) > 0, then F(x, u) – F(x, v) ≤ (f (x,u),u)2–(f (x,u),v)2

2(f (x,u),u) .
If, in addition, F(x, u) �= F(x, v), then the strict inequality holds;

(BM2) F is convex with respect to u.
Then they also built the homeomorphism. For more results in this direction, we refer to
[3, 5, 7, 9, 25, 31, 33, 37].

Inspired by [3, 29, 30, 35], our aim is twofold. Firstly, we try to restudy system (1.1) under
(V 2′), (V 4), (V 5), (V 6), and the following assumptions:

(V 1′′) V ∈ C1(RN ,R), V (x) > 0 for all x ∈R
N \ {0}, and V (0) = 0.

(V 8) if (V ′(x), y) = (V ′(y), x) > 0, then V (x) – V (y) ≤ (V ′(x),x)2–(V ′(x),y)2

2(V ′(x),x) .
If, in addition, V (x) �= V (y), then the strict inequality holds.

(V 9) (V ′(x), x) > 2V (x) for all x ∈R
N \ {0},

where (V 8) is another version of (BM1) corresponding to system (1.1). Without the help of
(BM2), we can still build the homomorphism mentioned above when V is even. When V is
not even, we fail to built such a homomorphism without assumption (BM2). To overcome
this difficulty, we introduce the following technical condition:

(V 10) If V (x + y) = V (x) and (V ′(x), y) = 0, then y = 0.
Now let us state our main results.

Theorem 1.1 Assume that V satisfies (V 1′′), (V 2′), (V 4)–(V 6), (V 8), and (V 9). Then for
any given T > 0, system (1.1) possesses a nonconstant T-periodic solution with minimal
period T .

Theorem 1.2 Assume that V satisfies (V 1′′), (V 2′), (V 4)–(V 6), (V 8), and (V 9). Then for
any given T > 0, system (1.1) has infinitely many pairs of T-periodic solutions.

Corollary 1.3 Assume that V satisfies (V 1), (V 3′), and (V 4). Then for any given T > 0,
system (1.1) possesses a nonconstant T-periodic solution with minimal period T .

Theorem 1.4 Assume that V satisfies (V 1′′), (V 2′), (V 5), (V 6), and (V 8)–(V 10), Then
for any given T > 0, system (1.1) possesses a nonconstant T-periodic solution with minimal
period T .



Xiao and Chen Boundary Value Problems          (2024) 2024:3 Page 4 of 18

The rest part of this paper is divided into two parts. In Sect. 2, we study system (1.1) with
an even potential functional V (x). In Sect. 3, we study system (1.1) with noneven potential
functional V (x).

2 The even case
Given T > 0, let ST = R/(TZ). The Solobev space H1 is defined as

H1 = W 1,2(ST ,RN)
=

{
x ∈ L2(ST ,RN)

: ẋ ∈ L2(ST ,RN)}
, (2.1)

where ẋ is the weak derivative of x. The space H1 is equipped with the usual norm

‖x‖2
1 =

∫ T

0

(|ẋ|2 + |x|2)dt, x ∈ H1,

and the corresponding inner product

〈x, y〉1 =
∫ T

0

[
(ẋ, ẏ) + (x, y)

]
dt, x, y ∈ H1,

where | · | and (·, ·) denote the standard norm and inner product in R
N respectively.

The variational functional corresponding to system (1.1) is

ϕ(x) =
∫ T

0

[
1
2
|ẋ|2 – V (x)

]
dt, x ∈ H1. (2.2)

According to Lemma 2.1 in [33], since V satisfies (V 1′′), (V 6), and (V 9), ϕ is continuously
differentiable on H1, and

〈
ϕ′(x), y

〉
1 =

∫ T

0

[
(ẋ, ẏ) –

(
V ′(x), y

)]
dt, x, y ∈ H1.

Set φ(x) =
∫ T

0 V (x) dt. Then φ′ : H1 → (H1)∗ is compact.
By the Fourier series theory, for any x ∈ H1, we have

x(t) = a0 +
∞∑

k=1

(
ak cos

2kπ t
T

+ bk sin
2kπ t

T

)
,

where a0, ak , bk ∈R
N , k = 1, 2, . . . . Then we define a the following subspace E of H1:

E =
{

x ∈ H1 : x(–t) = –x(t), t ∈R
}

. (2.3)

Obviously, E is a closed subspace of H1.
Define the inner product 〈·, ·〉 on E by setting

〈x, y〉 =
∫ T

0
(ẋ, ẏ) dt, x, y ∈ E,

which induces a new norm ‖ · ‖ on E as follows:

‖x‖2 =
∫ T

0
|ẋ|2 dt, x ∈ E.
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It is well known that ‖ · ‖1 and ‖ · ‖ are equivalent norms on E. Moreover, by the Sobolev
embedding theorem there exists Mi > 0 such that

‖x‖Li ≤ Mi‖x‖, i = 2, p, (2.4)

‖x‖∞ ≤ M∞‖x‖, (2.5)

where ‖ · ‖Li and ‖ · ‖∞ denote the usual norm in Li(ST ,RN ) and C(ST ,RN ), respectively.
Restricted to E, ϕ can be rewritten as

ϕ(x) =
∫ T

0

[
1
2
|ẋ|2 – V (x)

]
dt =

1
2
‖x‖2 – φ(x), x ∈ E.

Obviously, ϕ is invariant by translations of Z2.

Lemma 2.1 [36] Critical points of ϕ restricted to E are critical points of ϕ on the whole
space H1, which correspond to periodic solutions of system (1.1).

According to the lemma, the critical points of ϕ correspond to T-periodic solutions
of system (1.1), but not certainly with minimal period T . Observing that the lower the
energies of the solutions, the larger the minimal periods [32], we work on a manifold of E.
The critical point of ϕ with least energy on such a manifold gives rise to a solution of
system (1.1) with minimal period T .

Define the Nehari manifold

M =
{

x ∈ E\{0} :
〈
ϕ′(x), x

〉
= 0

}
.

A point x ∈ E is called critical point of ϕ if ϕ′(x) = 0. Hence M contains all nontrivial
critical points of ϕ.

Lemma 2.2 Assume that V satisfies (V 1′′), (V 4), (V 5), (V 8), and (V 9). Then for x ∈ E \{0}
and s ≥ 0, s �= 1, we have

ϕ(x) > ϕ(sx) –
〈
ϕ′(x),

s2 – 1
2

x
〉
.

Proof Let us show that

ϕ(sx) – ϕ(x) –
〈
ϕ′(x),

s2 – 1
2

x
〉

=
∫ T

0
h(s) dt < 0,

where h(s) := V (x) – V (sx) + (V ′(x), s2–1
2 x) for s ≥ 0, s �= 1.

We first claim that h(s) ≤ 0. Then by (V 9) we have

h(0) = V (x) –
1
2
(
V ′(x), x

)
< 0 and h(1) = 0.

It follows from (V 5) that lims→∞ h(s) = –∞. Therefore h(s) attains its maximum on
[0, +∞). Let s0 ≥ 0 be such that h(s0) = maxs≥0 h(s). We may assume that s0 > 0. Then

h′(s0) =
(
V ′(x), s0x

)
–

(
V ′(s0x), x

)
= 0,
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that is, (V ′(x), s0x) = (V ′(s0x), x). Therefore, using (V 8), we have

h(s0) = V (x) – V (s0x) +
(

V ′(x),
s2

0 – 1
2

x
)

≤ (V ′(x), x)2 – (V ′(x), s0x)2

2(V ′(x), x)
+

s2
0 – 1

2
(
V ′(x), x

)
= 0.

Then by (V 8) again, h(s0) = 0 if and only if V (s0x) = V (x). By the definition of h,
s2
0–1
2 (V ′(x), x) = 0. Since (V 1′′) and (V 9) imply that (V ′(x), x) > 0, we have that h(s0) = 0

if and only if s0 = 1. Hence h(s) < 0 for all s ≥ 0, s �= 1. �

From Lemma 2.2 we have the following lemma.

Lemma 2.3 Assume that V satisfies (V 1′′), (V 4), (V 5), (V 8), and (V 9). Then for x ∈ M
and s ≥ 0, s �= 1, we have ϕ(x) > ϕ(sx).

For any x ∈ E \ {0}, we define

E(x) = {rx : r ∈R}, Ê(x) =
{

rx : r ∈R
+}

,

where R
+ := [0, +∞). Obviously, by Lemma 2.3, sxx is the unique critical point on ϕ|Ê(x).

Then we have sxx ∈ Ê(x) and 〈ϕ′(sxx), sxx〉 = 0. Hence sxx ∈ M ∩ Ê(x). Define the map
m̂ : E \ {0} →M by

m̂(x) = sxx.

The above discussion yields the following lemma.

Lemma 2.4 Suppose that all assumptions of Theorem 1.1 hold. Then for any x ∈ E \ {0},
the set M∩ Ê(x) consists of precisely one point m̂(x), which is the unique global maximum
of ϕ|Ê(x).

Lemma 2.5 If V satisfies (V 1′′), (V 2′), (V 4), and (V 6), then there exists α0 > 0 such that
‖x‖ ≥ α0 for all x ∈M.

Proof First, (V 2′) and (V 6) imply that for each ε > 0, there is Mε > 0 such that

∣∣V ′(x)
∣∣ ≤ ε|x| + Mε|x|p–1, x ∈R

N ,

where p > 2 is the parameter in (V 6). Then for all x ∈M, we have

0 =
〈
ϕ′(x), x

〉

= ‖x‖2 –
∫ T

0

(
V ′(x), x

)
dt

≥ ‖x‖2 –
∫ T

0

(
ε|x|2 + Mε|x|p)dt

= ‖x‖2 – ε‖x‖2
L2 – Mε‖x‖p

Lp
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≥ (
1 – εM2

2
)‖x‖2 – MεMp

p‖x‖p.

Setting α0 = ( 1–εM2
2

MεMp
p

)
1

p–2 , we obtain ‖x‖ ≥ α0 > 0. �

Lemma 2.6 Assume that (V 2′) and (V 4) hold. Then M is bounded away from 0 and
closed. Moreover, there exists ρ > 0 such that c = infM ϕ ≥ infSρ ϕ > 0, where Sρ = {x ∈ E :
‖x‖ = ρ}.

Proof By (V 2′), for any ε = 1
4M2

2
> 0, there exists δε > 0, such that |V ′(z)| ≤ ε|z|, |z| ≤ δε .

Thus we have

V (z) ≤ ε|z|2, |z| ≤ δε .

For any x ∈ E, without loss of generality, we can assume that ‖x‖ = 1. Then there exists a
constant ρ such that ρ = δε

M∞ > 0 and |ρx| ≤ δε . Then

max
z∈Ê(x)

ϕ(z) ≥ max
r∈R+

ϕ(rx) ≥ ϕ(ρx) =
1
2
ρ2‖x‖2 –

∫ T

0
V (ρx) dt

≥ 1
2
ρ2‖x‖2 – εM2

2ρ
2‖x‖2

L2 =
δ2
ε

4M2∞
=

1
4
ρ2 > 0,

that is,

c = inf
N

ϕ = inf
x∈E\{0} max

z∈Ê(x)
ϕ(z) ≥ inf

Sρ

ϕ ≥ 1
4
ρ2 > 0. �

Lemma 2.7 If (V 4) and (V 5) hold, then ϕ is coercive on M, i.e., ϕ(x) → ∞ as ‖x‖ → ∞,
x ∈M.

Proof Assume on the contrary that ϕ is not coercive onM, i.e., there exists (xn) ⊂M such
that ϕ(xn) ≤ d for some d > 0 as ‖xn‖ → ∞. Let vn := xn/‖xn‖; passing to a subsequence,
we may assume that vn ⇀ v.

(a) Let v �= 0. Then there exists K > 0 such that ‖v‖∞ ≥ K . Since v(t) is uniformly
continuous on [0, T], there exist t0 ∈ [0, T] and a neighborhood U = U(t0) ⊂ [0, T]
such that |v(t0)| = ‖v‖∞, |v(t)| ≥ K/2 for all t ∈ U , and meas(U) ≥ δ for some δ > 0,
where meas(·) denotes the Lebesgue measure. By (V 5) and Fatou’s lemma we have

∫ T

0

V (vn‖xn‖)
(|vn|‖xn‖)2 |vn|2 dt ≥

∫

U

V (vn‖xn‖)
(|vn|‖xn‖)2 |vn|2 dt → +∞. (2.6)

Thus

0 ← ϕ(xn)
‖xn‖2 =

1
2

–
∫ T

0

V (vn‖xn‖)
(|vn|‖xn‖)2 |vn|2 dt → –∞,

which is a contradiction.
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(b) Let v = 0. We can write xn = τvn, where τ := ‖xn‖. It follows from the dominated
convergence theorem that

∫ T
0 V (svn) dt → 0 for every s ∈ R

+. Hence, for any s > 0,
we have

d ≥ ϕ(xn) = ϕ(τvn) ≥ ϕ(svn) =
1
2

s2 –
∫ T

0
V (svn) dt → 1

2
s2, (2.7)

which is a contradiction when we choose s >
√

2d.
Hence ϕ is coercive on M. �

Lemma 2.8 If (V 4) and (V 5) hold, and U ⊂ E \ {0} is a compact set, then there exists R > 0
such that ϕ ≤ 0 on E(x) \ BR(0) for every x ∈ U .

Proof Without loss of generality, we may assume that ‖x‖ = 1 for every x ∈ U . Suppose, on
the contrary, that there exist (xn) ⊂ U and (sn) ⊂R

+ such that yn := snxn ∈ Ê(xn), ϕ(yn) > 0
for all n, and sn → +∞ as n → ∞. Passing to a subsequence, we may assume that xn →
x ∈ E. Then

0 ≤ ϕ(yn)
s2

n
=

1
2

–
∫ T

0

V (snxn)
|snxn|2 |xn|2 dt. (2.8)

Arguing similarly as for (2.6), we have

1
2

–
∫ T

0

V (snxn)
|snxn|2 |xn|2 dt ≤ 1

2
–

∫

U

V (snxn)
|snxn|2 |xn|2 dt → –∞, (2.9)

which contracts to (2.8). �

Lemma 2.9 Suppose that all assumptions of Theorem 1.1 hold, Then the map E \ {0} →
M, x 	→ m̂(x), is continuous.

Proof For a sequence (xn) ⊂ E \ {0} such that xn → x, we show that m̂(xn) → m̂(x) for a
subsequence.

Without loss of generality, we may assume that ‖xn‖ = ‖x‖ = 1 for all n, so that m̂(xn) =
‖m̂(xn)‖xn. By Lemma 2.8 there exists R > 0 such that

ϕ
(
m̂(xn)

)
= sup

Ê(xn)
ϕ ≤ sup

BR(0)∩Ê(xn)
ϕ ≤ sup

x∈BR(0)∩Ê(xn)
‖x‖2 = R2 for every n.

Hence by the coercivity of ϕ, m̂(xn) is bounded. Passing to a subsequence, we may assume
that tn := ‖m̂(xn)‖ → t, and by Lemma 2.5 we have t ≥ α0 > 0. Since M is closed and
m̂(xn) → tx, we have tx ∈M. Hence tx = m̂(x) and m̂(xn) → m̂(x). �

Next, we consider the unit sphere S := {x ∈ E : ‖x‖ = 1}. Note that the restriction of the
map m̂ to S is a homeomorphism with inverse given by

m : M→ S, m(x) =
x

‖x‖ .
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We will also consider the functionals �̂ : E \ {0} →R and � : S →R defined by

�̂(x) := ϕ
(
m̂(x)

)
and � := �̂|S.

Arguing similarly as in Proposition 9 and Corollary 10 in [30], we have the following
conclusions. Since the proofs are basically the same, we omit them.

Lemma 2.10 Suppose that all assumptions of Theorem 1.1 hold. Then �̂ ∈ C1(E \ {0},R),
and 〈�̂ ′(w), z〉 = ‖m̂(w)‖

‖w‖ 〈ϕ′(m̂(w)), z〉 for all w, z ∈ E, w �= 0.

A sequence (xn) is called a Palais–Smale sequence (PS-sequence for short) for �̂ if �̂(xn)
is bounded and there exist �̂ ′(xn) → 0 as n → ∞. We say that �̂ satisfies the PS-condition
if every PS-sequence for �̂ contains a convergent subsequence.

Lemma 2.11 (see [30]) Suppose that all assumptions of Theorem 1.1 hold. Then
(a) � ∈ C1(S,R), and

〈
� ′(w), z

〉
=

∥∥m(w)
∥∥〈

ϕ′(m(w)
)
, z

〉
for all z ∈ TwS :=

{
v ∈ E : 〈w, v〉 = 0

}
;

(b) (wn)n is a PS-sequence for � if and only if (m(wn))n is a PS-sequence for ϕ;
(c) w is a critical point of � if and only if m(w) is a nontrivial critical point of ϕ.

Moreover, the corresponding values of � and ϕ coincide, and infS � = infM ϕ.
(d) if ϕ is even, then so is � .

Lemma 2.12 Assume that all assumptions of Theorem 1.1 hold. Then ϕ satisfies PS-
condition on M, and so does � .

Proof Let (xn) ⊂ M be a PS-sequence of ϕ. Then (ϕ(xn)) is bounded. According to
Lemma 2.7, (xn) is bounded. Since φ′ : H1 → (H1)∗ is compact and

ϕ′(xn) = xn – φ′(xn) → 0,

(xn) has a convergent subsequence. Thus ϕ satisfies PS-condition.
Next, assume that (yn) is a PS-sequence for � . According to Lemma 2.11, (m(yn)) ⊂M is

a PS-sequence for ϕ. Since ϕ satisfies PS-condition, passing to a subsequence, m(yn) → z.
Thus yn → m̂(z). Hence � satisfies PS-condition. �

Proof of Theorem 1.1 According to Lemmas 2.6 and 2.11, infx∈S �(x) = infx∈M ϕ(x) = c.
Let (yn) be a minimizing sequence for � restricted to S. By Ekeland’s variational principle
[11] we may assume that � ′(yn) → 0 as n → ∞. It is clear that (�(yn)) is bounded. Then
(yn) is a PS-sequence for � . Since � satisfies PS-condition, (yn) contains a subsequence
converging to some limit y. Thus y is a critical point of � . According to Lemma 2.11 again,
x := m̂(y) ∈M is a critical point of ϕ.
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It remains to show that ϕ(x) = c. Obviously, ϕ(x) ≥ c. By (V 9) and Fatou’s lemma

c + o(1) = ϕ(xn) –
1
2
〈
ϕ′(xn), xn

〉

=
∫ T

0

[
1
2
(
V ′(xn), xn

)
– V (xn)

]
dt

≥
∫ T

0

[
1
2
(
V ′(x), x

)
– V (x)

]
dt + o(1)

= ϕ(x) –
1
2
〈
ϕ′(x), x

〉
+ o(1)

= ϕ(x) + o(1),

(2.10)

where xn := m̂(yn). Hence ϕ(x) ≤ c. So ϕ(x) = c, and x is a nonconstant T-periodic solution
for system (1.1).

Finally, we will show that x has T as its minimal period. Suppose that x has a minimal
period T/k, where k ≥ 2 is an integer. Denote w(t) = x(t/k). Obviously, w ∈ E, and there
exists r̄ > 0 such that r̄w ∈M. Hence

inf
x∈M

ϕ(x) ≤ ϕ(r̄w)

=
∫ T

0

[
1
2
∣
∣r̄ẇ(t)

∣
∣2 – V

(
r̄w(t)

)]
dt

=
∫ T

0

[
1

2k2

∣
∣∣
∣r̄ẋ

(
t
k

)∣
∣∣
∣

2

– V
(

r̄x
(

t
k

))]
dt

=
∫ T

0

[
1

2k2

∣
∣r̄ẋ(τ )

∣
∣2 – V

(
r̄x(τ )

)]
dτ

<
∫ T

0

[
1
2
∣∣r̄ẋ(τ )

∣∣2 – V
(
r̄x(τ )

)]
dτ

= ϕ(r̄x) ≤ ϕ(x) = inf
x∈M

ϕ(x),

which is a contradiction. Hence x has T as its minimal period. �

Let X be a Banach space such that the unit sphere S in X is a submanifold of class (at
least) C1, and let ψ ∈ C1(S,R). We have the following result.

Lemma 2.13 [30] If X is infinite-dimensional and ψ ∈ C1(S,R) is bounded below and
satisfies PS-condition, then ψ has infinitely many pairs of critical points.

Proof of Theorem 1.2 Since V is even, so do ϕ and � . By Lemmas 2.6, 2.11, and 2.12,
infx∈S �(x) = c > 0, and � satisfies PS-condition. Then Lemma 2.13 yields that � has in-
finitely many pairs of critical points. Applying Proposition 2.11 again, ϕ has infinitely many
pairs of critical points. Hence system (1.1) has infinitely many pairs of T-periodic solu-
tions. �

Proof of Corollary 1.3 Referring to the proof of Corollary 1.1 in [33], here we can prove
Corollary 1.3. We need only to check that V satisfies (V 1′′), (V 2′), (V 5), (V 6), (V 8), and
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(V 9) under assumptions (V 1) and (V 3′). It is easy to check that V satisfies (V 2′), (V 5),
and (V 6). Therefore we only verify (V 1), (V 8), and (V 9).

For s > 0, set k(s) = (V ′(sx), x)/s. Computing directly, by (V 3′) we have

k′(s) =
(V ′′(sx)sx, x) – (V ′(sx), x)

s2 =
(V ′′(sx)sx, sx) – (V ′(sx), sx)

s3 > 0.

Hence k(s) is strictly increasing on (0, +∞). By (V 2′) we have k(s) → 0 as s → 0 and k(0) =
0.

For x ∈ R
N \ {0}, set s = |x| and y = x/|x|, i.e., |y| = 1. Noting that s > 0, we have

V (x) = V (sy)

=
∫ s

0

(V ′(τy), y)
τ

τ dτ

=
∫ s

0
k(τ )τ dτ

< k(s)
∫ s

0
τ dτ

=
1
2
(
V ′(sy), sy

)
=

1
2
(
V ′(x), x

)
.

Hence (V 9) holds. Moreover, since

V (x) = V (sy) =
∫ s

0
k(τ )τ dτ >

∫ s

s
2

k(τ )τ dτ > 0,

(V 1′′) holds.
Next, we consider (V 8). For any x ∈ E \ {0} and s > 0, if (V ′(x), sx) = (V ′(sx), x) > 0, then

(V ′(sx), x)
s

=
(
V ′(x), x

)
.

Since k(s) is strictly increasing on [0, +∞), we have s = 1. Thus, obviously,

0 = V (x) – V (sx) ≤ (V ′(x), x)2 – (V ′(x), sx)2

2(V ′(x), x)
= 0,

which shows that (V 8) is satisfied. Corollary 1.3 holds by Theorem 1.1. �

3 The noneven case
Recall that H1 = W 1,2(ST ,RN ) is a Hilbert space. Denote by A the operator – d2

dt2 on
L2(ST ,RN ) with domain D(A) = H2(ST ,RN ). The operatorA is a self-adjoint operator with
a sequence of eigenvalues (counted with multiplicity)

0 = λ0 < λ1 ≤ λ2 ≤ · · · → +∞.

Denote by |A| the absolute value of A, and let |A|1/2 be the square root of |A| with domain
D(|A1/2). Decompose the space H1 as follows:

H1 = H0 ⊕ H+,
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where H0 and H+ are the null space and the positive eigenvalue space of A. Obviously,
H0 = R

N . For any x ∈ H1, x = x0 + x+, where x0 ∈ H0 and x+ ∈ H+. Define a new inner
product and the associated norm by

(x, y)2 =
(
A1/2x,A1/2y

)
L2 +

(
x0, y0)

L2 ,

‖x‖2
2 =

∥
∥A1/2x

∥
∥2

L2 +
∥
∥x0∥∥2

L2 .

Then ‖ · ‖1 and ‖ · ‖2 are equivalent norms on H1.
We can rewrite ϕ on H1 by

ϕ(x) =
1
2
∥∥x+∥∥2

2 –
∫ T

0
V (x) dt, x ∈ H1. (3.1)

Moreover, for all y = y0 + y+ ∈ H1 = H0 ⊕ H+,

〈
ϕ′(x), y

〉
2 =

〈
x+, y+〉

2 –
∫ T

0

(
V ′(x), y

)
dt.

Now, for x ∈ H1 \ H0, set

H(x) = H0 ⊕Rx, Ĥ(x) = H0 ⊕R
+x.

Obviously, H(x) is an (N + 1)-dimensional space. According to the Sobolev embedding
theorem, there exist Ci > 0 such that

‖x‖Li ≤ Ci‖x‖2, i = 2, p, (3.2)

‖x‖∞ ≤ C∞‖x‖2, (3.3)

where ‖ · ‖Li and ‖ · ‖∞ are the usual norms in Li(ST ,RN ) and C(ST ,RN ), respectively.
Define the generalized Nehari manifold

N :=
{

x ∈ H1\H0 :
〈
ϕ′(x), x

〉
2 = 0 and

〈
ϕ′(x), y

〉
2 = 0 for all y ∈ H0}.

Obviously, N contains all nonconstant solutions of ϕ. Moreover, our assumptions on V
imply that solutions of (1.1) are critical points of the functional (3.1).

Lemma 3.1 Suppose that (V 1′′), (V 5), (V 8), (V 9), and (V 10) hold. Let x ∈ H1 \H0, y ∈ H0,
and s ≥ 0 with x �= sx + y. Then

ϕ(x) > ϕ(sx + y) –
〈
ϕ′(x),

s2 – 1
2

x + sy
〉

2
.

Proof Let x, y, and s be as in the statement. Obviously, for such x, y, and s, x �= sx + y implies
s �= 1 or y �= 0. Then we need to show that

ϕ(sx + y) –
〈
ϕ′(x),

s2 – 1
2

x + sy
〉

2
– ϕ(x) =

∫ T

0
g(s, y) dt < 0,
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where

g(s, y) := V (x) – V (sx + y) +
(

V ′(x),
s2 – 1

2
x + sy

)
.

We next claim that g(s, y) < 0. Obviously, g(1, 0) = 0, but in this case, x = sx + y, which
contradicts to the assumption. Using (V 1′′) and (V 9), we have

g(0, y) = V (x) – V (y) –
1
2
(
V ′(x), x

)
< –V (y) ≤ 0.

Using (V 9) again, we have

g(s, y) = V (x) – V (sx + y) +
(

V ′(x),
s2 – 1

2
x + sy

)

<
1
2
(
V ′(x), x

)
– V (sx + y) +

(
V ′(x),

s2 – 1
2

x + sy
)

= –
1
2

s2(V ′(x), x
)

+ s
(
V ′(x), sx + y

)
+ M|sx + y|2

– M|sx + y|2 – V (sx + y)

≤ – s2
[

M|x|2 –
1
2
(
V ′(x), x

)
–

∣
∣V ′(x)

∣
∣
]

– |y|2[M –
∣
∣V ′(x)

∣
∣] –

[
V (sx + y) – M|sx + y|2].

(3.4)

If M is large enough, then the quadratic form (in s and y) above is positive definite, and
V (sx + y) – M|sx + y|2 is bounded below. Then we have g(s, y) → –∞ as s + |y| → ∞.
Therefore g(s, y) attains its maximum on the set {(s, y)|s ≥ 0, y ∈R

N }. Suppose that g attains
its maximum at some point (s, y) with s > 0. Then

g ′
s(s, y) =

(
V ′(x), sx + y

)
–

(
V ′(sx + y), x

)
= 0 (3.5)

and

g ′
y(s, y) = sV ′(x) – V ′(sx + y) = 0. (3.6)

By (3.5) and (3.6) we have (V ′(x), y) = 0 and

(
V ′(x), sx + y

)
=

(
V ′(sx + y), x

)
. (3.7)

If V (x) �= V (sx + y), then by (3.7) and (V 8) we have

g(s, y) = V (x) – V (sx + y) +
(

V ′(x),
s2 – 1

2
x + sy

)

<
(V ′(x), x)2 – (V ′(x), sx + y)2

2(V ′(x), x)
+

(
V ′(x),

s2 – 1
2

x + sy
)

=
(V ′(x), x)2 – (V ′(x), sx)2

2(V ′(x), x)
+

(
V ′(x),

s2 – 1
2

x
)

= 0.
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If V (x) = V (sx+y), then by (V 8), V (x)–V (sx+y) ≤ (V ′(x),x)2–(V ′(x),sx+y)2

2(V ′(x),x) , and thus (V ′(x), sx+
y)2 ≤ (V ′(x), x)2. Since (V ′(x), y) = 0, we have s2 ≤ 1. However, if V (x) = V (sx + y) and s = 1,
then by (V10) we get y = 0, which contradicts the assumption x �= sx + y. Thus s < 1.

Hence

g(s, y) = V (x) – V (sx + y) +
(

V ′(x),
s2 – 1

2
x + sy

)

=
(

V ′(x),
s2 – 1

2
x + sy

)
=

(
V ′(x),

s2 – 1
2

x
)

< 0.

Hence the claim holds, and the conclusion follows. �

Lemma 3.2 Suppose that (V 1′′), (V 5), (V 8), (V 9), and (V 10) hold. Let x ∈N , y ∈ H0, and
s ≥ 0 with x �= sx + y. Then

ϕ(x) > ϕ(sx + y).

Proof Since x ∈ N , by the definition of N , 〈ϕ′(x), s2–1
2 x + sy〉2 = 0. Hence by Lemma 3.1

we have ϕ(x) > ϕ(sx + y). Therefore the maximum point of ϕ is unique, and the lemma
holds. �

Obviously, Lemma 3.2 implies that if x ∈N , then x is a unique maximum of ϕ|Ĥ(x).

Lemma 3.3 Assume that (V 2′) holds. Then
(i) there is a constant ρ > 0 such that infN ϕ ≥ infS+

ρ
ϕ > 0, where

S+
ρ := {x ∈ H+ : ‖x‖2 = ρ};

(ii) for every x ∈N , ‖x+‖2 ≥ √
2c. Moreover, N is closed and bounded away from H0.

Proof (i) Arguing similarly as in the proof of Lemma 2.6, we can show this conclusion.
(ii) Denote c = infN ϕ. For all x ∈N , by (i) we have

c ≤ 1
2
∥∥x+∥∥2

2 –
∫ T

0
V (x) dt ≤ 1

2
∥∥x+∥∥2

2.

Hence ‖x+‖2 ≥ √
2c. Clearly, ϕ|H0 ≤ 0. Then N is bounded away from H0. We can take a

sequence (yn) ⊂N and prove that its limit y ∈N . Then N is closed. �

Lemma 3.4 Assume that (V 5) holds. Then ϕ is coercive on N , i.e., ϕ(x) → ∞ as ‖x‖2 →
∞, x ∈N .

Proof If not, then there exists (xn) ⊂N such that ϕ(xn) ≤ d for some d > 0 as ‖xn‖2 → ∞.
Let sn := ‖xn‖2, vn := xn/‖xn‖2. Passing to a subsequence, (vn) converges weakly to some
point v.

(a) Let v �= 0. Arguing similarly as for (2.6), we have

0 ← ϕ(xn)
‖xn‖2

2
=

1
2

–
∫ T

0

V (vn‖xn‖2)
(|vn|‖xn‖2)2 |vn|2 dt → –∞,

which is a contradiction.
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(b) Let v = 0. If ‖v+
n‖2 → 0, then ‖v0

n‖2
2 = 1 – ‖v+

n‖2
2 → 1. Since dim H0 = N < ∞, we have

vn → v and ‖v‖2 = 1, which contradicts to v = 0. Otherwise, if ‖v+
n‖2 � 0, then there exist

some α > 0 and N such that ‖v+
n‖2 ≥ α for all n ≥ N . It follows from the dominated conver-

gence theorem that
∫ T

0 V (svn) dt → 0 for every s ∈ (0,∞). Hence, for any s > 0 and n ≥ N ,
we have

d ≥ ϕ(xn) = ϕ(snvn) ≥ ϕ(svn) ≥ 1
2

s2α2 –
∫ T

0
V (svn) dt → 1

2
s2α2,

which is a contradiction when we choose s >
√

2d/α. Hence ϕ is coercive on N . �

Lemma 3.5 If (V 5) holds and U ⊂ H+ \ {0} is a compact subset, then there exists R > 0
such that ϕ(z) ≤ 0 on z ∈ Ĥ(y) \ BR(0) for every y ∈ U .

Proof Without loss of generality, we may assume that ‖y‖2 = 1 for every y ∈ U . Suppose,
on the contrary, that there exist (yn) ⊂ U and zn ∈ Ĥ(yn) such that ϕ(zn) > 0 for all n and
‖zn‖2 → ∞ as n → ∞. Passing to a subsequence, we may assume that yn → y ∈ H+, ‖y‖2 =
1. Set vn = zn/‖zn‖2 = snyn + v0

n. Then |sn|2 = 1 – ‖v0
n‖2

2 ≤ 1. Passing to a subsequence, vn →
s0y + v0 �= 0 as n → ∞. Arguing as for (2.6), we have

0 ≤ ϕ(zn)
‖zn‖2

2
≤ 1

2
–

∫ T

0

V (‖zn‖2vn)
‖zn‖2

2|vn|2 |vn|2 dt → –∞,

which is a contradiction. This finishes the proof of the lemma. �

Lemma 3.6 Assume that all assumptions of Theorem 1.4 hold. Then for each x ∈ H1 \ H0,
the set N ∩ Ĥ(x) consists of precisely one point n̂(x), which is the unique global maximum
of ϕ|Ĥ(x).

Proof Let x be given in this lemma. According to Lemmas 3.3 and 3.5, ϕ|Ĥ(x) attains its
maximum on BR(0) for some R large enough. Since Ĥ(x) is a closed subset of a finite-
dimensional space, there exist rx, vx, and n̂(x) := rxx+ + vx such that

ϕ|Ĥ(x)
(
n̂(x)

)
= max

z∈Ĥ(x)
ϕ(z).

Then 〈ϕ′(n̂(x)), z〉2 = 0 for z ∈ Ĥ(x). Thus 〈ϕ′(n̂(x)), n̂(x)〉2 = 〈ϕ′(n̂(x)), z〉2 = 0 for z ∈ H0,
i.e., n̂(x) ∈N . Lemma 3.2 yields that the maximum point of ϕĤ(x) is unique. �

Arguing similarly as in [29], we can prove the following two lemmas.

Lemma 3.7 Assume that all assumptions of Theorem 1.4 hold. Then the map H+ \ {0} →
N , x 	→ n̂(x), is continuous.

Define the following maps:

�̂ : H+ \ {0} →R, �̂(x) := ϕ
(
n̂(x)

)
,

� : S+ →R, � = �̂|S+ ,
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n : N → S+, n(x) =
x+

‖x+‖2
,

where S+ := {x ∈ H+ : ‖x‖2 = 1} in H+. Then �̂ is continuous by Lemma 3.7. Moreover, n
is a homeomorphism between S+ and N .

Lemma 3.8 Assume that all assumptions of Theorem 1.4 hold. Then
(a) � ∈ C1(S+,R), and

〈
�′(w), z

〉
2 =

∥
∥n̂(w)+∥

∥
2

〈
ϕ′(n̂(w)

)
, z

〉
2, z ∈ TwS+ :=

{
v ∈ H+ : 〈w, v〉2 = 0

}
;

(b) (wn)n is a PS-sequence for � if and only if (n̂(xn))n is a PS-sequence for ϕ;
(c) We have

inf
S+

� = inf
N

ϕ = c.

Moreover, x ∈ S+ is a critical point of � if and only if n̂(x) ∈N is a critical point of ϕ,
and the corresponding critical values coincide.

Lemma 3.9 Assume that all assumptions of Theorem 1.4 hold. Then ϕ satisfies PS-
condition on N , and so does �.

Proof Let (xn) ⊂ N be a PS-sequence of ϕ. Then (ϕ(xn)) is bounded. By the coercivity of
ϕ, (xn) is bounded. Set xn = x0

n + x+
n for all n, where x0

n ∈ H0 and x+
n ∈ H+. So both (x0

n) and
(x+

n) are bounded. Since φ′ : H1 → (H1)∗ is compact and

ϕ′(xn) = x+
n – φ′(xn) → 0,

(x+
n) has a convergent subsequence. As dim H0 = N , (x0

n) has a convergent subsequence.
Hence (xn) has a convergent subsequence. Thus ϕ satisfies PS-condition. Following the
same way as in the proof of Lemma 2.12, we can attain that � also satisfies PS-condition. �

Proof of Theorem 1.4 We know that

c = inf
N

ϕ = inf
S+

� > 0.

Let (wn) be a minimizing sequence for � on S+. Then �(wn) → c as n → ∞. By Ekeland’s
variational principle we have �′(wn) → 0 as n → ∞. Put xn := n̂(wn) ∈N . Then ϕ(xn) → c
and ϕ′(xn) → 0 as n → ∞. Hence (xn) is a PS-sequence of ϕ. Since ϕ satisfies PS-condition,
(xn) contains a converging subsequence; denote its limit by x. Since N is closed, x ∈ N ,
and x is a critical point of ϕ. Clearly, ϕ(x) ≥ c. Arguing similarly as for (2.10), we can show
that ϕ(x) ≤ c. Consequently, ϕ(x) = c, and x is a nonconstant T-period for system (1.1).

Next, we claim that x has T as its minimal period. Suppose, on the contrary, that x has
a minimal period T/k, where k ≥ 2 is an integer. We write x = x+ + x0 ∈ H+ ⊕ H0. By
Lemma 3.3, ‖x+‖2 ≥ √

2c > 0, i.e., x+ �= 0. Denote y(t) = x(t/k). Obviously, y+(t) = x+(t/k),
and y0 = x0. Subsequently, y ∈ H1 \ H0. By Lemma 3.6 there exists z ∈ Ĥ(y) such that z :=
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n̂(y) ⊂N . Denote z(t) = z+(t) + z0. Then z+(t) = sx+(t/k), and z0 ∈ H0, where s ∈R
+. Hence

ϕ(x) = inf
y∈N

ϕ(y)

≤ ϕ(z)

=
∫ T

0

[
1
2
∣
∣ż(t)

∣
∣2 – V

(
z(t)

)]
dt

=
∫ T

0

[
s2 1

2k2

∣∣∣
∣ẋ

+
(

t
k

)∣∣∣
∣

2

– V
(

sx+
(

t
k

)
+ z0

)]
dt

=
∫ T

0

[
s2 1

2k2

∣∣ẋ+(τ )
∣∣2 – V

(
sx+(τ ) + z0)

]
dτ

<
∫ T

0

[
s2

2
∣
∣ẋ+(τ )

∣
∣2 – V

(
sx+(τ ) + z0)

]
dτ

= ϕ
(
sx+ + z0) ≤ ϕ(x) = inf

y∈N
ϕ(y),

which is a contradiction. Hence x is a nonconstant T-periodic solution with minimal pe-
riod T . �
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