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Abstract
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1 Introduction and main results
In this paper, we are interested in the existence of the least energy sign-changing solution
of the following Kirchhoff-type problem:

⎧
⎨

⎩

(1 + b[u]2
s(·))(–�)s(·)u + V (x)u = |u|q(x)–2u ln |u|2 + λ|u|2∗(x)–2u, in �,

u = 0, in R
N \ �,

(1.1)

where

[u]2
s(·) :=

∫∫

R2N

|u(x) – u(y)|2
|x – y|N+2s(x,y) dx dy, (1.2)

b > 0, s(·) : RN ×R
N → (0, 1) is a continuous function, � is a bounded domain in R

N with
regular boundary, λ > 0 is a parameter, N > 2s(x, y) for all (x, y) ∈ � × �, (–�)s(·) is the
variable-order fractional Laplace operator, and 4 < q(x) < 2∗(x) := 2N

N–2s(x,x) for all x ∈ �. The
variable-order fractional Laplace operator (–�)s(·) is defined as follows: for each x ∈R

N ,

(–�)s(·)ϕ(x) = 2P.V .
∫

RN

ϕ(x) – ϕ(y)
|x – y|N+2s(x,y) dy, (1.3)

along any ϕ ∈ C∞
0 (�), where P.V . denotes the Cauchy principal values. As s(·) ≡ const., the

variable-order fractional Laplace operator (–�)s(·) reduces to the usual fractional Laplace
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operator; see [4, 18] for a concise introduction to the fractional Laplace operator and re-
lated variational results. The other form of the fractional operator can be seen in [10] and
the references therein.

In 1883, Kirchhoff [13] proposed a model given by the equation

ρ
∂2u
∂t2 –

(
P0

h
+

E
2L

∫ L

0

∣
∣
∣
∣
∂u
∂x

∣
∣
∣
∣

2

dx
)(

∂u
∂x

)2

= 0. (1.4)

The above Kirchhoff-type equations were also introduced by Lions [17]. The authors of
[5] said the nonlocal Kirchhoff problems of parabolic type can model several biological
systems, such as population density. For more physical backgrounds, we refer the reader
to [3, 16]. Many interesting results on the existence of positive solutions, multiple solu-
tions, bound state solutions, semiclassical state solutions, and sign-changing solutions
for Kirchhoff-type equations can be found in [1, 19, 20, 23] and the references therein.
For the fractional Kirchhoff problem, we mention that the authors of [9] used the finite-
dimensional reduction method and perturbed arguments to study the singular perturba-
tion fractional Kirchhoff equations with critical case

(

a + b
∫

RN

∣
∣(–�)

s
2 u

∣
∣2 dx

)

(–�)su =
(
1 + εK(x)

)
u2∗

s –1, in R
N , (1.5)

and the nondegenerate results are also given. See [30] for the fractional Kirchhoff problem
with strong singularity, that is, the right-hand term is f (x)u–γ , where γ > 1. Meanwhile,
the fractional Kirchhoff-type p-Laplacian problem has attracted extensive attention. See,
e.g., [4, 5, 7, 8, 14, 16, 24–29] for the existence, multiplicity, and concentration phenomena.

We mention that in 2019, Liang and Rădulescu [15] considered the following critical
Kirchhoff problems with logarithmic nonlinearity:

⎧
⎨

⎩

(a + b[u]p
s,p)(–�)s

pu = λ|u|q–2u ln |u|2 + |u|p∗
s –2u, in �,

u = 0, in R
N \ �.

(1.6)

Under suitable assumptions, they obtain a least energy sign-changing solution. There is
a logarithmic term in the above problem; please see [6, 8, 11, 15, 24] for related results.
The Schrödinger equation with logarithmic term appears in a lot of physical fields, such
as quantum mechanics, quantum optics, and nuclear physics. We also quote the paper
[22] for other singular integral equations and their physical background. In that paper, the
boundary integral equation method is used.

We also mention that in 2022, Wang and Zhang [25] proved the existence of infinitely
many solutions via Clark’s theorem for the following problem:

⎧
⎨

⎩

M([u]2
s(·))(–�)s(·)u + V (x)u = λ|u|p(x)–2u + μ|u|q(x)–2u, in �,

u = 0, in R
N \ �.

(1.7)

Recently, Liang et al. [14] studied the following problem:

⎧
⎨

⎩

(a + b[u]2
s(·))(–�)s(·)u = |u|q(x)–2u + λf (x, u), in �,

u = 0, in R
N \ �.

(1.8)
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They used constraint variational methods and the quantitative deformation lemma to ob-
tain the existence of one least energy sign-changing solution.

In this paper, motivated by the above paper, we are pursuing a sign-changing weak so-
lution of problem (1.1). To the best of our knowledge, there is no work concerning this
problem. To state our results, we make the following assumptions:

(S1) 0 < s– := min(x,y)∈RN ×RN s(x, y) ≤ s+ := max(x,y)∈RN ×RN s(x, y) < 1;
(S2) s(·) is symmetric, that is, s(x, y) = s(y, x) for all (x, y) ∈R

N ×R
N ;

(V 1) V (x) is a continuous function satisfying

inf
x∈�

V (x) > V0 > 0. (1.9)

Now, we can state our results as follows.

Theorem 1.1 Assume that (S1), (S2), and (V 1) hold. Then, for 4 < q(x) < 2∗(x) for all x ∈ �,
there exists λ1 > 0 such that for all λ ≥ λ1, problem (1.1) has a least energy sign-changing
solution ub.

Now, with regard to the property of double energy, according to the proof of the above
theorem we can define

Nλ =
{

u ∈ E \ {0} :
〈
J ′
λ(u), u

〉
= 0

}
, (1.10)

and we have the following theorem.

Theorem 1.2 Assume that (S1), (S2), and (V 1) hold. Then, for 4 < q(x) < 2∗(x) for all x ∈ �,
there exists λ∗ > 0 such that for all λ ≥ λ∗,

c∗ := inf
u∈Nλ

Jλ(u) > 0 (1.11)

is achieved and Jλ(ub) > 2c∗.

It is worthy of pointing out that our results are different from those in [8] or [14]. From
a technical point of view, we have three major difficulties. One is that both the fractional
Laplacian and the Kirchhoff term are nonlocal. This makes the decomposition of the en-
ergy function much more complicated. The second is that the logarithmic term is sign-
changing. The third is that our problem is Sobolev critical. In contrast to [14], our non-
linearity term contains a logarithmic term. Fortunately, for � is bounded, the functional
I (see (2.4)) is C1. Compared with [8], in our present paper, we add a perturbation param-
eter λ before the critical term in order to depress the energy value, so we can deal with
the Sobolev critical problem. This is called a local P.S. condition. So far, in our opinion,
adding a perturbation parameter λ before the logarithmic term is not effective to study the
critical problem since this term is sign-changing. Our objective is to study the logarithmic
term and the exponents are functions. We will use the variable-exponent Lebesgue space
Lp(x)(�); see [12] for the generalized Orlicz space Lϕ(�).

From now on, we always assume that (S1), (S2), and (V 1) hold unless otherwise stated.
We need to find a sign-change minimizer of the corresponding minimization problem.
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2 Proof of Theorem 1.1 and Theorem 1.2
We continue to use the notations and work space as in [14]. For a function m : � →R, we
set

m = ess inf
x∈�

m(x), m = ess sup
x∈�

m(x). (2.1)

Since V is continuous, in Hs(·)
0 (�), we can choose the equivalent norm

‖u‖2 = [u]2
s(·) +

∫

�

V (x)u2 dx. (2.2)

For convenience, we denote E := Hs(·)
0 (�) with the norm ‖ · ‖, which is a Hilbert space with

inner product (·, ·)E .
The corresponding energy functional of (1.1) is defined as

Jλ(u) =
1
2
‖u‖2 +

b
4

[u]4
s(·) + 2

∫

�

1
q(x)2 |u|q(x) dx

–
∫

�

1
q(x)

|u|q(x) ln |u|2 dx – λ

∫

�

1
2∗(x)

|u|2∗(x) dx, u ∈ E.
(2.3)

We can verify that Jλ ∈ C1(E,R). Indeed, in our case � is a bounded domain with regular
boundary. In virtue of the results in [2] or [21],

I(u) :=
∫

�

1
q(x)

|u|q(x) ln |u|2 dx (2.4)

belongs to C1(E,R). And for u, v ∈ E,

〈
I ′(u), v

〉
=

∫

�

|u|q(x)–2uv ln |u|2 dx + 2
∫

�

|u|q(x)–2uv dx. (2.5)

Our goal is to find a sign-changing critical point of Jλ. Although many words are simi-
lar to [14], we need to check our results word by word since our functional contains the
logarithmic term I(u).

Let us denote

u+(x) := max
{

u(x), 0
}

, u–(x) := min
{

u(x), 0
}

. (2.6)

Clearly, u = u+ + u–. For convenience, for any u ∈ E, u± �= 0, let us define a function Ψu :
[0,∞) × [0,∞) by

Ψu(α,β) := Jλ
(
αu+ + βu–)

. (2.7)

Furthermore,

H(u) :=
∫

�

∫

�

(u+(x) – u+(y))(u–(x) – u–(y))
|x – y|N+2s(x,y) dx dy. (2.8)
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Obviously,

H(u) = –2
∫

�

∫

�

u+(x)u–(y)
|x – y|N+2s(x,y) dx dy > 0. (2.9)

We define the sign-changing Nehari manifold

Mλ =
{

u ∈ E, u± �= 0 :
〈
J ′
λ(u), u+〉

=
〈
J ′
λ(u), u–〉

= 0
}

. (2.10)

We need to prove Mλ �= ∅. We have the following lemma. We remark that the last conclu-
sion in Lemma 2.1 will be used later.

Lemma 2.1 For u ∈ E, u± �= 0, there exists a unique (αu,βu) of positive numbers such that
αuu+ + βuu– ∈ Mλ. Moreover, (αu,βu) is the unique maximum point of Ψu on [0,∞) ×
[0,∞). Furthermore, if 〈J ′

λ(u), u±〉 ≤ 0, then 0 < αu,βu ≤ 1.

Proof Since the proof is almost standard (see [8]), we just sketch the proof for the reader’s
convenience. For all r(x) ∈ (q(x), 2∗(x)), noting that 4 < q(x) < 2∗(x), choosing ε > 0 small,
we can have

〈
J ′
λ

(
αu+ + βu–)

,αu+〉
> 0, for any α > 0 small enough and all β > 0. (2.11)

Similarly, it yields

〈
J ′
λ

(
αu+ + βu–)

,βu–〉
> 0, for any β > 0 small enough and all α > 0. (2.12)

Therefore, there exists δ1 > 0 such that

〈
J ′
λ

(
δ1u+ + βu–)

, δ1u+〉
> 0 and

〈
J ′
λ

(
αu+ + δ1u–)

, δ1u–〉
> 0. (2.13)

Like [8], we can choose δ∗
2 > 0 such that when β ∈ [δ1, δ∗

2 ], we have

〈
J ′
λ

(
δ∗

2 u+ + βu–)
, δ∗

2 u+〉 ≤ 0. (2.14)

Similarly, we have

〈
J ′
λ

(
αu+ + δ∗

2 u–)
, δ∗

2 u–〉 ≤ 0. (2.15)

Letting δ2 > δ∗
2 be large enough, we obtain

〈
J ′
λ

(
δ∗

2 u+ + βu–)
, δ∗

2 u+〉
< 0 and

〈
J ′
λ

(
αu+ + δ∗

2 u–)
, δ∗

2 u–〉
< 0 (2.16)

for all α,β ∈ [δ1, δ2]. Combining (2.13) with (2.16), there exists (αu,βu) ∈ (0,∞) × (0,∞)
such that Tu(αu,βu) = (0, 0).

Secondly, we prove the uniqueness of the pair (αu,βu). It can be divided into two cases.
Case 1. u ∈Mλ. Let (αu,βu) be a pair of numbers such that αuu+ + βuu– ∈Mλ. Next we

show that (αu,βu) = (1, 1).
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For the case 0 < αu ≤ βu, if βu > 1, 〈Jλ(αuu+ + βuu–), u–〉 = 0 can lead to a contradic-
tion. Therefore, we conclude that βu ≤ 1. Similarly, 〈Jλ(αuu+ + βuu–), u+〉 = 0 implies that
αu ≥ 1. Consequently, αu = βu = 1. For the other case, 0 < βu ≤ αu, we can adopt a similar
argument as above to get αu = βu = 1.

Case 2. u /∈Mλ. Suppose that there exist (α̃1, β̃1), (α̃2, β̃2) such that

u1 = α̃1u+ + β̃1u– ∈Mλ, u2 = α̃2u+ + β̃2u– ∈Mλ. (2.17)

Similar to [8], we obtain α̃2 = α̃1, β̃2 = β̃1.
Thirdly, we will prove that (αu,βu) is the unique maximum point of Ψu on [0, +∞) ×

[0, +∞). Clearly, (αu,βu) is a critical point of Ψu. Obviously,

2ρq(x) – q(x)ρq(x) ln |ρ|2 ≤ 2, ∀ρ ∈ (0,∞). (2.18)

It follows that

lim
|(α,β)|→∞

Ψu(α,β) = –∞. (2.19)

Hence, (αu,βu) is the unique critical point of Ψu in (0, +∞) × (0, +∞). So it is sufficient
to check that maximum point cannot be achieved on the boundary of (0, +∞) × (0, +∞).
The boundary is

{0, +∞} × (0, +∞) ∪ (0, +∞) × {0, +∞} ∪ {0, +∞} × {0, +∞}. (2.20)

In view of (2.19), the maximum point of Ψu cannot be +∞ × (0, +∞), (0, +∞) × +∞,
or {0, +∞} × {0, +∞} if (0,βu) is a maximum point of Ψu for some real positive number
0 < βu < +∞. However, Ψu is an increasing function with respect to α if α is small enough.
This is absurd. Similarly, Ψu cannot achieve its global maximum point at (αu, 0).

The remaining part is to prove the last conclusion. We also divide this into two cases. For
case 1, if βu ≤ αu, and jointly 〈J ′

λ(u), u±〉 ≤ 0 with αuu+ + βuu– ∈Mλ, we obtain 0 < αu ≤ 1.
For case 2, if αu ≤ βu, we can get βu ≤ 1 as before. �

Now, consider the following minimization problem:

cλ := inf
u∈Mλ

Jλ(u). (2.21)

We need to prove it is well defined.

Lemma 2.2 We have cλ > 0.

Proof Since r, r, 2∗, 2∗ > 4, similar to [8], there exists ρ > 0 such that

∥
∥u±∥

∥2 ≥ ρ, for all u ∈Mλ. (2.22)

In light of 〈J ′
λ(u), u〉 = 0 and

2
1

q(x)2 |u|q(x) +
1
4

(

1 –
4

q(x)

)

|u|q(x) ln |u|2 ≥ 0, (2.23)
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we get

Jλ(u) = Jλ(u) –
1
4
〈
J ′
λ(u), u

〉

≥ 1
4
‖u‖2.

(2.24)

Thus, we have cλ > 0. �

Next, we let λ → ∞ to get the asymptotic property of cλ = infu∈Mλ
Jλ(u).

Lemma 2.3 We have limλ→∞ cλ = 0.

Proof For any u ∈ E with u± �= 0, using Lemma 2.1, for each λ > 0, there exist αλ,βλ > 0
such that αλu+ + βλu– ∈ Mλ. Similar to [8], {(αλ,βλ)}λ can be bounded. So let {λn} ⊂
(0, +∞) be such that λn → ∞ as n → ∞, and we have (αλn ,βλn ) → (α0,β0). We have the
following claim.

Claim 2.4 We claim that α0 = β0 = 0.

If α0 > 0 or β0 > 0, by αλn u+ + βλn u– ∈Mλn , we have

∥
∥αλn u+ + βλn u–∥

∥2 + b
[
αλn u+ + βλn u–]4

s(·)

=
∫

�

∣
∣αλn u+ + βλn u–∣

∣q(x)
ln

∣
∣αλn u+ + βλn u–∣

∣2 dx

+ λn

∫

�

∣
∣αλn u+ + βλn u–∣

∣2∗(x) dx.

(2.25)

Using the Lebesgue dominated convergence theorem, we obtain

∫

�

∣
∣αλn u+ + βλn u–∣

∣2∗(x) dx →
∫

�

∣
∣α0u+ + β0u–∣

∣2∗(x) dx > 0, (2.26)

which is a contradiction. Consequently, we finish the proof. We point out that our pa-
rameter λ is before the critical term, which ensures that the corresponding energy is de-
pressed. �

The next lemma shows that cλ can be achieved when λ is large enough. We borrow the
idea from [8] or [15]. However, our case is different from both of them since it eppears the
terms

λ
max{α2∗ ,α2∗}

2∗ and λ
max{β2∗ ,β2∗}

2∗ . (2.27)

For strict logic, we check it word by word patiently.

Lemma 2.5 There exists λ1 > 0 such that for all λ > λ1, cλ is achieved.
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Proof Let {un} be a minimization sequence. Obviously, {un} is bounded in E. Up to a sub-
sequence, we may assume that un ⇀ u in E. Thus, we have

lim inf
n→∞ Jλ

(
αu+

n + βu–
n
)

≥ Jλ
(
αu+ + βu–)

+
α2

2
A1 +

β2

2
A2 +

bα4

2
A3

[
u+]2

s(·) +
bα4

4
A2

3 +
bβ4

2
A4

[
u–]2

s(·) +
bβ4

4
A2

4

– λ
max{α2∗ ,α2∗}

2∗ B1 – λ
max{β2∗ ,β2∗}

2∗ B2,

(2.28)

where

A1 = lim
n→∞

∥
∥u+

n – u+∥
∥2, A2 = lim

n→∞
∥
∥u–

n – u–∥
∥2,

A3 = lim
n→∞

[
u+

n – u+]2
s(·), A4 = lim

n→∞
[
u–

n – u–]2
s(·),

(2.29)

and

B1 = lim
n→∞

∣
∣u+

n – u+∣
∣2∗(x)
2∗(x), B2 = lim

n→∞
∣
∣u–

n – u–∣
∣2∗(x)
2∗(x). (2.30)

Since our proof is too long, we present it in three steps.
Step 1: We want to prove that u± �= 0.
We only prove u+ �= 0 since u– �= 0 can be proven by an analogous method. If u+ = 0. We

will divide it into two cases.
Case 1: B1 = 0. According to (2.28), for all α > 0, we have

cλ ≥ Jλ
(
αu+)

+
α2

2
A1 +

bα4

2
A3

[
u+]2

s(·) +
bα4

4
A2

3 – λ
max{α2∗ ,α2∗}

2∗ B1. (2.31)

Subcase 1: A1 = 0. This contradicts (2.22).
Subcase 2: A1 > 0. By (2.31) and Lemma 2.3, we have

0 <
α2

2
A1 ≤ cλ → 0 for all α > 0 and λ → ∞. (2.32)

This is absurd.
Case 2: B1 > 0. This yields A1 > 0. Let

f1(α) :=
α2

2
A1 – λ

α2∗

2∗ B1, f2(α) :=
α2

2
A1 – λ

α2∗

2∗ B1. (2.33)

We can take δ0 > 0, independent of λ, such that

0 < δ0 ≤ min
{

max
α≥0

f1(α), max
α≥0

f2(α)
}

. (2.34)
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However, we have

max
α≥0

{
α2

2
A1 +

bα4

2
A3

[
u+]2

s(·) +
bα4

4
A2

3 – λ
max{α2∗ ,α2∗}

2∗ B1

}

≤ cλ → 0 as λ → ∞,

(2.35)

which is a contradiction.
Step 2: We shall prove un → u in L2∗(x)(�).
We only prove B1 = 0 since the proof for B2 = 0 is similar. If B1 > 0, we divide it into two

cases to lead to a contradiction.
Case 1: B2 > 0. For all α > 0, let

ϕ1(α) : =
α2

2
A1 +

bα4

2
A3

[
u+]2

s(·) +
bα4

4
A2

3 – λ
max{α2∗ ,α2∗}

2∗ B1,

ϕ2(β) : =
β2

2
A2 +

bβ4

2
A4

[
u–]2

s(·) +
bβ4

4
A2

4 – λ
max{β2∗ ,β2∗}

2∗ B2.

(2.36)

We can choose α̂, β̂ > 0 such that

ϕ (̂α) = max
α≥0

ϕ1(α), ϕ(β̂) = max
α≥0

ϕ2(β). (2.37)

Let

Ψu(αu,βu) := max
(α,β)∈[0,̂α]×[0,β̂]

Ψu(α,β). (2.38)

We can prove that (αu,βu) ∈ (0, α̂) × (0, β̂), which ensures that (αu,βu) is the critical point
of Ψu.

According to Lemma 2.1, (αu,βu) = (αu,βu). Noting that (2.28), we have

cλ = lim inf
n→∞ Jλ

(
αu+

n + βu–
n
)

≥ Jλ
(
αuu+ + βuu–)

+
α2

u
2

A1 +
β2

u
2

A2 +
bα4

u
2

A3
[
u+]2

s(·) +
bα4

u
4

A2
3 +

bβ4
u

2
A4

[
u–]2

s(·) +
bβ4

u
4

A2
4

–
max{α2∗

u ,α2∗
u }

2∗ B1 –
max{β2∗

u ,β2∗
u }

2∗ B2

> Jλ
(
αuu+ + βuu–) ≥ cλ,

which is a contradiction.
Case 2: B2 = 0. Clearly, there exists β0 ∈ [0,∞) such that

Jλ
(
αu+ + βu–) ≤ 0, ∀(α,β) ∈ [0, α̂] × [β0,∞). (2.39)

Hence, there exists (αu,βu) ∈ [0, α̂] × [0,∞) such that

Ψu(αu,βu) = max
(α,β)∈[0,̂α]×[0,∞)

Ψu(α,β). (2.40)
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We also can prove that (αu,βu) ∈ (0, α̂) × (0,∞). This implies that (αu,βu) is the critical
point of Ψu. Then it follows that

cλ = lim inf
n→∞ Jλ

(
αu+

n + βu–
n
)

≥ Jλ
(
αuu+ + βuu–)

+
α2

u
2

A1 +
β2

u
2

A2 +
bα4

u
2

A3
[
u+]2

s(·) +
bα4

u
4

A2
3 +

bβ4
u

2
A4

[
u–]2

s(·)

+
bβ4

u
4

A2
4 – λ

max{α2∗
u ,α2∗

u }
2∗ B1

> Jλ
(
αuu+ + βuu–)

≥ cλ.

(2.41)

Step 3: We can prove that cλ is achieved. Similar to [15], we omit it here. �

Proof of Theorem 1.1 With Lemmas~2.1–2.5 in hand, we only need to clarify that the
minimizer ub is a critical point of Jλ for λ > λ1, where λ1 is from Lemma 2.5. Our method
used here is different from that used in [15] or [8]. If ub is not a critical point of Jλ, we can
choose a function φ ∈ C∞

0 (RN ) such that 〈Jλ(ub),φ〉 ≤ –1. We choose ε > 0 small enough
such that

〈
J ′
λ

(
su+

b + tu–
b + σφ

)
,φ

〉 ≤ –
1
2

, ∀(s, t,σ ) ∈ Bε(1, 1, 0), (2.42)

where Bε(1, 1, 0) is an open ball of radius ε centered at (1, 1, 0). We introduce a smooth
cut-off function 0 ≤ η ≤ 1 such that

η(s, t) =

⎧
⎨

⎩

1, (s, t) ∈ B ε
2

(1, 1),

0, (s, t) ∈ Bc
ε(1, 1).

(2.43)

We make the following perturbation:

γ (s, t) =

⎧
⎨

⎩

su+
b + tu–

b , (s, t) ∈ Bc
ε(1, 1),

su+
b + tu–

b + εη(s, t)φ, (s, t) ∈ Bε(1, 1).
(2.44)

Obviously, γ (s, t) is continuous from R × R to (E,‖ · ‖). For ε > 0 small enough, we have
γ (s, t)± �= 0. We have the following claim.

Claim 2.6 We claim that sups,t≥0 Jλ(γ (s, t)) < cλ.

Indeed, if (s, t) ∈ Bc
ε(1, 1), by Lemma 2.1, we get Jλ(γ (s, t)) < cλ. If (s, t) ∈ Bε(1, 1), using

the mean value theorem, there is σ ∈ (o, ε) such that

Jλ
(
γ (s, t)

)
= Jλ

(
su+

b + tu–
b
)

+
〈
J ′
λ

(
su+

b + tu–
b + ση(s, t)φ

)
,φ

〉

≤ Jλ
(
su+

b + tu–
b
)

–
1
2
η(s, t)

< cλ.

(2.45)



Zhou et al. Boundary Value Problems          (2024) 2024:8 Page 11 of 13

However, in view of Lemma 2.1, for (s, t) ∈ (1 – ε
2 , 1) × (1 – ε

2 , 1), we have

〈
J ′
λ

(
su+

b + tu–
b + ση(s, t)φ

)
, u+

b
〉

> 0,
〈
J ′
λ

(
su+

b + tu–
b + ση(s, t)φ

)
, u–

b
〉

> 0. (2.46)

Similarly, for (s, t) ∈ (1, 1 + ε
2 ) × (1, 1 + ε

2 ), we have

〈
J ′
λ

(
su+

b + tu–
b + ση(s, t)φ

)
, u+

b
〉

< 0,
〈
J ′
λ

(
su+

b + tu–
b + ση(s, t)φ

)
, u–

b
〉

< 0. (2.47)

Therefore, there is (s0, t0) ∈ (1 – ε
2 , 1 + ε

2 ) × (1 – ε
2 , 1 + ε

2 ) such that

s0u+
b + t0u–

b + ση(s0, t0)φ ∈Mλ. (2.48)

This contradicts the above claim. �
Next, we want to prove the property of double energy of ub.

Proof of Theorem 1.2 Based on Lemma 2.5 and standard arguments, there exists λ2 > 0
such that for all λ ≥ λ2, the minimization problem

c∗ := inf
u∈Nλ

Jλ(u) (2.49)

is well defined and it admits a minimizer which is a critical point of Jλ. It is called a ground
state of (1.1).

According to Theorem 1.1, we know that problem (1.1) has a least energy sign-changing
solution ub when λ ≥ λ1.

Let λ∗ = max{λ1,λ2}. Let ub be obtained in Theorem 1.1. A standard proof implies that
there exist s > 0 and t > 0 such that su+

b ∈Nλ and tu–
b ∈Nλ. If we define

g1(s) := Jλ
(
su+

b
)
, g2(t) := Jλ

(
tu+

b
)
, (2.50)

we have g1(s) = maxs≥0 g1(s), g1(t) = maxt≥0 g1(t). So,

cλ = sup
s,t≥0

Jλ
(
su+

b + tu–
b
)

= sup
s,t≥0

[

Jλ
(
su+

b
)

+ Jλ
(
tu–

b
)

+
st
2

H(ub) +
b

16
s2t2H(ub) +

b
2

s2t2[u+
b
]2

s(·)
[
u–

b
]2

s(·)

+
b
4

s3t
[
u+

b
]2

s(·)H(ub) +
b
4

st3[u–
b
]2

s(·)H(ub)
]

> sup
s≥0

Jλ
(
su+

b
)

+ sup
t≥0

Jλ
(
tu–

b
)

≥ 2c∗. �
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