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Abstract
We establish a Liouville-type theorem for a weighted higher-order elliptic system in a
wider exponent region described via a critical curve. We first establish a Liouville-type
theorem to the involved integral system and then prove the equivalence between
the two systems by using superharmonic properties of the differential systems. This
improves the results in (Complex Var. Elliptic Equ. 5:1436–1450, 2013) and (Abstr. Appl.
Anal. 2014:593210, 2014).
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1 Introduction
In this paper, we establish a Liouville-type theorem for the weighted 2mth-order elliptic
equations coupled via the Navier boundary conditions in the half-space Rn

+ = {x ∈R
n : xn >

0}:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(–�)m(|x|αu(x)) = |x|–βvq in R
n
+,

(–�)m(|x|βv(x)) = |x|–αup in R
n
+,

u = �u = · · · = �m–1u = 0 on ∂Rn
+,

v = �v = · · · = �m–1v = 0 on ∂Rn
+,

(1.1)

where m is a positive integer satisfying 0 < 2m < n, p, q ≥ 1, and α,β ≥ 0, which is closely
related to the following integral system:

⎧
⎨

⎩

u(x) = Cn
∫

R
n
+

1
|x|α |y|β ( 1

|x–y|n–2m – 1
|x̄–y|n–2m )vq(y) dy,

v(x) = Cn
∫

R
n
+

1
|x|β |y|α ( 1

|x–y|n–2m – 1
|x̄–y|n–2m )up(y) dy,

(1.2)

where Cn > 0, and x̄ = (x1, . . . , xn–1, –xn) is the reflection of the point x about the ∂Rn
+. Sim-

ilar to some integral systems or partial differential systems, the integral system (1.2) is
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usually divided into three cases according to the value of the exponents (p, q). We intro-
duce the critical curve

1
p + 1

+
1

q + 1
=

n – 2m + α + β

n
(1.3)

for (1.2) to determine a Liouville-type theorem.
The well-known classical Hardy–Littlewood–Sobolev inequality states that

∫

Rn

∫

Rn

f (x)g(y)
|x – y|ν dx dy ≤ Cl,ν,n‖f ‖h‖g‖l

for all f ∈ Lh(Rn) and g ∈ Ll(Rn), where 1 < h, l < ∞, 0 < ν < n, and 1
h + 1

l + ν
n = 2. Hardy and

Littlewood also introduced the double weighted inequality, which was generalized by Stein
and Weiss [13]. This inequality is called the double weighted Hardy–Littlewood–Sobolev
(WHLS) inequality

∣
∣
∣
∣

∫

Rn

∫

Rn

f (x)g(y)
|x|τ |x – y|ν |y|κ dx dy

∣
∣
∣
∣ ≤ Cτ ,κ ,l,ν,n‖f ‖h‖g‖l, (1.4)

where 1 < l, h < ∞, 0 < ν < n, τ + κ ≥ 0, and τ and κ satisfy 1 – 1
h – ν

n < τ
n < 1 – 1

h with
1
l + 1

h + ν+κ+τ
n = 2. To obtain the best constant in the weighted inequality (1.4), we can

maximize the functional

J(f , g) =
∫

Rn

∫

Rn

f (x)g(y)
|x|τ |x – y|ν |y|κ dx dy

under the constrains ‖f ‖h = ‖g‖l = 1. The corresponding Euler–Lagrange equations are
the following system of integral equations:

⎧
⎨

⎩

λ1hf (x)h–1 =
∫

Rn
g(y)

|x|τ |y|κ |x–y|μ dy,

λ2lg(x)l–1 = Cn
∫

Rn
f (y)

|x|κ |y|τ |x–y|μ dy,
(1.5)

where f , g ≥ 0, x ∈ R
n, and λ1h = λ2l = J(f , g). Let u = c1f h–1, v = c2gl–1, p = 1

h–1 , q = 1
l–1

with pq �= 1. Then by a proper choice of constants c1 and c2 system (1.5) becomes

⎧
⎨

⎩

u(x) = Cn
∫

Rn
1

|x|τ |y|κ
1

|x–y|μ vq(y) dy,

v(x) = Cn
∫

Rn
1

|x|κ |y|τ
1

|x–y|μ up(y) dy,
(1.6)

where u, v ≥ 0, 0 < p, q < ∞, 0 < μ < n, τ
n < 1

p+1 < μ+τ

n , and 1
p+1 + 1

q+1 = μ+τ+κ

n .
Jin and Li [10] derived that the positive solution of systems (1.6) is symmetric and mono-

tonic. In [6] and [9], they also discussed the regularity of solutions to (1.6). Lei and Lü [11]
proved that system (1.6) and the related differential systems are equivalent to each other
under the condition max{τ (p + 1),κ(q + 1)} ≤ n – μ with pq > 1 and τ ,κ ≥ 0, and the
positive locally bounded solutions are symmetric and decreasing about some axis. The
Liouville-type theorem to the whole space problem was established by Ma and Chen [8].
In recent years, the nonlocal fractional Laplacian (0 < m < 1) on the whole space has re-
ceived much attention from researchers. Zhuo and Li [17] had proved the nonexistence
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of an antisymmetric solution in the case 0 < p ≤ n+2m
n–2m , whereas Li and Zhuo [18] have

proved the consequence of systems in the case 0 < pq < 1 or p + 2m > 1 and q + 2m > 1
with 0 < p, q ≤ n+2m

n–2m . For more related results, see [19–23] and the references therein.
For α = β = 0 in system (1.2), Zhuo and Li [14] established the symmetry of solutions

to an integral system, and Cao and Dai [3] obtained the nonexistence of nontrivial solu-
tions. Zhao, Yang, and Zheng proved the nonexistence of nontrivial solutions for partial
differential equations (1.1) in [15] and considered the general nonlinear source in [16].

For α,β �= 0 in system (1.2), Cao and Dai [4] obtained a Liouville-type theorem in the
super- and subcritical cases under some integrability conditions by the Pohozaev-type
identity of integral form, and in the critical case, they showed that a pair of positive so-
lutions to the system is rotationally symmetric about the xn-axis. Also, we mention the
recent important works on the existence and asymptotic analysis of nontrivial solutions
for some elliptic systems; see [24–28].

In the present paper, instead of (1.1), we will first establish a Liouville-type theorem
for the integral system (1.2) in the supercritical case and then prove that systems (1.2)
and (1.1) are equivalent by using the superharmonic properties, that is, the following two
propositions.

Proposition 1 Let (u, v) ∈ Lq1 (Rn
+)×Lq2 (Rn

+) be a nonnegative solution of system (1.2), and
let q1 := n(pq–1)

(2m–α–β)(1+q) and q2 := n(pq–1)
(2m–α–β)(1+p) with p, q ≥ 1, pq �= 1, and α + β < 2m. If

1
p + 1

+
1

q + 1
<

n – 2m + α + β

n
, (1.7)

then (u, v) ≡ (0, 0).

Proposition 2 Let p, q ≥ 1 with pq �= 1, and let α + β < 2m. Then the differential system
(1.1) is equivalent to the integral system (1.2).

Remark 1 Without the growth conditions

∣
∣(–�)m–1u

∣
∣,

∣
∣(–�)m–1v

∣
∣ = O

(|x|a), a ∈ (0, 1), |x| → ∞,

in [12, Theorem 1], we can arrive at the same result by using the proof of Proposition 2.

Remark 2 By Proposition 2 we can show that the conclusions of [4, Theorems 1.2 and 1.3]
hold for the partial differential system (1.1). Moreover, the conditions 1

p+1 < n–2m
2n + α

n and
1

q+1 < n–2m
2n + β

n in [4, Theorem 1.2] are covered by condition (1.7).

Based on Propositions 1 and 2, the main result of the paper is the following theorem.

Theorem 1 Under the conditions of Proposition 1, the classical nonnegative solutions of
system (1.1) must be trivial.

To prove Proposition 1, we will explore the moving plane method in integral forms by
Chen, Li, and Ou [5]. For the proof of Proposition 2, we first prove the superharmonic
properties of systems (1.1) and then establish the equivalence between the two systems by
using a technique introduced in [7] for the scalar case of higher-order equations.

Next, we will prove Propositions 1 and 2 in Sects. 2 and 3, respectively.
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2 Proof of Proposition 1
We introduce three lemmas for the integral system (1.2) as preliminaries, and let Cn = 1
there for simplicity.

Denote

G(x, y) :=
1

|x – y|n–2m –
1

|x̄ – y|n–2m , x, y ∈R
n
+,

with x̄ reflecting x about the ∂Rn
+. Let xλ = (x1, x2, . . . , 2λ – xn) be the reflection of the point

x about the plane Tλ = {x ∈ R
n
+|xn = λ}, and denote uλ(x) = u(xλ), vλ(x) = v(xλ). Define


λ := {x ∈ R
n
+|0 < xn < λ} and 
̃λ := {xλ|x ∈ 
λ}, 
c

λ = R
n
+ \ 
λ. The following lemma on

the Green function G(x, y) in 
λ is known.

Lemma 2.1 ([2, Lemma 2.1]) (i) For all x, y ∈ 
λ, x �= y, we have

G
(
xλ, yλ

)
> max

{
G

(
xλ, y

)
, G

(
x, yλ

)}
,

G
(
xλ, yλ

)
– G(x, y) >

∣
∣G

(
xλ, y

)
– G

(
x, yλ

)∣
∣.

(ii) For all x ∈ 
λ, y ∈ 
c
λ, we have

G
(
xλ, y

)
> G(x, y).

Lemma 2.2 Let (u, v) be a nonnegative solution of (1.2). For all x ∈ 
λ, we have

u(x) – uλ(x) ≤
∫


λ

G
(
xλ, yλ

) [vq – vq
λ](y)

|x|α|y|β dy,

v(x) – vλ(x) ≤
∫


λ

G
(
xλ, yλ

) [up – up
λ](y)

|x|β |y|α dy.

Proof Since

u(x) =
∫


λ

G(x, y)
vq(y)

|x|α|y|β dy +
∫


λ

G
(
x, yλ

) vq
λ(y)

|x|α|yλ|β dy +
∫


c
λ\
̃λ

G(x, y)
vq(y)

|x|α|y|β dy,

uλ(x) =
∫


λ

G
(
xλ, y

) vq(y)
|xλ|α|y|β dy +

∫


λ

G
(
xλ, yλ

) vq
λ(y)

|xλ|α|yλ|β dy

+
∫


c
λ\
̃λ

G
(
xλ, y

) vq(y)
|xλ|α|y|β dy,

we have by Lemma 2.1 that

u(x) – uλ(x) ≤
∫


λ

[
G

(
xλ, yλ

)
– G

(
x, yλ

)] vq(y)
|x|α|y|β dy

–
∫


λ

[
G

(
xλ, yλ

)
– G

(
x, yλ

)] vq
λ(y)

|xλ|α|yλ|β dy

+
∫


c
λ\
̃λ

[
G(x, y) – G

(
xλ, y

)] vq(y)
|x|α|y|β dy
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≤
∫


λ

[
G

(
xλ, yλ

)
– G

(
x, yλ

)] [vq – vq
λ](y)

|x|α|y|β dy

≤
∫


λ

G
(
xλ, yλ

) [vq – vq
λ](y)

|x|α|y|β dy.

The second inequality can be obtained in the same way. �

In addition, we also need the weighted Hardy–Littlewood–Sobolev inequality.

Lemma 2.3 ([10]) Let 1 < l, m < ∞, 0 < ν < n, τ + κ ≥ 0, 1
l + 1

m + ν+κ+τ
n = 2, and 1 – 1

m – ν
n <

τ
n < 1 – 1

m . Then

∣
∣
∣
∣

∫

Rn

∫

Rn

f (x)g(y)
|x|τ |x – y|ν |y|κ dx dy

∣
∣
∣
∣ ≤ C‖f ‖m‖g‖l

with C = C(τ ,κ , l,ν, n) > 0, or, equivalently,

∥
∥Tg(x)

∥
∥

γ
:= sup

‖f ‖m=1

〈
Tg(x), f (x)

〉 ≤ C‖g‖l

with Tg(x) =
∫

Rn
g(y)

|x|τ |x–y|ν |y|κ dy, 1
l + ν+κ+τ

n = 1 + 1
γ

and 1
m + 1

γ
= 1.

Now we can prove Proposition 1.

Proof of Proposition 1 We apply the moving-plane method in two steps.
1. Determine the starting position
Start from the very low end of Rn

+, i.e., near xn = 0. We will show that for λ sufficiently
small,

wλ(x) := u(x) – uλ(x) ≤ 0, gλ(x) := v(x) – vλ(x) ≤ 0 a.e. in 
λ. (2.1)

Denote

Bu
λ :=

{
x ∈ 
λ|wλ(x) > 0

}
, Bv

λ :=
{

x ∈ 
λ|gλ(x) > 0
}

.

We will prove that Bu
λ and Bv

λ must be of zero measure, provided that λ sufficiently small.
In fact, by Lemma 2.2 with the mean value theorem we have that for sufficiently small λ

and x ∈ Bu
λ ,

0 ≤ wλ(x) =
∫

Bv
λ

+
∫


λ\Bv
λ

G
(
xλ, yλ

) [vq – vq
λ](y)

|x|α|y|β dy

≤
∫

Bv
λ

G
(
xλ, yλ

) [vq – vq
λ](y)

|x|α|y|β dy

≤ q
∫

Bv
λ

[vq–1(v – vλ)](y)
|x – y|n–2m|x|α|y|β dy.
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Furthermore, by Lemma 2.3 with Hölder’s inequality and q∗
1 = q1

q1–1

‖wλ‖q1,Bu
λ
≤ sup

‖f ‖q∗
1

=1

∫

Bv
λ

[vq–1(v – vλ)](y)
|x – y|n–2m|x|α|y|β dy

= C
∥
∥vq–1gλ

∥
∥

l,Bv
λ

≤ C‖v‖q–1
q2,Bv

λ
‖gλ‖q2,Bv

λ
(2.2)

with the universal constant C > 0, where the supercritical inequality (1.7) with p, q ≥ 1 and
α + β < 2m implies

q1 =
n(pq – 1)

(2m – α – β)(1 + q)
> p + 1 > 1,

q2 =
n(pq – 1)

(2m – α – β)(1 + p)
> q + 1 > 1,

and

1
l

= 1 +
1
q1

–
n – 2m + α + β

n
=

(2m – α – β)(1 + p)q
n(pq – 1)

<
q

q + 1
< 1.

Similarly, we have

‖gλ‖q2,Bv
λ
≤ C‖u‖p–1

q1,Bu
λ
‖wλ‖q1,Bu

λ
. (2.3)

It follows from (2.2) and (2.3) that

‖wλ‖q1,Bu
λ
≤ C‖u‖p–1

q1,Bu
λ
‖v‖q–1

q2,Bv
λ
‖wλ‖q1,Bu

λ
. (2.4)

Since (u, v) ∈ Lq1 (Rn
+) × Lq2 (Rn

+), we can choose λ small enough such that

C‖u‖p–1
q1,Bu

λ
‖v‖q–1

q2,Bv
λ

<
1
2

,

and thus ‖wλ‖q1,Bu
λ

= 0 by (2.4). In the same way, ‖gλ‖q2,Bv
λ

= 0. This proves (2.1).
2. Move the plane to the infinity
Inequalities (2.1) provide a starting point to move the plane Tλ. We start from a neigh-

borhood of λ and move the plane up as long as (2.1) holds. Define

λ0 := sup{λ|wρ , gρ ≤ 0,ρ ≤ λ for a.e. x ∈ 
ρ}. (2.5)

We first prove that λ0 = ∞. Assume for contradiction that λ0 < ∞. We claim that

wλ0 (x) = gλ0 (x) = 0 a.e.in 
λ0 . (2.6)

Otherwise, for such λ0, e.g.,

E0 :=
{

x|gλ0 (x) < 0, x ∈ 
λ0

}
has a positive measure. (2.7)
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By Lemma 2.2

u(x) – uλ0 (x) ≤
∫


λ0

G
(
xλ0 , yλ0

) [vq – vq
λ0

](y)
|x|α|y|β dy

=
∫

E0

G
(
xλ0 , yλ0

) [vq – vq
λ0

](y)
|x|α|y|β dy,

Consequently,

wλ0 (x) < 0 a.e. in 
λ0 . (2.8)

Denote λε := λ + ε with ε > 0 to be determined. For any small η > 0, choose R sufficiently
large such that

∫

R
n
+\BR(0)

|u|q1 (y) dy ≤ η.

It follows from Lusin’s theorem and (2.8) that for any δ > 0, there exists a closed set Fδ ⊂
E := 
λ0

⋂
BR(0) with m(E \ Fδ) < δ such that wλ0 (x) < 0 and is continuous in Fδ . Choosing

ε > 0 sufficiently small, we have

wλε (x) < 0 for all x ∈ Fδ

by continuity. Denote Dλε := (
λε \ 
λ0 ) ∩ BR(0). Then

Bu
λε

⊂ M :=
(
R

n
+ \ BR(0)

) ∪ (E \ Fδ) ∪ Dλε .

Let R be large and δ and ε small such that
∫

Bu
λε

|u|q1 (y) dy ≤ ∫

M |u|q1 (y) dy ≤ 1
2 . Similarly,

∫

Bv
λε

|v|q2 (y) dy ≤ 1
2 .

By (2.4) with λ = λε we can get

‖wλε ‖q1,Bu
λε

≤ C‖u‖p–1
q1,Bu

λε

‖v‖q–1
q2,Bv

λε

‖wλε ‖q1,Bu
λε

≤ 1
4
‖wλε ‖q1,Bu

λε
,

which implies ‖wλε ‖q1,Bu
λε

≡ 0. Thus

wλε (x) ≤ 0 a.e. in 
λε ,

and, similarly,

gλε (x) ≤ 0 a.e. in 
λε .

This contradicts (2.7) with (2.5). Thus (2.6) holds. This yields the contradiction that u(x) =
v(x) ≡ 0 on the plane {xn = 2λ0}. We conclude that λ0 = +∞, which implies that both u
and v are strictly monotonically increasing with respect to xn. Moreover, we know that
u ∈ Lq1 (Rn

+) and v ∈ Lq2 (Rn
+)and for any a > 0,

∫

R
n
+

∣
∣u

(
x′, xn

)∣
∣q1 dx′ dxn ≥

∫

Rn–1

∫ ∞

a

∣
∣u

(
x′, a

)∣
∣q1 dxn dx′,
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∫

R
n
+

∣
∣v

(
x′, xn

)∣
∣q2 dx′ dxn ≥

∫

Rn–1

∫ ∞

a

∣
∣v

(
x′, a

)∣
∣q2 dxn dx′,

and hence u(x′, a) = v(x′, a) = 0 for all x′ ∈R
n–1, a contradiction. �

3 Proof of Proposition 2
Denote by BR(0) := {x ∈ R

n, |x| < R} the ball of radius R centered at the origin in R
n with

B+
R(0) := BR(0) ∩R

n
+ and ∂B+

R(0) := �R = �̄R ∪ �̂R, the union of the flat and hemisphere parts
of �R. Let x∗ := x

|x2| R
2 be the reflection of x about ∂BR(0), and let

G̃R(x, y) :=
(

1
|x – y|n–2 –

1
( |x|

R |x∗ – y|)n–2

)

–
(

1
|x̄ – y|n–2 –

1
( |x̄|

R |x̄∗ – y|)n–2

)

.

We begin with the well-known lemma.

Lemma 3.1 ([1, Lemma 2.1])
(i) For x ∈ B+

R(0), G̃R(x, y) satisfies the equation

⎧
⎨

⎩

–�G̃R(x, y) = δ(x – y) in B+
R(0),

G̃R(x, y) = 0 on ∂B+
R(0).

(3.1)

(ii) For x, y ∈ B+
R(0),

G̃R(x, y) → G(x, y, 2) =
1

|x – y|n–2 –
1

|x̄ – y|n–2 as R → ∞. (3.2)

(iii) For x ∈ B+
R(0) and y ∈ �̂R,

∂G̃R

∂ν
(x, y) = (2 – n)R

(

1 –
|x|2
R2

)(
1

|x – y|n –
1

|x̄ – y|n
)

,

where ν is the outward unit normal vector of �̂R.

We follow the main idea of Chen, Fang, and Li [7] to give superharmonic properties of
system (1.1). This result plays a key role in the proof of Proposition 2.

Lemma 3.2 If (u, v) is a positive solution of (1.1), then

(–�)i(|x|αu
)

> 0, (–�)i(|x|βv
)

> 0, i = 1, . . . , m – 1, x ∈R
n
+.

Proof We make an odd extension of u and v to the whole space. Define

u
(
x′, xn

)
= –u

(
x′, –xn

)
, v

(
x′, xn

)
= –v

(
x′, –xn

)
, xn < 0,

with x′ = (x1, . . . , xn–1). Then (u, v) satisfy

⎧
⎨

⎩

(–�)m(|x|αu(x)) = |x|–β |v|q–1v in R
n,

(–�)m(|x|βv(x)) = |x|–α|u|p–1u in R
n.

(3.3)



Zhao et al. Boundary Value Problems         (2024) 2024:22 Page 9 of 19

Write ui(x) := (–�)i(|x|αu) and vi(x) := (–�)i(|x|βv). We will prove that ui(x), vi(x) > 0,
x ∈R

n
+, i = 1, 2, . . . , m – 1.

Step 1. We claim that um–1(x) ≥ 0, x ∈R
n
+. Otherwise, there exists x1 ∈R

n
+ such that

um–1(x1) < 0. (3.4)

We will deduce a contradiction by two substeps.
(i) We first claim

(–1)iûm–i(r) > 0, ∀r ≥ 0, i = 1, 2, . . . , m – 1, (3.5)

where ûm–i is the (m – i)th average of um–i.
Denote by Br(x1) the ball of radius r centered at x1, and define the first averages of u and

v on ∂Br(x1) as

ū(r) :=
1

|∂Br(x1)|
∫

∂Br(x1)
|x|αu(x) ds; v̄(r) :=

1
|∂Br(x1)|

∫

∂Br (x1)
|x|βv(x) ds

and

ūi(r) :=
1

|∂Br(x1)|
∫

∂Br (x1)
ui(x) ds; v̄i(r) :=

1
|∂Br(x1)|

∫

∂Br (x1)
vi(x) ds

with i = 2, 3, . . . , m – 1. Then for r > 0, we have by (3.3) that for x ∈R
n,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�ū = ū1, –�v̄ = v̄1,

–�ū1 = ū2, –�v̄1 = v̄2,

. . .

–�ūm–2 = ūm–1, –�v̄m–2 = v̄m–1,

–�ūm–1 = f (r), –�v̄m–1 = g(r),

(3.6)

where f (r) := |x|–β |v|q–1v and g(r) := |x|–α|u|p–1u. Integrate the last equation for u in (3.6)
from 0 to r. Notice that x1 ∈ R

n
+ implies that more than half of Br(x1) is contained in R

n
+.

By the odd symmetry of v with respect to ∂Rn
+ we have

–rn–1ū′
m–1(r) =

∫ r

0
sn–1f (s) ds =

1
nα(n)

∫ r

0

∫

∂Bs(x1)
|x|–β |v|q–1vdσ ds

=
1

nα(n)

∫

Br (x1)
|x|–β |v|q–1vdx > 0, (3.7)

where α(n) denotes the surface area of the unit sphere ∂B1(0) in R
n.

By (3.4) and (3.7) we deduce that

ū′
m–1(r) < 0 and ūm–1(r) ≤ ūm–1(0) = um–1(x1) < 0 ∀r ≥ 0. (3.8)

Then by the second to the last equation in (3.6) we have

–
1

rn–1

(
rn–1ū′

m–2(r)
)′ = ūm–1(r) ≤ ūm–1(0) ≡ –c0 < 0 ∀r > 0
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with universal positive constant c0, that is,

(
rn–1ū′

m–2(r)
)′ > rn–1c0 ∀r > 0,

and hence

ūm–2(r) ≥ ūm–2(0) +
c0

2n
r2 ∀r > 0 (3.9)

after integrating. So we find a suitably large r1 > 0 such that ūm–2(r1) > 0. In view of the
definition of the average, there exists x2 ∈ (∂Br1 (x1) ∩R

n
+) such that

um–2(x2) > 0. (3.10)

Moreover, we deduce by (3.8) that

um–1(x2) < 0. (3.11)

Define the second averages of u and v on ∂Br(x2):

ũ(r) :=
1

|∂Br(x2)|
∫

∂Br(x2)
|x|αu(x) ds; ṽ(r) :=

1
|∂Br(x2)|

∫

∂Br (x2)
|x|βv(x) ds,

ũi(r) :=
1

|∂Br(x2)|
∫

∂Br (x2)
ui(x) ds; ṽi(r) :=

1
|∂Br(x2)|

∫

∂Br (x2)
vi(x) ds,

where i = 2, 3, . . . , m – 1. By (3.7) and (3.11) we have

ũm–1(r) ≤ ũm–1(0) = um–1(x2) < 0, r ≥ 0.

Similarly to (3.9) and (3.11), we have

ũm–2(r) ≥ ũm–2(0) + cr2 = um–2(x2) + cr2 > 0, r ≥ 0.

Repeating the same argument to um–3, we also obtain the third average on ∂Br(x3):

ǔm–1(r) < 0, ǔm–2(r) > 0, ǔm–3(r) < 0, r ≥ 0.

By induction we can get the claim (3.5) for the component u.
(ii) Taking the scaling transformations

uμ(x) = μ
(2m–α–β)(q+1)

pq–1 u(μx), vμ(x) = μ
(2m–α–β)(p+1)

pq–1 v(μx),

we find that uμ and vμ are also nonnegative solutions of (3.3). This implies that by repeat-
ing step 2 in Part I of [7, Sect. 2] a suitably large μ > 0 ensures

û(r) ≥ a0(r – 1)b0 , r ∈ [1, 2], (3.12)

with b0 := p + q + 2m + n and a0 > 0 sufficiently large.
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Next, we treat the component v. Set U+ = Bτ (xm–1)∩R
N
+ and U– = Bτ (xm–1)∩ (RN \RN

+ ).
Let Ũ– be the reflection of U– with respect to the boundary ∂RN

+ , and let Uτ = U+ \ Ũ–.
By Jensen’s inequality and the equations for v in (3.6), we derive that for all 0 ≤ r ≤ 2,

–v̂m–1(r) =
∫ r

0

1
τ n–1

∫ τ

0
sn–1g(s) ds dτ – v̂m–1(0)

=
∫ r

0

1
τ n–1

(∫ τ

0
sn–1

[
1

|∂Br(xm–1)|
∫

∂Br (xm–1)
|x|–α|u|p–1u(x) dσ

]

ds
)

dτ

– v̂m–1(0)

=
∫ r

0

1
τ n–1

(∫ τ

0
sn–1 1

nα(n)

∫

∂Br (xm–1)
|x|–α|u|p–1u(x) dσ ds

)

dτ – v̂m–1(0)

≥ 1
nα(n)(2 + |xm–1|)α

∫ r

0

1
τ n–1

(∫

Bτ (xm–1)
|u|p–1u(x) dx

)

dτ – v̂m–1(0)

=
1

nα(n)(2 + |xm–1|)α
∫ r

0

1
τ n–1

(∫

Uτ

up(x) dx
)

dτ – v̂m–1(0)

≥ 1
nα(n)(2 + |xm–1|)α

∫ r

0

|Uτ |
τ n–1

(
1

|Uτ |
∫

Uτ

up(x) dx
)

dτ – v̂m–1(0)

≥ 1
nα(n)(2 + |xm–1|)α

∫ r

0

( |Bτ (xm–1)|
|Uτ |

)p–1

× 1
τ n–1|Bτ (xm–1)|p–1

(∫

Uτ

u(x) dx
)p

dτ – v̂m–1(0)

≥ 1
(nα(n))p(2 + |xm–1|)α

∫ r

0

1
τ np–1

(∫

Uτ

|x|–α · |x|αu(x) dx
)p

dτ – v̂m–1(0)

≥ 1
(nα(n))p(2 + |xm–1|)α(p+1)

∫ r

0

1
τ np–1

(∫

Bτ (xm–1)
|x|αu(x) dx

)p

dτ – v̂m–1(0)

≥ 1
(nα(n))p(2 + |xm–1|)α(p+1)

∫ r

0

1
τ np–1

(∫ τ

0

∫

∂Bs(xm–1)
|x|αu(x) dx ds

)p

dτ

– v̂m–1(0)

=
1

(2 + |xm–1|)α(p+1)

∫ r

0

1
τ np–1

(∫ τ

0
sn–1û(s) ds

)p

dτ – v̂m–1(0). (3.13)

Choosing r = 2 in (3.12) and substituting the latter into (3.13), we get

v̂m–1(r) ≤ –
a0

(2 + |xm–1|)α(p+1) r2 + v̂m–1(0).

Thus v̂m–1(r) must be negative whenever a0 is large. Now we can repeat the above proce-
dure for u with m – 1 times recenters to deduce for the component v that

(–1)iv̂m–i(r) > 0, r ∈ [0, 2], i = 1, 2, . . . , m – 1. (3.14)

For any 1 ≤ r ≤ 2, we get by (3.12)–(3.14) that

–v̂m–1(r) ≥ 1
(2 + |xm–1|)α(p+1)

∫ r

0

1
τ np–1

(∫ τ

0
sn–1û(s) ds

)p

dτ – v̂m–1(0)
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≥ 1
(2 + |xm–1|)α(p+1)

∫ r

1

1
τ np–1

(∫ τ

1
sn–1a0(s – 1)b0 ds

)p

dτ

≥ 1
(2 + |xm–1|)α(p+1)

∫ r

1

1
τ np–1

(
a0

b0 + n
(τ – 1)b0+1τ n–1

)p

dτ )

=
1

(2 + |xm–1|)α(p+1) · ap
0

(n + b0)p

∫ r

1
(τ – 1)(b0+1)pτ 1–p dτ

≥ 1
(2 + |xm–1|)α(p+1) · ap

0
(n + b0)p[(b0 + 1)p + 1]

(r – 1)(b0+1)p+1r1–p

≥ 1
(2 + |xm–1|)α(p+1) · ap

0
2p–1(n + b0)p[(b0 + 1)p + 1]

(r – 1)(b0+1)p+1

≥ 1
2p(2 + |xm–1|)α(p+1) · ap

0
(n + b0)p[(b0 + 1)p + 1]

(r – 1)(b0+1)p+1, (3.15)

where
∫ r

1 (s – 1)θ sι ds ≥ 1
θ+ι+1 (r – 1)θ+1rι, and θ , ι > 0 by an elementary calculation. This

implies

v̂m–1(r) ≤ –
(Ma0)p

(2b0p)p+1 (r – 1)(b0+1)p+1

with Mp := 1
2p(2+|xm–1|)α(p+1) . So we get

–
1

rn–1

(
rn–1v̂′

m–2(r)
)′ = v̂′

m–1(r) ≤ –
(Ma0)p

(2b0p)p+1 (r – 1)(b0+1)p+1 < 0.

Integrating twice from 0 to r and from 0 to τ , by (3.14) we obtain that

v̂m–2(r) ≥
∫ r

0

1
τ n–1

∫ τ

0
sn–1 (Ma0)p

(2b0p)p+1 (s – 1)(b0+1)p+1 ds dτ

≥ (Ma0)p

(2b0p)p+1

∫ r

1

1
τ n–1

1
(b0 + 1)p + n + 1

τ n–1(τ – 1)(b0+1)p+2 dτ

≥ (Ma0)p

(2b0p)p+1
1

(b0 + 1)p + n + 1
1

(b0 + 1)p + 3
(r – 1)(b0+1)p+3

≥ (Ma0)p

(2b0p)p+3 (r – 1)(b0+1)p+3.

We know by repeating step 1 in Part I of [7, Sect. 2] that m is even. Continuing this way,
for m even, we obtain

v̂(r) ≥ (Ma0)p

(2b0p)p+2m–1 (r – 1)(b0+1)p+2m–1 ≥ A0(r – 1)B0 (3.16)

with A0 := c0(Ma0)p(2pb0)–p–2m and B0 := 2pb0 ≥ (b0 + 1)p + 2m.
Similarly to (3.13), by (3.5) we have

–ûm–1(r) ≥
∫ r

0

1
τ n–1

∫ τ

0
sn–1g(s) ds – ûm–1(0)

≥ 1
(2 + |xm–1|)β(q+1)

∫ r

0

1
τ nq–1

(∫ τ

0
sn–1v̂(s) ds

)q

dτ .
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Together with (3.16), we obtain

ûm–1(r) ≤ –
(M0A0)q

(2B0q)q+1 (r – 1)(B0+1)q+1

with Mq
0 := 1

2q(2+|xm–1|)β(q+1) . By this and (3.6) we obtain

û(r) ≥ (M0A0)q

(2B0q)q+2m (r – 1)(B0+1)q+2m ≥ a1(r – 1)b1

with a1 := c0(M0A0)q(2B0q)–q–2m and b1 := 2B0q. Then

b1 ≥ (B0 + 1)q + 2m. (3.17)

By induction we can obtain by k steps that û(r) ≥ ak(r – 1)bk with bk+1 = 4pqbk , ak+1 =
MpqMq

k apq
k

(2pbk )q(p+2m)+(q+2m)(2q)q+2m , k = 0, 1, . . . .
Set h := max{q + 2m, p + 2m} and Mq

k := min{ 1
2p(2+|xm–1|)α(p+1) , 1

2q(2+|xm–1|)β(q+1) }. Choose z

such that z ≥ h(q+1)+1
pq–1 and thus b0 ≥ c(4pq)pq(q+1)+z with

c := 2pq+q+2(q+2m)+q(p+2m)(2 + |xm–1|
)β(q+1)+αq(p+1)pq(p+2m)+(q+2m)qq+2m > 0.

We claim that

apq
k ≥ cbh(q+1)+z

k , k = 0, 1, . . . . (3.18)

Obviously, (3.18) holds for k = 0 by choosing a0 sufficiently large. Assume that (3.18) is
true for k. We have

apq
k+1

cbh(q+1)+z
k+1

=
[

apq
k

bh(q+1)
k

]pq 1
c(4pqbk)h(q+1)+z

≥ bz(pq–1)–h(q+1)
k

c(4pq)pq(q+1)+z

≥ b0

c(4pq)pq(q+1)+z .

Therefore (3.18) holds for all integer k.
Now choose r = 2. Then (3.17) and (3.18) yield a contradiction that

û(2) ≥ ak ≥ cb(pq(q+1)+z)/(pq)
k → ∞ as k → ∞.

This excludes (3.4).
Step 2. We furthermore claim that um–1(x) > 0.
Otherwise, there exists x1 ∈R

n
+ such that um–1(x1) = 0. Thus –�um–1(x1) ≤ 0, since x1 is

a local minimum of um–1(x). This contradicts –�um–1(x) = up > 0, x ∈R
n
+.

Similarly, we can get vm–1(x) > 0 for Rn
+ by similar arguments in Steps 1 and 2 for um–1(x).

Step 3. We show that um–i(x), vm–i(x) > 0, x ∈R
n
+ for i = 2, 3, . . . , m – 1.
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Based on the positivity of vm–1(x), we first show that um–i(x) > 0, x ∈ R
n
+, for i =

2, 3, . . . , m – 1. Otherwise, there exists x0 ∈R
n
+ with i ∈ {2, 3, . . . , m – 1} such that

um–1(x) > 0, um–2(x) > 0, . . . , um–i+1(x) > 0, x ∈R
n
+,

um–i(x0) < 0. (3.19)

(i) Assume that m – i is even. Then ūm–i(r) for x ∈R
n satisfies that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�ū = ū1,

· · ·
–�ūm–i–1 = ūm–i,

–�ūm–i = ūm–i+1.

(3.20)

Integrating the last equation in (3.20), we arrive at

–rn–1ū′
m–i(r) =

∫ r

0
sn–1ūm–i+1(s) ds =

1
nα(n)

∫ r

0

∫

∂Bs(x0)
um–i+1(s) dσ ds

=
1

nα(n)

∫

Br(x0)
um–i+1(s) ds > 0.

Here we have used the odd symmetry of um–i+1(x) with respect to ∂Rn
+ and the fact that

more than half of Br(x0) is contained in R
n
+. Together with (3.19), we deduce

ū′
m–i(r) < 0 and ūm–i(r) ≤ ūm–i(0) = um–i(x0) < 0, r ≥ 0.

Then by the second to the last equation in (3.20) we have

–
1

rn–1

(
rn–1ū′

m–i–1(r)
)′ = ūm–i(r) ≤ ūm–i(0) ≡ –c0 < 0, r > 0.

This yields

ū′
m–i–1(r) >

c0

n
r,

and hence

ūm–i–1(r) ≥ ūm–i–1(0) +
c0

2n
r2 ≥ c0

2n
r2 + c1, r > 0.

Continuing this way with m – i even, we derive that

ū(r) ≤ –c0r2(m–i) +
m–i∑

j=1

cjr2(m–i–j), r > 0. (3.21)

This yields a contraction that

0 <
1

nα(n)

∫

Br(x0)
|x|αu(x) dx =

∫ r

0
sn–1ū(s) ds
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≤ –c0rn+2(m–i) +
m–i∑

j=1

cjrn+2(m–i–j)

< 0 as r is sufficiently large.

(ii) Assume that m – i is odd.
Similarly to (3.21) with m – i odd, by (3.5) we deduce

û(r) ≥ c0r2(m–i), r > 0. (3.22)

By parallel arguments for (3.13), by (3.22) we have

–rn–1v̂′
m–1(r) =

1
nα(n)

∫

Br(xm–1)
|x|–α|u|p–1u(x) dx

≥ c
rnp–n

(∫ r

0
sn–1û(s) ds

)p

≥ crn+2p(m–i)

with c := c0
(1+|xm–1|)α(p+1) or, equivalently, v̂′

m–1(r) ≤ –cr2p(m–i)+1, and, consequently,

v̂m–1(r) ≤ –c0r2p(m–i)+2 + v̂m–1(0).

Combining this with vm–1(x) > 0 for x ∈R
n
+, we obtain by (3.14) a contradiction that

0 <
1

nα(n)

∫

Br(xm–1)
vm–1(x) dx =

∫ r

0
sn–1v̂m–1(s) ds

≤ –c0rn+2p(m–i)+2 ≤ 0.

Combining (i) and (ii), we exclude (3.19).
Similarly, we can prove that vm–i(x) > 0, i = 2, 3, . . . , m – 1, by um–1(x) > 0 for Rn

+. �

Proof of Proposition 2 First, we show that the classical solutions of (1.2) must solve (1.1).
When x ∈ ∂Rn

+, we have

�j
(

1
|x – y|n–2m

)

= �j
(

1
|x̄ – y|n–2m

)

due to x = x̄, and thus by system (1.2) that �ju(x) = 0, j = 0, 1, . . . , m – 1. For x ∈ Rn
+, we have

(–�)m(|x|αu(x)
)

=
∫

R
n
+

(–�)m
(

1
|x – y|n–2m –

1
|x̄ – y|n–2m

)

|y|–βvq(y) dy

= C
∫

R
n
+

δ(x – y)|y|–βvq(y) dy

= C|x|–βvq(x).

Similarly, �jv(x) = 0, j = 0, 1, . . . , m – 1, on ∂Rn
+ and (–�)m(|x|βv(x)) = C|x|–αup(x) in R

n
+.
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Next, we should prove that if (u, v) is a smooth positive solution of (1.1) with p, q ≥ 1
and α,β > 0, then a constant multiple of (u, v) satisfies (1.2).

Rewrite the higher-order PDEs problem (1.1) as the following second-order system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�ui = ui+1, ui|∂Rn
+ = 0,

i = 0, 1, . . . , m – 1, with u0 = |x|αu, um = |x|–βvq,

–�vi = vi+1, vi|∂Rn
+ = 0,

i = 0, 1, . . . , m – 1, with v0 = |x|βv, vm = |x|–αup.

(3.23)

On the other hand, rewrite the integral system (1.3) as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ui =
∫

R
n
+

G(x, y, 2)ui+1(y) dy,

i = 0, 1, . . . , m – 1, with u0 = |x|αu, um = |x|–βvq,

vi =
∫

R
n
+

G(x, y, 2)vi+1(y) dy,

i = 0, 1, . . . , m – 1, with v0 = |x|βv, vm = |x|–αup.

(3.24)

By [1, Theorem 2.4] we know that

G(x, y, 2j + 2) =
∫

R
n
+

G(x, y, 2j)G(y, z, 2) dz, j = 1, . . . , m – 1.

This yields the equivalence between the integral systems (1.2) and (3.24).
Now let (u0, . . . , um–1, v0, . . . , vm–1) be a positive classical solution of (3.23). It suffices to

show that (u0, . . . , um–1, v0, . . . , vm–1) does satisfy (3.24).
Let (u0, . . . , um–1, v0, . . . , vm–1) be a positive solution of (3.23). Multiply (3.23) by G̃R(x, y)

and then integrate over B+
R(0) to get by (3.1) that

⎧
⎨

⎩

∫

B+
R

G̃R(x, y)ui+1(y) dy = ui(x) +
∫

�̂R∪�̄R
ui(y) ∂G̃R

∂ν
(x, y) ds –

∫

�̂R∪�̄R
G̃R

∂ui(y)
∂ν

(x, y) ds,
∫

B+
R

G̃R(x, y)vi+1(y) dy = vi(x) +
∫

�̂R∪�̄R
vi(y) ∂G̃R

∂ν
(x, y) ds –

∫

�̂R∪�̄R
G̃R(x, y) ∂vi(y)

∂ν
ds,

which i = 0, 1, . . . , m – 1. By ∂G̃R
∂ν

|�̄R = 0 and G̃R|�̂R∪�̄R = 0 we have

⎧
⎨

⎩

∫

B+
R

G̃R(x, y)ui+1(y) dy = ui(x) +
∫

�̂R
ui(y) ∂G̃R

∂ν
(x, y) ds, i = 0, 1, . . . , m – 1,

∫

B+
R

G̃R(x, y)vi+1(y) dy = vi(x) +
∫

�̂R
vi(y) ∂G̃R

∂ν
(x, y) ds, i = 0, 1, . . . , m – 1,

(3.25)

which implies by Lemma 3.2 that

∫

B+
R

G̃R(x, y)ui+1(y) dy ≤ ui(x),
∫

B+
R

G̃R(x, y)vi+1(y) dy ≤ vi(x), i = 0, 1, . . . , m – 1.

Letting R → ∞, we deduce with (3.2) that

∫

R
n
+

G(x, y, 2)ui+1(y) dy < +∞,
∫

R
n
+

G(x, y, 2)vi+1(y) dy < +∞, i = 0, 1, . . . , m – 1,
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and hence there exists a sequence Rk → ∞ such that

∫

�̂Rk

G(x, y, 2)ui+1(y) ds → 0,
∫

�̂Rk

G(x, y, 2)vi+1(y) ds → 0,

as k → ∞, i = 0, 1, . . . , m – 2.

For fixed x ∈ B+
R(0), we have

G(x, y, 2)|y∈�̂R =
(

1
|x – y|n–2 –

1
|x̄ – y|n–2

)

|y∈�̂R = O
(

yn

Rn

)

, R → ∞, (3.26)

and thus

∂G̃R

∂ν
(x, y) = O

(
yn

Rn+1

)

, R → ∞. (3.27)

By (3.26) we derive

1
Rn

k

∫

�̂R

ynui+1(y) ds → 0,

1
Rn

k

∫

�̂R

ynvi+1(y) ds → 0 as k → ∞, i = 0, 1, . . . , m – 2.
(3.28)

Similarly, there exists a sequence of {Rk} such that

1
Rn+β

k

∫

�̂R

ynvq(y) ds → 0,
1

Rn+α
k

∫

�̂R

ynup(y) ds → 0 as k → ∞. (3.29)

To show that the boundary terms in (3.25) approach 0 as R → ∞, by (3.27) we only need
to derive that there exists a sequence Rk → ∞ such that

1
Rn+1

k

∫

�̂R

ynui+1(y) ds → 0,

1
Rn+1

k

∫

�̂R

ynvi+1(y) ds → 0, k → ∞, i = 0, 1, . . . , m – 2,
(3.30)

and

1
Rn+α+1

k

∫

�̂R

ynu(y) ds → 0,
1

Rn+β+1
k

∫

�̂R

ynv(y) ds → 0 as k → ∞. (3.31)

Obviously, (3.30) is a direct consequence of (3.28).
By Jensen’s inequality with p ≥ 1 and (3.29) we have

(
1

Rn+α
k

∫

�̂Rk

y
1
p
n u(y) ds

)p

≤ 1
Rαp+n

k

∫

�̂Rk

ynup(y) ds

≤ 1
Rα+n

k

∫

�̂Rk

ynup(y) ds → 0 as Rk → ∞,
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and hence

1
Rn+α

k

∫

�̂Rk

y
1
p
n u(y) ds → 0, Rk → ∞. (3.32)

Denote �̂1
Rk

= {y ∈ �̂Rk , yn ≤ 1} and �̂2
Rk

= {y ∈ �̂Rk , yn > 1}. Then

∫

�̂Rk

yn

Rn+α+1
k

u(y) ds =
∫

�̂1
Rk

yn

Rn+α+1
k

u(y) ds +
∫

�̂2
Rk

yn

Rn+α+1
k

u(y) ds

≤
∫

�̂1
Rk

y
1
p
n

Rn+α+1
k

u(y) ds +
∫

�̂2
Rk

1
Rn+α

k
u(y) ds

≤ 1
Rk

∫

�̂1
Rk

y
1
p
n

Rn+α
k

u(y) ds +
∫

�̂2
Rk

y
1
p
n

Rn+α
k

u(y) ds

≤ 2
Rn+α

k

∫

�̂Rk

y
1
p
n u(y) ds,

which vanishes as Rk → ∞ by (3.32). This proves (3.31) for u. The argument for v is similar.
Substituting (3.30) and (3.31) into (3.25), we arrive at (3.24). �
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