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Abstract
This article investigates the local well-posedness of Turing-type reaction–diffusion
equations with Robin boundary conditions in the Sobolev space. Utilizing the
Hadamard norm, we derive estimates for Fokas unified transform solutions for linear
initial-boundary value problems subject to external forces. Subsequently, we
demonstrate that the iteration map, defined by the unified transform solutions and
incorporating nonlinearity instead of external forces, acts as a contraction map within
an appropriate solution space. Our conclusive result is established through the
application of the contraction mapping theorem.
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1 Introduction and main results
1.1 Introduction
The diffusion equation is a widely used concept in contemporary science, employed to de-
scribe various phenomena in physics, chemistry, and biology. In 1952, Alan Turing used
this equation to explain natural patterns in a ground-breaking way. In the realm of physics,
the heat equation is a prominent example of a diffusion equation. Joseph Fourier devel-
oped it in 1822 to model the diffusion of heat within a specific area. This classical parabolic
partial differential equation is a significant subject in pure mathematics and has been ex-
tensively researched. The study of the heat equation is a cornerstone of the field of partial
differential equations. Additionally, considering the heat equation on Riemannian man-
ifolds leads to many geometric applications. In the field of biology, the classical Lotka–
Volterra equation system is another example of a diffusion equation system. This model
provides a framework for understanding variations in predator and prey populations. In
conclusion, the diffusion equation has numerous scientific applications, and its substan-
tial contribution to the advancement of human knowledge requires further research and
development.

We now present recent articles that address the existence, uniqueness, and well-
posedness of solutions related to the reaction–diffusion equations. Slavík, Stehlík, and
Volek [20] examine issues concerning lattice reaction–diffusion equations, utilizing maxi-
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mum principles to establish results of existence, uniqueness, and continuous dependence.
They establish both the local existence and global uniqueness of bounded solutions, as
well as the continuous dependence of solutions on the underlying time structure and ini-
tial conditions. The weak maximum principle is applied to prove the global existence of
solutions. Finally, the authors provide the strong maximum principle, revealing an intrigu-
ing dependence on the time structure. Xu, Lian, and Nin [22] study nonlinear parabolic
systems with power-type source terms, dividing the study into three cases based on initial
energy considerations. In the low initial energy scenario, they use the Galerkin method
and the concave function method to establish the global existence and finite-time blowup
of the solution. For the critical initial energy case, the global solution, the blowup solu-
tion, and the asymptotic behavior are proved by scaling the initial data. In the high initial
energy case, the authors explore the potential for both the global existence and the finite-
time blowup by finding the corresponding initial data with arbitrarily high initial energy
and then provide proof of the global existence. Palencia and Redondo [18] investigate the
existence, uniqueness, and positivity conditions for a cooperative system formulated with
high-order diffusion. They demonstrate the oscillatory behavior of self-similar solutions
and characterize regions of positivity for a class of high-order cooperative systems without
advection. Palencia, Rahman, and Redondo [17] analyzed a Fisher-KPP nonlinear reaction
equation within a framework involving higher-order diffusion and the presence of an ad-
vection term. Palencia and Rahman [16] proposed a new model to describe the behavior of
flames driven by temperature and pressure variables. They used the p-Laplacian operator
in flame propagation, making their model applicable to a wide range of diffusion-driven
domains, and they proved the uniqueness and boundedness of the weak solution and the
existence of a minimum traveling-wave speed. Palencia [15] studied a reaction–diffusion
problem involving high-order operators, nonlinear advection, and Fisher-KPP reaction
terms. The author introduced a novel extended operator to study the reaction within the
open domain R

n but depart from a sequence of bounded domains. Regularity, existence,
and uniqueness analyses of the solutions were performed using semigroup theory. Mor-
gan and Tang [11] investigate the global existence of classical solutions for volume–surface
reaction–diffusion systems with mass control. They introduce a novel family of Lp-energy
functions and utilize a general assumption known as the intermediate sum condition to es-
tablish the global existence of classical solutions. Himonas, Mantzavinos, and Yan [8] use
the unified transform method to prove the local well-posedness of the reaction–diffusion
equations with the Dirichlet boundary conditions.

In contemporary scientific research, coupled systems with Robin boundary conditions
are extensively applied. Well-posedness ensures the equation models’ reliability and pre-
dictive accuracy in various fields, making it critical for scientific research, engineering
applications, and decision making. Based on our current understanding derived from rel-
evant studies on reaction–diffusion equations, we have looked at the local well-posedness
of the coupled system of reaction–diffusion equations with Robin boundary conditions in
this article.

1.2 Main results
The occurrence of patterns is ubiquitous in the natural world, appearing in diverse forms
such as stripes and spots on animals, intricate branching patterns in leaves, and the re-
markable structural diversity observed in both biological and nonbiological systems. The
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investigation and comprehension of the underlying mechanisms of pattern formation have
been central subjects of scientific inquiry. In 1952, Alan Turing [21] made a substantial
contribution to this field by studying Turing-type reaction–diffusion equations:

⎧
⎨

⎩

ut – Auxx + F (u, v) = 0,

vt – Bvxx + G(u, v) = 0,

where A and B are positive constants in R, and u and v are morphogen concentrations,
F and G describe the interrelation between morgens, Auxx and Bvxx can move randomly
with diffusivities A and B. His research suggested a possible connection between the math-
ematical models described by these equations and the actual processes of pattern forma-
tions. Turing’s work laid the groundwork for studying the mathematical aspects of pattern
emergences in various systems. Following Turing’s pioneering efforts, numerous articles
and studies have been devoted to advancing our understanding of Turing-type reaction–
diffusion equations and their implications for pattern formations. These equations have
been applied in a variety of fields, providing insights into the emergence of patterns in nat-
ural systems. References to these articles and books are available for further explorations
[1, 7, 9, 10, 12–14, 19].

In this article, we establish the local well-posedness of the following Turing-type
reaction–diffusion equations with the Robin boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – uxx + u2 + cuv = 0, x ∈ (0,∞), t ∈ (0, T), c ∈R,

vt – vxx + v2 + duv = 0, x ∈ (0,∞), t ∈ (0, T), d ∈R,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0,∞),

ux(0, t) – αu(0, t) = g0(t), t ∈ [0, T],α ≥ 1,

vx(0, t) – βv(0, t) = h0(t), t ∈ [0, T],β ≥ 1,

(1)

where 0 < T < 1, and u(x, t) and v(x, t) are real-valued functions, and u0(x) ∈ Hs
x(0,∞) and

v0(x) ∈ Hs
x(0,∞) are initial data, and g0(t) ∈ H (2s–1)/4

t (0, T) and h0(t) ∈ H (2s–1)/4
t (0, T) are

boundary data, where 1/2 < s < 3/2.
In this study, we investigate the local well-posedness of the initial boundary value prob-

lem (IBVP) given by equation (1). Our proof of the local well-posedness of (1) consists
of three steps. In the first step, we replace the nonlinearities u2 + cuv and v2 + duv by
the forcings and use the Unified Transform Method (UTM) to solve the corresponding
linear IBVPs. (Fokas [2–5] introduced the UTM and its applications.) The second step
involves deriving linear estimates using the UTM formula with data and forcing in appro-
priate spaces. The third step shows that the iteration map defined by the UTM formula,
with the forcing replaced by the nonlinearity, is a contraction map in an appropriate so-
lution space. Finally, the uniqueness of the solution for the IBVP (1) is established by the
contraction mapping theorem. In addition, we prove the local Lipschitz continuity of the
data-to-solution map, thereby confirming the local well-posedness of the IBVP (1).

Now, we provide an overview of the Sobolev space. The Sobolev spaces Hs
x(0,∞) and

H (2s–1)/4
t (0, T) are derived as restrictions of their counterparts over the entire real line,

following the general definition: For s ∈ R, Sobolev spaces Hs(R) consist of all tempered
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distributions F with the finite norm

‖F‖Hs(R)
.=
(∫

R

(
1 + ξ 2)s∣∣̂F(ξ )

∣
∣2 dξ

) 1
2

,

where F̂(ξ ) is the Fourier transform defined by

F̂(ξ ) .=
∫

R

e–ixξ F(x) dx.

Furthermore, for an open interval � in R, the Sobolev space Hs(�) is defined as

Hs(�) =

{
f : f = F|�, where F ∈ Hs(R)

and ‖f ‖Hs(�)
.= infF∈Hs(R) ‖F‖Hs(R) < ∞

}

.

By solving the forced linear Robin IBVP via the Fokas method, it leads us to the following
Fourier transform.

Definition 1.1 (Fourier transform on the half-line) For a test function φ(x) defined on
(0,∞), its half-line Fourier transform is given by the formula

φ̂(k) .=
∫ ∞

0
e–ikxφ(x) dx, (2)

where k ∈ C and �(k) ≤ 0. The notations �(k) and �(k) represent the imaginary and real
parts of k.

Remark 1.2 For (2), it is obvious that if φ is an integrable function on (0,∞), we observe
that φ̂(k) is well defined for �(k) ≤ 0. In fact, in the context of a more appropriate space
L2(0,∞), it is possible to define the half-line Fourier transform. Subsequently, the function
φ in L2(0,∞) can be extended to the entire real line by assigning φ(x) = 0 for x < 0, yielding
a function in L2(R). Furthermore, the half-line Fourier transform of φ can be defined using
the same formula used for the Fourier transform of φ and its extension to the real line. It
follows that the formula for the inverse can also be obtained, which is the inverse Fourier
transform on the real line.

Let us begin by outlining the first step of our approach to solving the problem for the
associated forced linear equation:

⎧
⎪⎪⎨

⎪⎪⎩

ut – uxx = f (x, t), x ∈ (0,∞), 0 < t < T < 1,

u(x, 0) = u0(x) ∈ Hs
x(0,∞), x ∈ [0,∞),

ux(0, t) – αu(0, t) = g0(t) ∈ H
2s–1

4
t (0, T), 0 ≤ t ≤ T < 1,α ≥ 1.

(3)

According to the UTM formulation, the solution to (3) is denoted by

u(x, t) .= S[u0, g0; f ](x, t) (4)

=
1

2π

∫

R

eikx–k2tû0(k) dk –
1

2π

∫

∂D+
eikx–k2t α + ik

α – ik
û0(–k)) dk
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Figure 1 The region D+ and its positively oriented boundaries ∂D

–
1

2π

∫

∂D+
eikx–k2t –2ik

α – ik

(∫ t

0
ek2yg0(y) dy

)

dk

–
1

2π

∫

∂D+
eikx–k2t α + ik

α – ik

(∫ t

0
ek2 ŷf (–k, y) dy

)

dk

+
1

2π

∫ ∞

–∞
eikx–k2t

(∫ t

0
ek2 ŷf (k, y) dy

)

dk,

where

f̂ (k, y) .=
∫

R

e–ikxf (x, y) dx, k ∈ C

is the Fourier transform of f (x, y) with respect to x, and D+ represents the domain in the
complex k plane shown in Fig. 1.

For ease of calculation and presentation, we use the following notations.

Remark 1.3 For two quantities A and B depending on one or several variables, we express
A � B if there exists a positive constant c such that A ≤ cB. If A � B and B � A, then we
denote A 	 B.

Now, we delineate the second step, which involves estimating the Hadamard norm of
the UTM solution formula S[u0, g0; f ] in (4) by the Sobolev norms of the data and an ap-
propriate norm of the forcing. More precisely, we derive the following linear estimate.

Theorem 1.4 (The linear estimate for the reaction–diffusion equation) Consider the
reaction–diffusion equation (3). Suppose 1/2 < s < 3/2, 0 < T < 1, u0(x) ∈ Hs

x(0,∞), and
g0(t) ∈ H (2s–1)/4

t (0, T). Then, the solution u = S[u0, g0; f ] of the forced linear equation IBVP
(3) given by (4) satisfies the estimate

sup
t∈[0,T]

∥
∥u(t)

∥
∥

Hs
x(0,∞) + sup

x∈[0,∞)

∥
∥u(x)

∥
∥

H
2s+1

4
t (0,T)

(5)

≤ Cs

(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s–1
4

t (0,T)
+

√
T sup

t∈[0,T]

∥
∥f (t)

∥
∥

Hs
x(0,∞)

)
,

where Cs = C(s) > 0 is a constant depending on s.
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Finally, our goal is to prove the uniqueness of the solution for (1) and establish that the
data-to-solution is locally Lipschitz continuous. Therefore, for s > 1/2 and 0 < T∗ ≤ T < 1,
we define two Banach spaces X and D as

X = X × X, where X = C
([

0, T∗]; Hs
x(0,∞)

) ∩ C
(
[0,∞); H

2s+1
4

t
(
0, T∗))

with the norm

∥
∥(u, v)

∥
∥
X

= sup
t∈[0,T∗]

∥
∥u(t)

∥
∥

Hs
x(0,∞) + sup

x∈[0,∞)

∥
∥u(x)

∥
∥

H
2s+1

4
t (0,T∗)

+ sup
t∈[0,T∗]

∥
∥v(t)

∥
∥

Hs
x(0,∞) + sup

x∈[0,∞)

∥
∥v(x)

∥
∥

H
2s+1

4
t (0,T∗)

.

The data space

D = Hs
x(0,∞) × Hs

x(0,∞) × H
2s–1

4
t (0, T) × H

2s–1
4

t (0, T),

which has the norm defined by

∥
∥(u0, v0, g0, h0)

∥
∥

D = ‖u0‖Hs
x(0,∞) + ‖v0‖Hs

x(0,∞) (6)

+ ‖g0‖
H

2s–1
4

t (0,T)
+ ‖h0‖

H
2s–1

4
t (0,T)

,

for (u0, v0, g0, h0) ∈ D.
Then, using the above definitions, we give the main result of this work.

Theorem 1.5 (The local well-posedness of the coupled system of reaction–diffusion equa-
tions) Consider the coupled system of reaction–diffusion equations (1). Suppose 1/2 < s <
3/2 and 0 < T < 1. For the data u0, v0 ∈ Hs

x(0,∞), and g0(t), h0(t) ∈ H (2s–1)/4
t (0, T).

Then, there exist C∗
s = C∗(s) > 0 and T∗, 0 < T∗ ≤ T < 1, with

T∗ = min

{

T ,
1

82(C∗
s )4(2 + |c| + |d|)2‖(u0, v0, g0, h0)‖2

D

}

> 0

such that the coupled system of reaction–diffusion equations IBVP (1) has a unique solution
(u, v) ∈X and the solution satisfies the size estimate

∥
∥(u, v)

∥
∥
X

≤ 2C∗
s
∥
∥(u0, v0, g0, h0)

∥
∥

D.

Furthermore, the data-to-solution map (u0, v0, g0, h0) 
−→ (u, v) is locally Lipschitz con-
tinuous.

In Sect. 2, we study a reduced pure IBVP for the linear reaction–diffusion equation to
derive Theorem 2.1 and Theorem 2.4, which help to prove Theorem 1.4. In Sects. 3 and
4, we provide the proofs of Theorem 1.4 and Theorem 1.5, respectively.

2 The reduced pure IBVP for the linear reaction–diffusion equation
In this section, we analyze a basic Robin problem associated with the linear reaction–
diffusion equation to establish Theorem 2.1 and Theorem 2.4. These theorems serve as
crucial tools for estimating linear IBVPs (III) and (IV) in Sect. 3.
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2.1 Reduced pure IBVP
We start by considering the fundamental linear reaction–diffusion equation IBVP on the
half-line. This corresponds to the homogeneous IBVP with zero initial data and nonzero
boundary data.

In addition, we assume that the boundary data g ∈ H (2s–1)/4
t (R) is a time-dependent test

function with compact support in the interval [0, 2]. This particular problem, known as
the reduced pure IBVP, can be formulated as follows:

⎧
⎪⎪⎨

⎪⎪⎩

wt – wxx = 0, x ∈ (0,∞), t ∈ (0, 2),

w(x, 0) = 0, x ∈ [0,∞),

wx(0, t) – αw(0, t) = g(t), t ∈ [0, 2],α ≥ 1.

(7)

Taking advantage of the compact support of g , we express its time transformation over the
interval (0, 2) as a full Fourier transform, denoted by

g̃(ζ , 2) .=
∫ 2

0
eζ tg(t) dt =

∫

R

eζ tg(t) dt.

By the UTM formula, the solution of the reduced pure IBVP (7) is

w(x, t) = S[0, g; 0](x, t) = –
1

2π

∫

∂D+
eikx–k2t –2ik

α – ik
g̃
(
k2, t

)
dk (8)

=
i
π

∫


1

eikx–k2t k
α – ik

g̃
(
k2, t

)
dk +

i
π

∫


2

eikx–k2t k
α – ik

g̃
(
k2, t

)
dk,

for all x ∈ [0,∞) and t ∈R.
Now, we compute (8). First, we calculate

i
π

∫


1

eikx–k2t k
α – ik

g̃
(
k2, t

)
dk

= –
i
π

∫ ∞

0
eia3k′x+i(k′)2t a3k′

α – ia3k′ g̃
(
–i

(
k′)2, t

)
a3 dk′,

(
Let k′ = ke–i 3

4 π and a = ei π
4 .

)

= –
1
π

∫ ∞

0
eir1kx+ik2t k(α +

√
2

2 k –
√

2
2 ki)

α2 +
√

2αk + k2
ĝ
(
k2)dk,

(
we know g̃

(
–i

(
k′)2, t

)
= ĝ

((
k′)2). Let k = k′ and r1 = a3 = ei 3π

4
)

and on the other hand

i
π

∫


2

eikx–k2t k
α – ik

g̃
(
k2, t

)
dk

=
i
π

∫ ∞

0
ei(k′ei π

4 )x–(k′ei π
4 )2t k′ei π

4

α – i(k′ei π
4 )

g̃
((

k′ei π
4
)2, t

)
ei π

4 dk′,

(
Let k′ = ke–i π

4 , a = ei π
4 .

)

= –
1
π

∫ ∞

0
eir2kx–ik2t k(α +

√
2

2 k +
√

2
2 ki)

α2 +
√

2αk + k2
ĝ
(
–k2)dk
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(
we know g̃

(
–i

(
k′)2, t

)
= ĝ

((
k′)2). Let k = k′ and r2 = a = ei π

4
)
.

Therefore, we can rewrite (8) as

w(x, t) = S[0, g; 0](x, t) = w1(x, t) + w2(x, t), (9)

where

r1 = ei 3π
4 , G1(k, t) = –

1
π

eik2t k(α +
√

2
2 k –

√
2

2 ki)
α2 +

√
2αk + k2

ĝ
(
k2),

w1(x, t) =
∫ ∞

0
eir1kxG1(k, t) dk

(10)

and

r2 = ei π
4 , G2(k, t) = –

1
π

e–ik2t k(α +
√

2
2 k +

√
2

2 ki)
α2 +

√
2αk + k2

ĝ
(
–k2),

w2(x, t) =
∫ ∞

0
eir2kxG2(k, t) dk.

In the following result, we estimate the solution (9) in the Hadamard space.

Theorem 2.1 (Estimates for the pure linear IBVP on the half-line) For 1/2 < s < 3/2 and the
boundary data test function g ∈ H (2s–1)/4

t (R) is compactly supported in the interval [0, 2].
Then, the solution of the reduced pure IBVP (7), which satisfies the following Hadamard
space estimates:

space estimate: sup
t∈[0,2]

∥
∥S[0, g; 0](t)

∥
∥

Hs
x(0,∞) ≤ Cs‖g‖

H
2s–1

4
t (R)

, (11)

time estimate: sup
x∈[0,∞)

∥
∥S[0, g; 0](x)

∥
∥

H
2s+1

4
t (0,2)

≤ Cs‖g‖
H

2s–1
4

t (R)
, (12)

where Cs = C(s) > 0 is a constant depending on s.

Proof First, we start with the proof of the space estimate (11). We can derive the inequal-
ities

sup
t∈[0,2]

∥
∥w1(t)

∥
∥

Hs
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

(13)

and

sup
t∈[0,2]

∥
∥w2(t)

∥
∥

Hs
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

, (14)

but we will only present the proof for the inequality (13). Since the estimation processes
of (13) and (14) are similar, we can use a process analogous to the proof of (13) to obtain
(14). Therefore, by (9), (13), and (14), we establish the equation for the space estimate (11):

sup
t∈[0,2]

∥
∥w(t)

∥
∥

Hs
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

.
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Now, we begin the proof of the inequality (13). We use the physical space definition of
the Hs

x(0,∞) norm:

∥
∥w1(t)

∥
∥

Hs
x(0,∞) =

⎧
⎨

⎩

∑�s�
j=0 ‖∂ j

xw1(t)‖L2
x(0,∞) + ‖∂�s�

x w1(t)‖β for s ∈R
+\Z+,

∑�s�
j=0 ‖∂ j

xw1(t)‖L2
x(0,∞) for s ∈ Z

+,
(15)

where 0 < β < 1 and �s� = s – β ∈ Z
+ ∪ {0}. The fractional norm ‖ · ‖β is defined by

∥
∥w1(t)

∥
∥2

β
=

∫ ∞

0

∫ ∞

0

|w1(x + ζ , t) – w1(x, t)|2
ζ 1+2β

dζdx, ∀β ∈ (0, 1).

We will prove that the inequality (13) holds under these three cases: Case (I): when β = 0
holds, Case (II): when s = β �= 0 holds, and Case (III): when �s� �= 0 and β �= 0 hold.

We require the following two lemmas in [6] to assist us in proving the inequality (13)
under Cases (I)–(III).

Lemma 2.2 ([6]) If r = rR + irI with rI > 0, then

∣
∣eirkx – eirkζ

∣
∣ ≤ √

2
(

1 +
|rR|
rI

)
∣
∣e–rI kx – e–rI kζ

∣
∣, ∀k, x, ζ ≥ 0.

Lemma 2.3 ([6]. (L2-boundedness of the Laplace transform)) Suppose φ ∈ L2
τ (0,∞). Then,

the map

L : φ 
−→
∫ ∞

0
e–τ tφ(τ ) dτ

is bounded from L2
τ (0,∞) into L2

t (0,∞) with

∥
∥L{φ}∥∥L2

t (0,∞) ≤ √
π‖φ‖L2

τ (0,∞).

Now, we begin to prove that when β = 0, then the inequality (13) holds. Case (I): Suppose
β = 0. This implies that s = �s� = 1. Then, the definition of ‖w1(t)‖Hs

x(0,∞) is

∥
∥w1(t)

∥
∥

Hs
x(0,∞) =

∥
∥w1(t)

∥
∥

L2
x(0,∞) +

∥
∥∂xw1(t)

∥
∥

L2
x(0,∞).

First, we calculate ‖w1(t)‖2
L2

x(0,∞):

∥
∥w1(t)

∥
∥2

L2
x(0,∞)

=
∫ ∞

0

∣
∣
∣
∣

∫ ∞

0
eir1kxG1(k, t) dk

∣
∣
∣
∣

2

dx

=
∫ ∞

0

∣
∣
∣
∣

∫ 1

0
eir1kxG1(k, t) dk +

∫ ∞

1
eir1kxG1(k, t) dk

∣
∣
∣
∣

2

dx

�
∫ ∞

0

∣
∣
∣
∣

∫ 1

0
eir1kxG1(k, t) dk

∣
∣
∣
∣

2

dx +
∫ ∞

0

∣
∣
∣
∣

∫ ∞

1
eir1kxG1(k, t) dk

∣
∣
∣
∣

2

dx

≤
∫ ∞

0

(∫ 1

0
e–

√
2

2 kx k
(k2 + α2) 1

2

∣
∣̂g

(
k2)∣∣dk

)2

dx +
∫ ∞

0

(∫ ∞

1
e–

√
2

2 kx∣∣̂g
(
k2)∣∣dk

)2

dx
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=
∫ ∞

0

(∫
√

2
2

0
e–ξx

√
2ξ

(2ξ 2 + α2) 1
2

∣
∣̂g

(
2ξ 2)∣∣

√
2 dξ

)2

dx

+
∫ ∞

0

(∫ ∞
√

2
2

e–ξx∣∣̂g
(
2ξ 2)∣∣

√
2 dξ

)2

dx

�
∫

√
2

2

0

4ξ 2

2ξ 2 + α2

∣
∣̂g

(
2ξ 2)∣∣2 dξ

︸ ︷︷ ︸
(A)

+
∫ ∞

√
2

2

2
∣
∣̂g

(
2ξ 2)∣∣2 dξ

︸ ︷︷ ︸
(B)

, (by Lemma 2.3).

To calculate (A):

(A) =
∫ 1

0

2τ

τ + α2

∣
∣̂g(τ )

∣
∣2 dτ

4
√

τ
2

,
(
Let τ = 2ξ 2)

	
∫ 1

0

τ
1
2

τ + α2

∣
∣̂g(τ )

∣
∣2 dτ =

∫ 1

0

τ
1
2

τ + α2

(
1 + τ 2)– (2s–1)

4
(
1 + τ 2)

(2s–1)
4

∣
∣̂g(τ )

∣
∣2 dτ .

Let f (τ ) = (τ 1/2(1+τ 2)–(2s–1)/4)/(τ +α2), for all α ≥ 1 and 1/2 < s < 3/2. Since f is bounded on
[0, 1], there exists M > 0 such that f (τ ) ≤ M, ∀τ ∈ [0, 1]. Therefore, we obtain the following
inequality:

(A) 	
∫ 1

0

τ
1
2

τ + α2

(
1 + τ 2)– (2s–1)

4
(
1 + τ 2)

(2s–1)
4

∣
∣̂g(τ )

∣
∣2 dτ (16)

≤ M
∫ 1

0

(
1 + τ 2)

(2s–1)
4

∣
∣̂g(τ )

∣
∣2 dτ � ‖g‖2

H
2s–1

4
t (R)

, for
1
2

< s <
3
2

.

To calculate (B):

(B) =
∫ ∞

√
2

2

2
∣
∣̂g

(
2ξ 2)∣∣2 dξ

(
let τ = 2ξ 2.

)
(17)

=
∫ ∞

1
2
∣
∣̂g(τ )

∣
∣2 dτ

4
√

τ
2

�
∫ ∞

1

∣
∣̂g(τ )

∣
∣2 dτ ≤

∫ ∞

1

(
1 + τ 2) 2s–1

4
∣
∣̂g(τ )

∣
∣2 dτ

≤ ‖g‖2

H
2s–1

4
t (R)

, for
1
2

< s <
3
2

.

By inequalities (16) and (17), we can derive the following inequality:

∥
∥w1(t)

∥
∥

L2
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

, for
1
2

< s <
3
2

. (18)

Next, we calculate ‖∂xw1(t)‖2
L2

x(0,∞). We differentiate the formula (10) and then have the
equation

∂xw1(t) =
∫ ∞

0
(ir1k)eir1kxG1(k, t) dk.

Therefore, we obtain the following inequality:

∥
∥∂xw1(t)

∥
∥2

L2
x(0,∞) =

∫ ∞

0

∣
∣∂xw1(x, t)

∣
∣2 dx =

∫ ∞

0

∣
∣
∣
∣

∫ ∞

0
(ir1k)eir1kxG1(k, t) dk

∣
∣
∣
∣

2

dx
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≤
∫ ∞

0

(∫ ∞

0
ke–

√
2

2 kx
∣
∣
∣
∣
k(α +

√
2

2 k –
√

2
2 ki)

α2 +
√

2αk + k2

∣
∣
∣
∣

∣
∣̂g

(
k2)∣∣dk

)2

dx

≤
∫ ∞

0

(∫ ∞

0
e–sx|√2s|∣∣̂g(

2s2)∣∣
√

2 ds
)2

dx,
(

Let s =
k√
2

)

� π

∫ ∞

0
4s2∣∣̂g

(
2s2)∣∣2 ds, (By Lemma 2.3)

� π

∫ ∞

τ=0
2τ

∣
∣̂g(τ )

∣
∣2 dτ

4
√

τ
2

,
(
Let τ = 2s2)

�
∫ ∞

0
τ

1
2
∣
∣̂g(τ )

∣
∣2 dτ ≤

∫ ∞

0

(
1 + τ 2) 2s–1

4
∣
∣̂g(τ )

∣
∣2 dτ ≤ ‖g‖2

H
2s–1

4
t (R)

,

for
1
2

< s <
3
2

.

Finally, we arrive at the following inequality:

∥
∥∂xw1(t)

∥
∥

L2
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

, for
1
2

< s <
3
2

. (19)

Therefore, when s = 1, by equations (18) and (19), we obtain the inequality (13)

sup
t∈[0,2]

∥
∥w1(t)

∥
∥

Hs
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

.

Hence, the inequality (13) holds under Case (I).
Now, we begin to prove that when s = β �= 0, then the inequality (13) holds. Case (II):

Suppose s = β �= 0. This implies s = β ∈ (1/2, 1). Then, the definition of ‖w1(t)‖Hs
x(0,∞) is

∥
∥w1(t)

∥
∥

Hs
x(0,�) =

∥
∥w1(t)

∥
∥

L2
x(0,∞) +

∥
∥w1(t)

∥
∥

β
.

We need to estimate ‖w1(t)‖L2
x(0,∞) and ‖w1(t)‖β . By (18), we have the following inequality

of the first norm:

∥
∥w1(t)

∥
∥

L2
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

, for
1
2

< s <
3
2

.

Now, we calculate ‖w1(t)‖2
β .

∥
∥w1(t)

∥
∥2

β
=

∫ ∞

0

∫ ∞

0

|w1(x + ζ , t) – w1(x, t)|2
ζ 1+2β

dζ dx

=
∫ ∞

0

∫ ∞

0

1
ζ 1+2β

∣
∣
∣
∣

∫ ∞

0
eir1k(x+ζ )G1(k, t) dk –

∫ ∞

0
eir1kxG1(k, t) dk

∣
∣
∣
∣

2

dx dζ

≤
∫ ∞

0

∫ ∞

0

1
ζ 1+2β

(∫ ∞

0

∣
∣eir1k(x+ζ ) – eir1kx∣∣

∣
∣G1(k, t)

∣
∣dk

)2

dx dζ .

For the estimation of ‖w1(x, t)‖β , we use Lemma 2.2. This gives us the following inequal-
ity:

∥
∥w1(t)

∥
∥2

β
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≤
∫ ∞

0

∫ ∞

0

1
ζ 1+2β

(∫ ∞

0

∣
∣eir1k(x+ζ ) – eir1kx∣∣

∣
∣G1(k, t)

∣
∣dk

)2

dx dζ

≤
∫ ∞

0

∫ ∞

0

1
ζ 1+2β

(∫ ∞

0
2
√

2
∣
∣e–

√
2

2 k(x+ζ ) – e–
√

2
2 kx∣∣

∣
∣G1(k, t)

∣
∣dk

)2

dx dζ

≤
∫ ∞

0

∫ ∞

0

1
(
√

2Z)1+2β

(∫ ∞

0
2
√

2
∣
∣e–

√
2

2 k(
√

2X+
√

2Z)

– e–
√

2
2 k(

√
2X )∣∣

∣
∣G1(k, t)

∣
∣dk

)2

2 dX dZ

(

Let X =
√

2
2

x, Z =
√

2
2

ζ .
)

	
∫ ∞

0

∫ ∞

0

1
Z1+2β

(∫ ∞

0

∣
∣e–k(X+Z) – e–kX ∣

∣
∣
∣G1(k, t)

∣
∣dk

)2

dX dZ .

We use Lemma 2.3 to obtain the following inequality:

∥
∥w1(t)

∥
∥2

β

�
∫ ∞

0

∫ ∞

0

1
Z1+2β

(∫ ∞

0

∣
∣e–k(X+Z) – e–kX ∣

∣
∣
∣G1(k, t)

∣
∣dk

)2

dX dZ

=
∫ ∞

0

1
Z1+2β

∫ ∞

0

(∫ ∞

0
e–kX (

1 – e–kZ)∣
∣G1(k, t)

∣
∣dk

)2

dX dZ

�
∫ ∞

0

1
Z1+2β

(

π

∫ ∞

k=0

(
1 – e–kZ)2∣∣G1(k, t)

∣
∣2 dk

)

dZ

	
∫ ∞

0

∣
∣G1(k, t)

∣
∣2

(∫ ∞

0

(1 – e–kZ )2

Z1+2β
dZ

)

dk

=
∫ ∞

0

∣
∣G1(k, t)

∣
∣2

(

k2β

∫ ∞

0

(1 – e–ξ )2

ξ 1+2β
dξ

)

dk, (Let ξ = kZ)

	
∫ ∞

0

∣
∣G1(k, t)

∣
∣2k2β dk �

∫ ∞

0

∣
∣
∣
∣
α +

√
2

2 k –
√

2
2 ki

α2 +
√

2αk + k2

∣
∣
∣
∣

2

k2+2β
∣
∣̂g

(
k2)∣∣2 dk

�
∫ ∞

0
k2β

∣
∣̂g

(
k2)∣∣2 dk

=
∫ ∞

0
τβ

∣
∣̂g(τ )

∣
∣2 dτ

2
√

τ
,

(
Let τ = k2)

=
1
2

∫ ∞

0
τβ– 1

2
∣
∣̂g(τ )

∣
∣2 dτ ≤

∫ ∞

0

(
τ 2)

β–1/2
2

∣
∣̂g(τ )

∣
∣2 dτ

≤
∫ ∞

0

(
1 + τ 2)

2β–1
4

∣
∣̂g(τ )

∣
∣2 dτ ≤ ‖g‖2

H
2β–1

4
t (R)

, for
1
2

< s = β < 1.

Hence, we obtain the following inequality:

∥
∥w1(x, t)

∥
∥

β
� ‖g‖

H
2β–1

4
t (R)

= ‖g‖
H

2s–1
4

t (R)
, for

1
2

< s = β < 1. (20)
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Therefore, when s = β ∈ (1/2, 1), by equations (18) and (20), we obtain the inequality
(13):

sup
t∈[0,2]

∥
∥w1(t)

∥
∥

Hs
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

.

Hence, the inequality (13) holds under Case (II).
Finally, we begin to prove that when �s� �= 0 and β �= 0, then the inequality (13) holds.

Case (III): Suppose �s� �= 0 and β �= 0. This implies that s ∈ (1, 3/2) and β ∈ (0, 1/2). Then,
the definition of ‖w1(t)‖Hs

x(0,∞) is

∥
∥w1(t)

∥
∥

Hs
x(0,∞) =

∥
∥w1(t)

∥
∥

L2
x(0,∞) +

∥
∥∂xw1(t)

∥
∥

L2
x(0,∞) +

∥
∥∂xw1(t)

∥
∥

β
.

We need to estimate ‖w1(t)‖L2
x(0,∞), ‖∂xw1(t)‖L2

x(0,∞), and ‖∂xw1(t)‖β . By (18) and (19), we
have the following inequalities of the first norm and the second norm:

∥
∥w1(t)

∥
∥

L2
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

, for
1
2

< s <
3
2

,

∥
∥∂xw1(t)

∥
∥

L2
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

, for
1
2

< s <
3
2

.

Now, we calculate ‖∂�s�
x w1(t)‖2

β , for s ∈ (1, 3/2) and β ∈ (0, 1/2):

∥
∥∂�s�

x w1(t)
∥
∥2

β

=
∫ ∞

0

∫ ∞

0

1
ζ 1+2β

∣
∣
∣
∣

∫ ∞

k=0
(ir1k)�s�eir1k(x+ζ )G1(k, t) dk

–
∫ ∞

k=0
(ir1k)�s�eir1kxG1(k, t) dk

∣
∣
∣
∣

2

dζ dx

=
∫ ∞

0

∫ ∞

0

1
ζ 1+2β

∣
∣
∣
∣

∫ ∞

0
(ir1k)�s�(eir1k(x+ζ ) – eir1kx)G1(k, t) dk

∣
∣
∣
∣

2

dζ dx

≤
∫ ∞

0

∫ ∞

0

1
ζ 1+2β

(∫ ∞

0
k�s�∣∣eir1k(x+ζ ) – eir1kx∣∣

∣
∣
∣
∣
k(α +

√
2

2 k –
√

2
2 i)

α2 +
√

2αk + k2

∣
∣
∣
∣

∣
∣̂g

(
k2)∣∣dk

)2

dζ dx

�
∫ ∞

0

∫ ∞

0

1
ζ 1+2β

(∫ ∞

k=0
k�s�∣∣e–

√
2

2 k(x+ζ )

– e–
√

2
2 kx∣∣

∣
∣
∣
∣
k(α +

√
2

2 k –
√

2
2 i)

α2 +
√

2αk + k2

∣
∣
∣
∣

∣
∣̂g

(
k2)∣∣dk

)2

dζ dx (by Lemma 2.2)

≤
∫ ∞

0

∫ ∞

0

1
ζ 1+2β

(∫ ∞

0
k�s�e–

√
2

2 kx(1 – e–
√

2
2 kζ

)∣
∣̂g

(
k2)∣∣dk

)2

dζ dx

=
∫ ∞

0

1
ζ 1+2β

∫ ∞

0

(∫ ∞

0
e–�x(

√
2�)�s�(1 – e–�ζ

)∣
∣̂g

(
2�2)∣∣

√
2 d�

)2

dx dζ ,

(

Let � =
√

2
2

k.
)

�
∫ ∞

0

1
ζ 1+2β

(

π

∫ ∞

0
(
√

2�)2�s�(1 – e–�ζ
)2 · 2

∣
∣̂g

(
2�2)∣∣2 d�

)

dζ , (by Lemma 2.3)
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�
∫ ∞

0
�2�s�∣∣̂g

(
2�2)∣∣2

(∫ ∞

0

(1 – e–�ζ )2

ζ 1+2β
dζ

)

d�

=
∫ ∞

0
�2�s�∣∣̂g

(
2�2)∣∣2

(

�2β

∫ ∞

0

(1 – e–ξ )2

ξ 1+2β
dξ

)

d�,

(Let ξ = �ζ .)

	
∫ ∞

0
�2�s�∣∣̂g

(
2�2)∣∣2

�2β d� =
∫ ∞

0
�2�s�+2β

∣
∣̂g

(
2�2)∣∣2 d�

=
∫ ∞

0

(
τ

2

)�s�+β∣
∣̂g(τ )

∣
∣2 dτ

4
√

τ
2

,
(
Let τ = 2�2.

)

�
∫ ∞

0
τ �s�+β– 1

2
∣
∣̂g(τ )

∣
∣2 dτ =

∫ ∞

0

(
τ 2)

�s�+β– 1
2

2
∣
∣̂g(τ )

∣
∣2 dτ

≤
∫ ∞

–∞

(
1 + τ 2)

�s�+β– 1
2

2
∣
∣̂g(τ )

∣
∣2 dτ =

∫ ∞

–∞

(
1 + τ 2) 2s–1

4
∣
∣̂g(τ )

∣
∣2 dτ = ‖g‖2

H
2s–1

4
t (R)

.

Hence, we obtain the following inequality:

∥
∥∂�s�

x w1(t)
∥
∥

β
� ‖g‖

H
2s–1

4
t (R)

, for s ∈
(

1,
3
2

)

and β ∈
(

0,
1
2

)

. (21)

Therefore, when s ∈ (1, 3/2) and β ∈ (0, 1/2), by equations (18), (19), and (21), we obtain
the inequality (13):

sup
t∈[0,2]

∥
∥w1(t)

∥
∥

Hs
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

.

Hence, the inequality (13) holds under Case (III).
We establish the validity of the inequality (13) under these three cases. Thus, we derive

the space estimate for w1 (13):

sup
t∈[0,2]

∥
∥w1(t)

∥
∥

Hs
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

, for
1
2

< s <
3
2

.

Additionally, we can use a process similar to the proof of equation (13) to obtain the space
estimate for w2 (14):

sup
t∈[0,2]

∥
∥w2(t)

∥
∥

Hs
x(0,∞) � ‖g‖

H
2s–1

4
t (R)

, for
1
2

< s <
3
2

.

Then, we can obtain the space estimation (11).
Finally, we start with the proof of the space estimate (12). Now, we calculate (9):

w(x, t) =
∫ ∞

0
eir1kxG1(k, t) dk +

∫ ∞

0
eir2kxG2(k, t) dk (22)

	
∫ ∞

0
eia3√

τx+iτ t
(

α +
√

2
2

√
τ –

√
2

2
√

τ i
α2 +

√
2α

√
τ + τ

)

ĝ(τ ) dτ

+
∫ ∞

0
eia

√
τx–iτ t

(
α +

√
2

2
√

τ +
√

2
2

√
τ i

α2 +
√

2α
√

τ + τ

)

ĝ(–τ ) dτ , (Let k =
√

τ .)
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=
∫ ∞

τ=0
eia3√

τx+iτ t
(

α +
√

2
2

√
τ –

√
2

2
√

τ i
α2 +

√
2α

√
τ + τ

)

ĝ(τ ) dτ

+
∫ 0

–∞
eia

√
–τx+iτ t

(
α +

√
2

2
√

–τ +
√

2
2

√
–τ i

α2 +
√

2α
√

–τ – τ

)

ĝ(τ ) dτ ,

where a = eiπ/4. Hence, by equation (22), we infer that the temporal Fourier transform of
w is given by

ŵ(x, t) 	

⎧
⎪⎨

⎪⎩

eia3√
τx( α+

√
2

2
√

τ–
√

2
2

√
τ i

α2+
√

2α
√

τ+τ
)̂g(τ ) τ ≥ 0,

eia
√

–τx( α+
√

2
2

√
–τ+

√
2

2
√

–τ i
α2+

√
2α

√
–τ–τ

)̂g(τ ) τ ≤ 0.

Therefore, we obtain the following inequality:

∥
∥w(x)

∥
∥2

H
2s+1

4
t (R)

=
∫

R

(
1 + τ 2) 2s+1

4
∣
∣ŵ(x, τ )

∣
∣2 dτ

	
∫ 0

–∞

(
1 + τ 2) 2s+1

4

∣
∣
∣
∣e

ia
√

–τx
(

α +
√

2
2

√
–τ +

√
2

2
√

–τ i
α2 +

√
2α

√
–τ – τ

)

ĝ(τ )
∣
∣
∣
∣

2

dτ

+
∫ ∞

0

(
1 + τ 2) 2s+1

4

∣
∣
∣
∣e

ia3√
τx

(
α +

√
2

2
√

τ –
√

2
2

√
τ i

α2 +
√

2α
√

τ + τ

)

ĝ(τ )
∣
∣
∣
∣

2

dτ

≤
∫ 0

–∞

(
1 + τ 2) 2s+1

4 α2 +
√

2α
√

–τ – τ

(α2 +
√

2α
√

–τ – τ )2

∣
∣̂g(τ )

∣
∣2 dτ

+
∫ ∞

0

(
1 + τ 2) 2s+1

4 α2 +
√

2α
√

τ + τ

(α2 +
√

2α
√

τ + τ )2

∣
∣̂g(τ )

∣
∣2 dτ

≤
∫ 0

–∞

(
1 + τ 2) 2s+1

4 1
((1 + |τ |)2) 1

2

∣
∣̂g(τ )

∣
∣2 dτ +

∫ ∞

0

(
1 + τ 2) 2s+1

4 1
((1 + τ )2) 1

2

∣
∣̂g(τ )

∣
∣2 dτ

=
∫ 0

–∞

(
1 + τ 2) 2s+1

4 1
(1 + 2|τ | + |τ |2) 1

2

∣
∣̂g(τ )

∣
∣2 dτ

+
∫ ∞

0

(
1 + τ 2) 2s+1

4 1
(1 + 2τ + τ 2) 1

2

∣
∣̂g(τ )

∣
∣2 dτ

≤
∫ 0

–∞

(
1 + τ 2) 2s+1

4
(
1 + τ 2)– 1

2
∣
∣̂g(τ )

∣
∣2 dτ +

∫ ∞

0

(
1 + τ 2) 2s+1

4
(
1 + τ 2)– 1

2
∣
∣̂g(τ )

∣
∣2 dτ

=
∫ ∞

–∞

(
1 + τ 2) 2s+1

4
(
1 + τ 2)– 1

2
∣
∣̂g(τ )

∣
∣2 dτ = ‖g‖2

H
2s–1

4
t (R)

.

Hence, we obtain the time estimate (12):

sup
x∈[0,∞)

∥
∥w(x)

∥
∥

H
2s+1

4
t (R)

� ‖g‖
H

2s–1
4

t (R)
⇒ sup

x∈[0,∞)

∥
∥w(x)

∥
∥

H
2s+1

4
t (0,2)

� ‖g‖
H

2s–1
4

t (R)
.

Thus, we conclude the demonstration of Theorem 2.1. �
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2.2 Homogeneous IBVP with zero initial data
In this subsection, we consider the pure IBVP:

⎧
⎪⎪⎨

⎪⎪⎩

zt – zxx = 0, x ∈ (0,∞), t ∈ (0, T),

z(x, 0) = 0, x ∈ [0,∞),

zx(0, t) – αz(0, t) = ϕ(t), t ∈ [0, T],α ≥ 1,

(23)

where 0 < T < 1. We shall extend the boundary data ϕ(t) from the interval [0, T] to the
entire real line R. We aim to define a function ϕ∗(t) ∈ H (2s–1)/4

t (R) as an extension of ϕ(t) ∈
H (2s–1)/4

t (0, T) with supp(ϕ∗) ⊂ (0, 2). For 1/2 < s < 3/2, the definition of ϕ∗ is given by

ϕ∗(t) =

⎧
⎨

⎩

Eθ (t), t ∈ (0, 2),

0, t ∈ (0, 2)c,

where Eθ = θ (t)E(t), where θ ∈ C∞
0 (R) is a smooth cutoff function satisfying |θ (t)| ≤ 1 for

all t ∈ R, θ (t) = 1 for all |t| ≤ 1, and θ (t) = 0 for all |t| ≥ 2. Here, E ∈ H (2s–1)/4
t (R) is an

extension of ϕ ∈ H (2s–1)/4
t (0, T) such that

‖E‖
H

2s–1
4

t (R)
≤ Ds‖ϕ‖

H
2s–1

4
t (0,T)

.

Consequently, we have supp(ϕ∗) ⊂ (0, 2) and

∥
∥ϕ∗∥∥

H
2s–1

4
t (R)

≤ Ds‖ϕ‖
H

2s–1
4

t (0,T)
, for

1
2

< s <
3
2

, (24)

where Ds = D(s) > 0 is a constant depending on s.
Hence, for IBVP (23), we can obtain the following two inequalities (space estimate and

time estimate):

sup
t∈[0,T]

∥
∥z(t)

∥
∥

Hs
x(0,∞) ≤ Cs

∥
∥ϕ∗∥∥

H
2s–1

4
t (R)

,
(
by Theorem 2.1

)

≤ C̃s‖ϕ‖
H

2s–1
4

t (0,T)
, for

1
2

< s <
3
2

,
(
by (24)

)

and

sup
x∈[0,∞)

∥
∥z(x)

∥
∥

H
2s+1

4
t (0,2)

≤ Cs
∥
∥ϕ∗∥∥

H
2s–1

4
t (R)

,
(
by Theorem 2.1

)

≤ C̃s‖ϕ‖
H

2s–1
4

t (0,T)
, for

1
2

< s <
3
2

,
(
by (24)

)
,

where C̃s = CsDs.
Therefore, we have the following result.

Theorem 2.4 For 1/2 < s < 3/2 and the boundary data test function ϕ ∈ H (2s–1)/4
t (R). The

solution for the IBVP (23) that satisfies the following Hadamard space:

space estimate: sup
t∈[0,T]

∥
∥S[0,ϕ; 0](t)

∥
∥

Hs
x(0,∞) ≤ C̃s‖ϕ‖

H
2s–1

4
t (0,T)

, (25)
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time estimate: sup
x∈[0,∞)

∥
∥S[0,ϕ; 0](x)

∥
∥

H
2s+1

4
t (0,2)

≤ C̃s‖ϕ‖
H

2s–1
4

t (0,T)
, (26)

where C̃s = C̃(s) > 0 is a constant depending on s.

3 Proof of forced linear IBVP estimates (Theorem 1.4)
In this section, we aim to prove Theorem 1.4 by decomposing the Robin problem for the
forced linear reaction–diffusion equation into four simpler problems. In particular, two
of these problems are linear initial value problems (IVPs), and they are estimated directly;
their proofs can be found in [8]. The remaining two problems are IBVPs, and their esti-
mates are obtained using the theorems presented in Sect. 2.

3.1 Decomposition into simple problems
To establish the proof of Theorem 1.4, we begin the process by decomposing the forced
linear IBVP (3) into the superposition of the following problems.

(I) The homogeneous linear initial value problem:

⎧
⎨

⎩

Ut – Uxx = 0, x ∈ R, t ∈ (0, T),

U(x, 0) = U0(x) ∈ Hs
x(R), x ∈ R,

(27)

where U0 ∈ Hs
x(R) is an extension of the initial data u0 ∈ Hs

x(0,∞) such that

‖U0‖Hs
x(R) ≤ 2‖u0‖Hs

x(0,∞), (28)

with the solution to IVP (27) given by the Duhamel formula

U(x, t) = S[U0; 0](x, t) =
1

2π

∫

R

eiξx–ξ2tÛ0(ξ ) dξ , (29)

where Û0(ζ ) is the Fourier transform with respect to the spatial variable, i.e.,

Û0(ξ , t) =
∫

R

e–iξxU0(x, t) dx, ξ ∈R.

(II) The forced linear IVP with zero initial condition:

⎧
⎨

⎩

Wt – Wxx = F(x, t), x ∈R, t ∈ (0, T),

W (x, 0) = 0, x ∈R,
(30)

where F(x, t) ∈ C([0, T]; Hs
x(R)) is the extension of f (x, t) ∈ C([0, T]; Hs

x(0,∞)) and satisfies

sup
t∈[0,T]

‖F‖Hs
x(R) ≤ 2 sup

t∈[0,T]
‖f ‖Hs

x(0,∞). (31)

The solution to IVP (30) is given by

W (x, t) = S[0; F](x, t) =
1

2π

∫

R

(∫ t

0
eiξx–ξ2(t–t′)F̂

(
ξ , t′)dt′

)

dξ (32)
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=
∫ t

0
S
[
F
(·, t′); 0

](
x, t – t′)dt′,

which is found by the whole-line Fourier transform

Ŵ (ξ , t) =
∫

R

e–iξxW (x, t) dx, ξ ∈R,

where F̂ is the Fourier transform of F with respect to x.
(III) The linear IBVP on the half-line:

⎧
⎪⎪⎨

⎪⎪⎩

u#
t – u#

xx = 0 x ∈ (0,∞), t ∈ (0, T),

u#(x, 0) = 0, x ∈ [0,∞),

u#
x(0, t) – αu#(0, t) = G0(t), t ∈ [0, T],α ≥ 1,

(33)

where G0(t) .= g0(t) – Ux(0, t) – Wx(0, t) and u# = S[0, G0; 0] is the solution (33).
(IV) The homogeneous linear IBVP with zero initial condition:

⎧
⎪⎪⎨

⎪⎪⎩

u∗
t – u∗

xx = 0 x ∈ (0,∞), t ∈ (0, T),

u∗(x, 0) = 0, x ∈ [0,∞),

u∗
x(0, t) – αu∗(0, t) = H0(t), t ∈ [0, T],α ≥ 1,

(34)

where H0(t) .= α(U(0, t) + W (0, t)) and u∗ = S[0, H0; 0] is the solution (34).
In summary, the UTM solution (4) of the linear IBVP (3) has been expressed as

S[u0, g0; f ] = S[U0; 0]|x>0 + S[0; F]|x>0 + S[0, G0; 0] + S[0, H0; 0], (35)

where the four quantities on the right-hand side correspond to the solutions of problems
(27), (30), (33), and (34), respectively.

3.2 The estimates for the linear IVPs
In this subsection, we prove Theorem 3.3 and apply Theorem 2.1, Theorem 2.4, Theo-
rem 3.1, Theorem 3.2, and Theorem 3.3 to establish Theorem 1.4. Now, applying Theo-
rem 3.1 and Theorem 3.2, we obtain the space and time estimates of S[U0; 0]|x > 0 and
S[0; F]|x > 0 that are components of (35).

Theorem 3.1 ([8]. Estimates for the homogeneous linear IVP (I)) The solution U =
S[U0; 0] of the linear IVP (27) given by the formula (29) admits the following space and
time estimates:

sup
t∈[0,T]

∥
∥U(t)

∥
∥

Hs
x(R) ≤ ‖U0‖Hs

x(R), for s ∈R, (36)

sup
x∈R

∥
∥U(x)

∥
∥

H
2s+1

4
t (0,T)

≤ Cs‖U0‖Hs
x(R), for –

1
2

≤ s <
3
2

, (37)

where Cs = C(s) > 0 is a constant depending on s.
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Theorem 3.2 ([8]. Sobolev-type estimates for the homogeneous linear IVP (II)) The solu-
tion W = S[0; F] of the forced linear IVP (30) given by the formula (32) admits the following
space and time estimates:

sup
t∈[0,T]

∥
∥W (t)

∥
∥

Hs
x(R) ≤ T sup

t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R), for s ∈ R, (38)

sup
x∈R

∥
∥W (x)

∥
∥

H
2s+1

4
t (0,T)

≤ Cs
√

T sup
t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R), for

1
2

< s <
3
2

, (39)

where Cs = C(s) > 0 is a constant depending on s.

The proofs of the above two Theorems are provided in [8].
Thanks to the superposition principle, Theorem 2.1, Theorem 3.1, and Theorem 3.2

can be combined to derive Theorem 1.4 for the forced linear IBVP (3). Furthermore, we
consider the time estimates with G0 and H0 are in (33) and (34), respectively. We obtain
the following two inequalities:

‖G0‖
H

2s–1
4

t (0,T)
=

∥
∥g0(t) – Ux(0, t) – Wx(0, t)

∥
∥

H
2s–1

4
t (0,T)

(40)

≤ ‖g0‖
H

2s–1
4

t (0,T)
+

∥
∥Ux(0, t)

∥
∥

H
2s–1

4
t (0,T)

+
∥
∥Wx(0, t)

∥
∥

H
2s–1

4
t (0,T)

and

‖H0‖
H

2s–1
4

t (0,T)
=

∥
∥αU(0, t) + αW (0, t)

∥
∥

H
2s–1

4
t (0,T)

(41)

≤ α
∥
∥U(0, t)

∥
∥

H
2s–1

4
t (0,T)

+ α
∥
∥W (0, t)

∥
∥

H
2s–1

4
t (0,T)

.

Therefore, we must estimate the ‖Ux(0, t)‖H(2s–1)/4
t (0,T) and ‖Wx(0, t)‖H(2s–1)/4

t (0,T).

Theorem 3.3 (Sobolev-type estimates) For 1/2 < s < 3/2, the solution U = S[U0; 0] of the
linear IVP (27) given by the formula (29) and the solution W = S[0; F] of the forced linear
IVP (30) given by the formula (32) admit the following estimates:

sup
x∈[0,∞)

∥
∥Ux(x)

∥
∥

H
2s–1

4
t (0,T)

≤ Cs‖U0‖Hs
x(R), (42)

sup
x∈[0,∞)

∥
∥Wx(x)

∥
∥

H
2s–1

4
t (0,T)

≤ Cs
√

T sup
t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R), (43)

where T ∈ (0, 1), and Cs = C(s) > 0 is a constant depending on s.

Proof We will use Lemmas 3.4–3.7 to prove Theorem 3.3. In the first step, we will use
Lemma 3.4 and Lemma 3.5 to prove (42) of Theorem 3.3. In the second step, we will use
Lemma 3.6 and Lemma 3.7 to prove (43) of Theorem 3.3.

For 1/2 < s < 3/2, we assume m = (2s – 1)/4, then 0 < m < 1
2 . Based on equations (15) and

(29), we obtain the following two equations:

∥
∥Ux(x)

∥
∥

Hm
t (0,T) =

∥
∥Ux(x)

∥
∥

L2
t (0,T) +

∥
∥Ux(x)

∥
∥

m,
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Ux(x, t) =
1

2π

∫

ξ∈R
(iξ )eiξx–ξ2tÛ0(ξ ) dξ ,

where the fraction norm ‖ · ‖m is defined by

∥
∥Ux(x)

∥
∥2

m =
∫ T

0

∫ T

0

|Ux(x, t) – Ux(x, t′)|2
|t – t′|1+2m dt′ dt

	
∫ T

0

∫ T–t

0

|Ux(x, t + ζ ) – Ux(x, t)|2
ζ 1+2m dζ dt.

Therefore, we must estimate ‖Ux(x)‖L2
t (0,T) and ‖Ux(x)‖m to obtain (42). In the following

lemma, we provide the estimate for ‖Ux(x)‖L2
t (0,T).

Lemma 3.4 For 1/2 < s < 3/2. The solution U = S[U0; 0] of the linear IVP (27) given by the
formula (29) admits the following estimate:

∥
∥Ux(x)

∥
∥

L2
t (0,T) � ‖U0‖Hs

x(R), ∀x ∈ [0,∞). (44)

Proof To estimate ‖Ux(x)‖L2
t (0,T), we obtain the following inequality:

∥
∥Ux(x)

∥
∥2

L2
t (0,T)

=
∫ T

0

∣
∣
∣
∣

1
2π

∫

ξ∈R
(iξ )eiξx–ξ2tÛ0(ξ ) dξ

∣
∣
∣
∣

2

dt

≤
∫ T

0

(∫

ξ∈R
e–ξ2t|ξ |∣∣Û0(ξ )

∣
∣dξ

)2

dt

≤ 2
∫ T

0

(∫ 0

–∞
e–ξ2t|ξ |∣∣Û0(ξ )

∣
∣dξ

)2

dt + 2
∫ T

0

(∫ ∞

0
e–ξ2t|ξ |∣∣Û0(ξ )

∣
∣dξ

)2

dt

= 2
∫ T

0

(∫ 0

∞
e–τ t|√τ |∣∣Û0(–

√
τ )

∣
∣ dτ

–2
√

τ

)2

dt

+ 2
∫ T

0

(∫ ∞

0
e–τ t√τ

∣
∣Û0(

√
τ )

∣
∣ dτ

2
√

τ

)2

dt

(
Let τ = ξ 2)

=
1
2

∫ T

0

(∫ ∞

0
e–τ t∣∣Û0(–

√
τ )

∣
∣dτ

)2

dt +
1
2

∫ T

0

(∫ ∞

0
e–τ t∣∣Û0(

√
τ )

∣
∣dτ

)2

dt

� π

∫ ∞

0

∣
∣Û0(–

√
τ )

∣
∣2 dτ

︸ ︷︷ ︸
(A)

+π

∫ ∞

0

∣
∣Û0(

√
τ )

∣
∣2 dτ

︸ ︷︷ ︸
(B)

, (by Lemma 2.3).

Now, we calculate equations (A) and (B) to obtain the following two inequalities:

(A) =
∫ –∞

0

∣
∣Û0(r)

∣
∣22r dr, (Let r = –

√
τ )

=
∫ 0

–∞
2|r|∣∣Û0(r)

∣
∣2 dr ≤ 2

∫ 0

–∞

(
1 + r2) 1

2
∣
∣Û0(r)

∣
∣2 dr

� ‖U0‖2

H
1
2

x (R)
≤ ‖U0‖2

Hs
x(R), ∀x ∈ [0,∞) and for

1
2

< s <
3
2
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and

(B) =
∫ ∞

0

∣
∣Û0(r)

∣
∣22r dr, (Let r =

√
τ )

≤ 2
∫ ∞

0

(
1 + r2) 1

2
∣
∣Û0(r)

∣
∣2 dr � ‖U0‖2

H
1
2

x (R)
≤ ‖U0‖2

Hs
x(R),

∀x ∈ [0,∞) and for
1
2

< s <
3
2

.

Hence, we obtain the inequality (44):

∥
∥Ux(x)

∥
∥

L2
t (0,T) � ‖U0‖Hs

x(R), ∀x ∈ [0,∞) and for
1
2

< s <
3
2

. �

Next, we provide the estimate for ‖Ux(x)‖m in the following lemma.

Lemma 3.5 For 1/2 < s < 3/2 and m = (2s – 1)/4. The solution U = S[U0; 0] of the linear
IVP (27) given by the formula (29) admits the following estimate,

∥
∥Ux(x)

∥
∥

m � ‖U0‖Hs
x(R), ∀x ∈ [0,∞). (45)

Proof To estimate ‖Ux(x, t)‖m, we obtain the following inequality:

∥
∥Ux(x, t)

∥
∥2

m

	
∫ T

0

∫ T–t

0

|Ux(x, t + ζ ) – Ux(x, t)|2
ζ 1+2m dζ dt

=
∫ T

0

∫ T–t

0

1
ζ 1+2m

∣
∣
∣
∣

1
2π

∫

ξ∈R
(iξ )eiξx(e–ξ2(t+ζ ) – e–ξ2t)Û0(ξ ) dξ

∣
∣
∣
∣

2

dζ dt

≤
∫ T

0

∫ T–t

0

1
ζ 1+2m

(∫

ξ∈R
|ξ |e–ξ2t(1 – e–ξ2ζ

)∣
∣Û0(ξ )

∣
∣dξ

)2

dζ dt

≤
∫ T

0

∫ T

0

1
ζ 1+2m

(∫ 0

–∞
|ξ |e–ξ2t(1 – e–ξ2ζ

)∣
∣Û0(ξ )

∣
∣dξ

+
∫ ∞

0
|ξ |e–ξ2t(1 – e–ξ2ζ

)∣
∣Û0(ξ )

∣
∣dξ

)2

dt dζ

� 2
∫ T

0

∫ T

0

1
ζ 1+2m

(∫ 0

–∞
|ξ |e–ξ2t(1 – e–ξ2ζ

)∣
∣Û0(ξ )

∣
∣dξ

)2

dt dζ

+ 2
∫ T

0

∫ T

0

1
ζ 1+2m

(∫ ∞

0
|ξ |e–ξ2t(1 – e–ξ2ζ

)∣
∣Û0(ξ )

∣
∣dξ

)2

dt dζ

= 2
∫ T

0

∫ T

0

1
ζ 1+2m

(∫ 0

∞
e–τ t|√τ |(1 – e–τζ

)∣
∣Û0(–

√
τ )

∣
∣ dτ

–2
√

τ

)2

dt dζ

+ 2
∫ T

0

∫ T

0

1
ζ 1+2m

(∫ ∞

0
e–τ t|√τ |(1 – e–τζ

)∣
∣Û0(

√
τ )

∣
∣ dτ

2
√

τ

)2

dt dζ ,

(
let τ = ξ 2.

)

�
∫ T

0

1
ζ 1+2m

(∫ ∞

0

(
1 – e–τζ

)2∣∣Û0(–
√

τ )
∣
∣2 dτ

)

dζ
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+
∫ T

0

1
ζ 1+2m

(∫ ∞

0

(
1 – e–τζ

)2∣∣Û0(
√

τ )
∣
∣2 dτ

)

dζ , (by Lemma 2.3)

=
∫ ∞

0

∣
∣Û0(–

√
τ )

∣
∣2

(∫ T

0

(1 – e–τζ )2

ζ 1+2m dζ

)

dτ

+
∫ ∞

0

∣
∣Û0(

√
τ )

∣
∣2

(∫ T

0

(1 – e–τζ )2

ζ 1+2m dζ

)

dτ

≤
∫ ∞

0

∣
∣Û0(–

√
τ )

∣
∣2

(

τ 2m
∫ ∞

0

(1 – e–η)2

η1+2m dη

)

dτ

+
∫ ∞

0

∣
∣Û0(

√
τ )

∣
∣2

(

τ 2m
∫ ∞

0

(1 – e–η)2

η1+2m dη

)

dτ

(let η = τζ .)

	
∫ ∞

0

∣
∣Û0(–

√
τ )

∣
∣2

τ 2m dτ

︸ ︷︷ ︸
(C)

+
∫ ∞

0
τ 2m∣

∣Û0(
√

τ )
∣
∣2 dτ

︸ ︷︷ ︸
(D)

.

Now, we calculate equations (C) and (D) to obtain the following two inequalities:

(C) =
∫ –∞

0
r4m∣

∣Û0(r)
∣
∣22r dr, (let r = –

√
τ .)

=
∫ 0

–∞
r4m∣

∣Û0(r)
∣
∣2 · 2|r|dr = 2

∫ 0

–∞

(|r|2)2m+ 1
2
∣
∣Û0(r)

∣
∣2 dr

�
∫ ∞

–∞

(
1 + r2)2m+ 1

2
∣
∣Û0(r)

∣
∣2 dr =

∫ ∞

–∞

(
1 + r2)s∣∣Û0(r)

∣
∣2 dr

= ‖U0‖2
Hs

x(R), ∀x ∈ [0,∞) and for
1
2

< s <
3
2

and

(D) = 2
∫ ∞

0

(
r2)2m+ 1

2
∣
∣Û0(r)

∣
∣2 dr, (let r =

√
τ .)

�
∫ ∞

–∞

(
1 + r2)2m+ 1

2
∣
∣Û0(r)

∣
∣2 dr =

∫ ∞

–∞

(
1 + r2)s∣∣Û0(r)

∣
∣2 dr

= ‖U0‖2
Hs

x(R), ∀x ∈ [0,∞) and for
1
2

< s <
3
2

.

Therefore, we obtain the inequality (45):

∥
∥Ux(x)

∥
∥2

m � ‖U0‖2
Hs

x(R) + ‖U0‖2
Hs

x(R)

= 2‖U0‖2
Hs

x(R) � ‖U0‖2
Hs

x(R), ∀x ∈ [0,∞) and for
1
2

< s <
3
2

. �

Now, we can prove (42) of Theorem 3.3. By Lemma 3.4 and Lemma 3.5, we obtain the
following inequality:

∥
∥Ux(x)

∥
∥

Hm
t (0,T) =

∥
∥Ux(x)

∥
∥

L2
t (0,T) +

∥
∥Ux(x)

∥
∥

m

� ‖U0‖Hs
x(R), ∀x ∈ [0,∞) and for

1
2

< s <
3
2

.
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Hence, we obtain the inequality (42):

sup
x∈[0,∞)

∥
∥Ux(x)

∥
∥

H
2s–1

4
t (0,T)

� ‖U0‖Hs
x(R).

Next, we will use Lemma 3.6 and Lemma 3.7 to prove (43) of Theorem 3.3.
For 1/2 < s < 3/2, we assume m = (2s – 1)/4, then 0 < m < 1

2 . Based on equations (15) and
(32), we obtain that

∥
∥Wx(x)

∥
∥

Hm
t (0,T) =

∥
∥Wx(x)

∥
∥

L2
t (0,T) +

∥
∥Wx(x)

∥
∥

m,

Wx(x, t) =
1

2π

∫

ξ∈R

∫ t

0
(iξ )eiξx–ξ2(t–t′)F̂

(
ξ , t′)dt′ dξ ,

where the fraction norm ‖ · ‖m is defined by

∥
∥Wx(x)

∥
∥2

m =
∫ T

0

∫ T

0

|Wx(x, t) – Wx(x, t′)|2
|t – t′|1+2m dt′ dt

	
∫ T

0

∫ T–t

0

|Wx(x, t + ζ ) – Wx(x, t)|2
ζ 1+2m dζ dt.

Therefore, we must estimate ‖Wx(x)‖L2
t (0,T) and ‖Wx(x)‖m to obtain (43). In the following

lemma, we provide the estimate for ‖Wx(x)‖L2
t (0,T).

Lemma 3.6 For 1/2 < s < 3/2. The solution W = S[0; F] of the forced linear IVP (30) given
by the formula (32) admits the following estimate:

∥
∥Wx(x, t)

∥
∥

L2
t (0,T) � 2T

(
sup

t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R)

)
, ∀x ∈ [0,∞). (46)

Proof To estimate ‖Wx(x)‖L2
t (0,T), we obtain the following inequality:

∥
∥Wx(x)

∥
∥2

L2
t (0,T)

=
∫ T

0

∣
∣
∣
∣

1
2π

∫

ξ∈R

∫ t

0
(iξ )eiξx–ξ2(t–t′)F̂

(
ξ , t′)dt′ dξ

∣
∣
∣
∣

2

dt

�
∫ T

0

(∫

ξ∈R

∫ t

0
|ξ |e–ξ2(t–t′)∣∣̂F

(
ξ , t′)∣∣dt′ dξ

)2

dt

=
∫ T

0

(∫ t

0

∫

ξ∈R
|ξ |e–ξ2(t–t′)∣∣̂F

(
ξ , t′)∣∣dξ dt′

)2

dt

≤
∫ T

0

(∫ t

0

[∫

ξ∈R

(
1 + |ξ |2) 1

4
∣
∣̂F

(
ξ , t′)∣∣|ξ | 1

2 e–ξ2(t–t′) dξ

]

dt′
)2

dt

≤
∫ T

0

(∫ t

0

[∫

ξ∈R

(
1 + |ξ |2) 1

2
∣
∣̂F

(
ξ , t′)∣∣2 dξ

] 1
2
[∫

ξ∈R
|ξ |e–2ξ2(t–t′) dξ

] 1
2

dt′
)2

dt

=
∫ T

0

(∫ t

0

∥
∥F

(
t′)∥∥

H
1
2

x (R)

[∫

ξ∈R
|ξ |e–2ξ2(t–t′) dξ

] 1
2

dt′
)2

dt
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≤
∫ T

0

(
sup

t′∈[0,T]

∥
∥F

(
t′)∥∥2

H
1
2

x (R)

)(∫ t

0

[∫

ξ∈R
|ξ |e–2ξ2(t–t′) dξ

] 1
2

dt′
)2

dt

= sup
t∈[0,T]

∥
∥F(t)

∥
∥2

H
1
2

x (R)

(∫ T

0

(∫ t

0

[∫

ξ∈R
|ξ |e–2ξ2(t–t′) dξ

] 1
2

dt′
)2

dt
)

= 2 sup
t∈[0,T]

∥
∥F(t)

∥
∥2

H
1
2

x (R)

(∫ T

0

(∫ t

0

[∫ ∞

0
ξe–2ξ2(t–t′) dξ

] 1
2

dt′
)2

dt
)

= 2 sup
t∈[0,T]

∥
∥F(t)

∥
∥2

H
1
2

x (R)

(∫ T

0

(∫ t

0

[∫ ∞

0
e–2r(t–t′) 1

2
dr

] 1
2

dt′
)2

dt
)

,
(
Let r = ξ 2)

= 2 sup
t∈[0,T]

∥
∥F(t)

∥
∥2

H
1
2

x (R)

(∫ T

0

(∫ t

0

[
1
2

1
–2(t – t′)

e–2r(t–t′)|∞0
] 1

2
dt′

)2

dt
)

= 2 sup
t∈[0,T]

∥
∥F(t)

∥
∥2

H
1
2

x (R)

(∫ T

0

(∫ t

0

(
1

4(t – t′)

) 1
2

dt′
)2

dt
)

	 2 sup
t∈[0,T]

∥
∥F(t)

∥
∥2

H
1
2

x (R)

(∫ T

0

(∫ t

0

(
t – t′)– 1

2 dt′
)2

dt
)

= 2 sup
t∈[0,T]

∥
∥F(t)

∥
∥2

H
1
2

x (R)

(∫ T

0
4t dt

)

= 4T2
(

sup
t∈[0,T]

∥
∥F(t)

∥
∥2

H
1
2

x (R)

)

≤ 4T2
(

sup
t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

)
, ∀x ∈ [0,∞) and for

1
2

< s <
3
2

.

Hence, we obtain the inequality (46):

∥
∥Wx(x, t)

∥
∥

L2
t (0,T) � 2T

(
sup

t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R)

)
, ∀x ∈ [0,∞) and for

1
2

< s <
3
2

. �

Next, we provide the estimate for ‖Wx(x)‖m in the following lemma.

Lemma 3.7 For 1/2 < s < 3/2 and m = (2s – 1)/4. The solution W = S[0; F] of the forced
linear IVP (30) given by the formula (32) admits the following estimate:

∥
∥Wx(x)

∥
∥

m �
√

T sup
t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R), ∀x ∈ [0,∞). (47)

Proof To estimate ‖Wx(x, t)‖m, we obtain the following inequality:

∥
∥Wx(x, t)

∥
∥2

m

	
∫ T

0

∫ T–t

0

|Wx(x, t + ζ ) – Wx(x, t)|2
ζ 1+2m dζ dt

=
∫ T

0

∫ T–t

0

1
ζ 1+2m

∣
∣
∣
∣

1
2π

∫

ξ∈R

∫ t+ξ

0
(iξ )eiξx–ξ2(t+ζ–t′)F̂

(
ξ , t′)dt′ dξ

–
1

2π

∫

ξ∈R

∫ t

0
(iξ )eiξx–ξ2(t–t′)F̂

(
ξ , t′)dt′ dξ

∣
∣
∣
∣

2

dζ dt

=
∫ T

0

∫ T–t

0

1
ζ 1+2m

∣
∣
∣
∣

1
2π

∫

ξ∈R

∫ t

0
(iξ )eiξx(e–ξ2(t+ζ–t′) – e–ξ2(t–t′))F̂

(
ξ , t′)dt′ dξ
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+
1

2π

∫

ξ∈R

∫ t+ζ

t′=t
(iξ )eiξx–ξ2(t+ζ–t′)F̂

(
ξ , t′)dt′ dξ

∣
∣
∣
∣

2

dζ dt

�
∫ T

0

∫ T–t

0

1
ζ 1+2m

∣
∣
∣
∣

∫ t

0

∫

ξ∈R
(iξ )eiξx · e–ξ2(t–t′)(e–ξ2ζ – 1

)
F̂
(
ξ , t′)dξ dt′

∣
∣
∣
∣

2

dζ dt
︸ ︷︷ ︸

(E)

+
∫ T

0

∫ T–t

0

1
ζ 1+2m

∣
∣
∣
∣

∫ t+ζ

t

∫

ξ∈R
(iξ )eiξx–ξ2(t+ζ–t′)F̂

(
ξ , t′)dξ dt′

∣
∣
∣
∣

2

dζ dt
︸ ︷︷ ︸

(F)

.

Now, we estimate (F) to obtain the following inequality:

(F) =
∫ T

0

∫ T–t

0

1
ζ 1+2m

∣
∣
∣
∣

∫ t+ζ

t

∫

ξ∈R
(iξ )eiξx–ξ2(t+ζ–t′)F̂

(
ξ , t′)dξ dt′

∣
∣
∣
∣

2

dζ dt (48)

≤
∫ T

0

∫ T–t

0

1
ζ 1+2m

∣
∣
∣
∣

∫

ξ∈R
eiξx

(∫ t+ζ

t
(iξ )e–ξ2(t+ζ–t′)F̂

(
ξ , t′)dt′

)

dξ

∣
∣
∣
∣

2

dζ dt

≤
∫ T

0

∫ T–t

0

1
ζ 1+2m

∥
∥
∥
∥

∫

ξ∈R
eiξx

(∫ t+ζ

t
(iξ )e–ξ2(t+ζ–t′)F̂

(
ξ , t′)dt′

)

dξ

∥
∥
∥
∥

2

L∞
x (R)

dζ dt

≤
∫ T

0

∫ T–t

0

1
ζ 1+2m

∥
∥
∥
∥

∫

ξ∈R
eiξx

(∫ t+ζ

t
(iξ )e–ξ2(t+ζ–t′)F̂

(
ξ , t′)dt′

)

dξ

∥
∥
∥
∥

2

Hs
x(R)

dζ dt

(

since s >
1
2

, by the Sobolev Embedding Theorem
)

�
∫ T

0

∫ T–t

0

1
ζ 1+2m

(∫

ξ∈R

(
1 + ξ 2)s

∣
∣
∣
∣

∫ t+ζ

t
(iξ )e–ξ2(t+ζ–t′)F̂

(
ξ , t′)dt′

∣
∣
∣
∣

2

dξ

)

dζ dt

≤
∫ T

0

∫ T–t

0

1
ζ 1+2m

(∫ t+ζ

t

[∫

ξ∈R

(
1 + ξ 2)s

ξ 2e–2ξ2(t+ζ–t′)∣∣̂F
(
ξ , t′)∣∣2 dξ

] 1
2

dt′
)2

dζ dt

(
by Minkowski’s Integral Inequality

)
.

To estimate the above inequality, we consider the function p(ξ ) = ξ 2e–2ξ2(t+ζ–t′) for ζ ≥ 0,
t′ ≥ 0, and t ≥ t′. We know that p(ξ ) has a maximum as ξ = ( 1

2(t+ζ–t′) ) 1
2 . Hence, the function

p(ξ ) satisfies the following inequality:

p(ξ ) ≤ 1
2(t + ζ – t′)

· 1
e

, ∀ξ ∈R. (49)

We substitute inequality (49) into inequality (48). We obtain the following inequality:

(F) =
∫ T

0

∫ T–t

0

1
ζ 1+2m

∣
∣
∣
∣

∫ t+ζ

t

∫

ξ∈R
(iξ )eiξx–ξ2(t+ζ–t′)F̂

(
ξ , t′)dξ dt′

∣
∣
∣
∣

2

dζ dt

�
∫ T

0

∫ T–t

0

1
ζ 1+2m

(∫ t+ζ

t

[∫

ξ∈R

(
1 + ξ 2)sp(ξ )

∣
∣̂F

(
ξ , t′)∣∣2 dξ

] 1
2

dt′
)2

dζ dt

≤
∫ T

0

∫ T–t

0

1
ζ 1+2m

(∫ t+ζ

t

[∫

ξ∈R

(
1 + ξ 2)s 1

e
1

2(t + ζ – t′)
∣
∣̂F

(
ξ , t′)∣∣2dξ

] 1
2

dt′
)2

dζdt

≤
∫ T

0

∫ T–t

0

1
ζ 1+2m

(∫ t+ζ

t′=t

(
t + ζ – t′)– 1

2
∥
∥F

(
t′)∥∥

Hs
x(R)dt′

)2

dζdt
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≤
∫ T

0

∫ T–t

0

1
ζ 1+2m

(
sup

t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

)(∫ t+ζ

t

(
t + ζ – t′)– 1

2 dt′
)2

dζdt

=
∫ T

0

∫ T–t

0

1
ζ 1+2m

(
sup

t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

)
4ζdζdt

=
(

sup
t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

)∫ T

0

∫ T–t

0
4ζ –2mdζdt

= 4
(

sup
t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

)(∫ T

0

(
ζ 1–2m

1 – 2m
|T–t
0

)

dt
)

= 4
(

sup
t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

)(∫ T

0

(T – t)1–2m

1 – 2m
dt

)

= 4
(

sup
t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

) T2–2m

(1 – 2m)(2 – 2m)
.

Therefore, we obtain the following inequality:

(F) � 4T2–2m

(1 – 2m)(2 – 2m)

(
sup

t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

)
, ∀x ∈ [0,∞) and for

1
2

< s <
3
2

. (50)

Next, we estimate (E) to obtain the following inequality:

(E) =
∫ T

0

∫ T–t

0

1
ζ 1+2m

∣
∣
∣
∣

∫ t

0

∫

R

(iξ )eiξx · e–ξ2(t–t′)(e–ξ2ζ – 1
)
F̂
(
ξ , t′)dξ dt′

∣
∣
∣
∣

2

dζ dt

≤
∫ T

0

(∫ t

0

∫

R

[∫ T–t

0

1
ζ 1+2m

∣
∣(iξ )eiξx · e–ξ2(t–t′)(e–ξ2ζ – 1

)
F̂
(
ξ , t′)∣∣2dζ

] 1
2

dξdt′
)2

dt

(
by Minkowski’s integral inequality

)

=
∫ T

0

(∫ t

0

∫

R

[∫ T–t

0

1
ζ 1+2m ξ 2e–2ξ2(t–t′)(1 – e–ξ2ζ

)2∣∣̂F
(
ξ , t′)∣∣2dζ

] 1
2

dξdt′
)2

dt

≤
∫ T

0

(∫ t

0

∫

R

|ξ |e–ξ2(t–t′)∣∣̂F
(
ξ , t′)∣∣

(∫ T–t

0

(1 – e–ξ2ζ )2

ζ 1+2m dζ

) 1
2

dξdt′
)2

dt

≤
∫ T

0

(∫ t

0

∫

R

|ξ |e–ξ2(t–t′)∣∣̂F
(
ξ , t′)∣∣

(

ξ 4m
∫ ∞

η=0

(1 – e–η)2

η1+2m dη

) 1
2

dξdt′
)2

dt

	
∫ T

0

(∫ t

0

∫

R

|ξ |e–ξ2(t–t′)∣∣̂F
(
ξ , t′)∣∣ξ 2mdξdt′

)2

dt

=
∫ T

0

(∫ t

0

∫

R

e–ξ2(t–t′)|ξ | 2
3 · |ξ |2m+1– 2

3
∣
∣̂F

(
ξ , t′)∣∣dξdt′

)2

dt

≤
∫ T

0

(∫ t

0

[∫

R

e–2ξ2(t–t′)|ξ | 4
3 dξ

] 1
2
[∫

R

|ξ |4m+ 2
3
∣
∣̂F

(
ξ , t′)∣∣2dξ

] 1
2

dt′
)2

dt

=
∫ T

0

(∫ t

0

√
2
[∫ ∞

0
e–2ξ2(t–t′)ξ

4
3 dξ

] 1
2
[∫

R

|ξ |4m+ 2
3
∣
∣̂F

(
ξ , t′)∣∣2dξ

] 1
2

dt′
)2

dt

=
∫ T

0

(∫ t

0

√
2
[∫ ∞

0
e–2r2

r
4
3
(
t – t′)– 2

3
(
t – t′)– 1

2 dr
] 1

2
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×
[∫

R

(
ξ 2)2m+ 1

3
∣
∣̂F

(
ξ , t′)∣∣2dξ

] 1
2

dt′
)2

dt

(
let r =

√
t – t′ξ .

)

≤
∫ T

0

(∫ t

0

√
2
[∫ ∞

0
r

4
3
(
t – t′)– 7

6 e–2r2
dr

] 1
2

×
[∫ ∞

–∞

(
1 + ξ 2)2m+ 1

3
∣
∣̂F

(
ξ , t′)∣∣2dξ

] 1
2

dt′
)2

dt

≤
∫ T

0

(∫ t

0

√
2
[∫ ∞

0
r

4
3
(
t – t′)– 7

6 e–2r2
dr

] 1
2
[∫ ∞

–∞

(
1 + ξ 2)s∣∣̂F

(
ξ , t′)∣∣2dξ

] 1
2

dt′
)2

dt

=
∫ T

0

(∫ t

0

√
2
(
t – t′)– 7

12

[∫ ∞

0
r

4
3 e–2r2

dr
] 1

2 ∥
∥F

(
t′)∥∥

Hs
x(R)dt′

)2

dt

=
∫ T

0

(∫ t

0

√
2
(
t – t′)– 7

12

(




(
7
6

)) 1
2 ∥
∥F

(
t′)∥∥

Hs
x(R)dt′

)2

dt,

we continue the estimation of the above inequality, and we obtain the following inequality:

(E) �
∫ T

0

(∫ t

0

√
2
(
t – t′)– 7

12

(




(
7
6

)) 1
2 ∥
∥F

(
t′)∥∥

Hs
x(R)dt′

)2

dt

�
∫ T

0

(
sup

t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

)(∫ t

0

(
t – t′)– 7

12 dt′
)2

dt

= sup
t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

∫ T

0

(∫ t

0

(
t – t′)– 7

12 dt′
)2

dt

= sup
t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

(∫ T

0

(
12
5

t
5

12

)2

dt
)

= sup
t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

(∫ T

0

144
25

t
5
6 dt

)

=
864
275

T
11
6 sup

t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R), ∀x ∈ [0,∞) and for

1
2

< s <
3
2

.

Therefore, we obtain the following inequality:

(E) � 864
275

T
11
6 sup

t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R), ∀x ∈ [0,∞) and for

1
2

< s <
3
2

. (51)

By (50) and (51), we derive the following inequality:

∥
∥Wx(x)

∥
∥2

m � 864
275

T
11
6 sup

t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R) +

4T2–2m

(1 – 2m)(2 – 2m)

(
sup

t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R)

)

� T sup
t∈[0,T]

∥
∥F(t)

∥
∥2

Hs
x(R), ∀x ∈ [0,∞) and for

1
2

< s <
3
2

.

Hence, we obtain the inequality (47):

∥
∥Wx(x)

∥
∥

m �
√

T sup
t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R), ∀x ∈ [0,∞). �



Huang and Pan Boundary Value Problems         (2024) 2024:29 Page 28 of 37

Now, we can prove (43) of Theorem 3.3. By Lemma 3.6 and Lemma 3.7, we obtain the
following inequality:

∥
∥Wx(x)

∥
∥

Hm
t (0,T) =

∥
∥Wx(x)

∥
∥

L2
t (0,T) +

∥
∥Wx(x)

∥
∥

m

� 2T
(

sup
t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R)

)
+

√
T sup

t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R)

�
√

T sup
t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R), ∀x ∈ [0,∞).

Therefore, we obtain the inequality (43):

sup
x∈[0,∞)

∥
∥Wx(x)

∥
∥

Hm
t (0,T) �

√
T sup

t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R), ∀x ∈ [0,∞).

Hence, we finish the proof of Theorem 3.3. �
Now, we begin the proof of Theorem 1.4. For 1/2 < s < 3/2, to prove Theorem 1.4, we

need to estimate the equation (35):

S[u0, g0; f ] = S[U0; 0]|x>0 + S[0; F]|x>0 + S[0, G0; 0] + S[0, H0; 0],

to obtain its space and time estimates.
First, we commence the derivation of space estimates for (35). For 1

2 < s < 3
2 and T ∈

(0, 1), we obtain the following two space estimates:

sup
t∈[0,T]

∥
∥S[0, G0; 0](t)

∥
∥

Hs
x(0,∞)

≤ C̃s‖G0‖
H

2s–1
4

t (0,T)
,

(
by Theorem 2.4 and (25)

)

≤ C̃s
(‖g0‖

H
2s–1

4
t (0,T)

+
∥
∥Ux(0, t)

∥
∥

H
2s–1

4
t (0,T)

+
∥
∥Wx(0, t)

∥
∥

H
2s–1

4
t (0,T)

)
,

(
by (40)

)

� ‖g0‖
H

2s–1
4

t (0,T)
+ ‖U0‖Hs

x(R) +
√

T sup
t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R),

(
by (42) and (43)

)

� ‖g0‖
H

2s–1
4

t (0,T)
+ ‖u0‖Hs

x(0,∞) +
√

T sup
t∈[0,T]

∥
∥f (t)

∥
∥

Hs
x(0,∞),

(
by (28) and (31)

)

and

sup
t∈[0,T]

∥
∥S[0, H0; 0](t)

∥
∥

Hs
x(0,∞)

≤ C̃s‖H0‖
H

2s–1
4

t (0,T)
,

(
by Theorem 2.4 and (25)

)

�
∥
∥U(0, t)

∥
∥

H
2s–1

4
t (0,T)

+
∥
∥W (0, t)

∥
∥

H
2s–1

4
t (0,T)

,
(
by (41)

)

≤ ∥
∥U(0, t)

∥
∥

H
2s+1

4
t (0,T)

+
∥
∥W (0, t)

∥
∥

H
2s+1

4
t (0,T)

� ‖U0‖Hs
x(R) +

√
T sup

t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R),

(
by (37) and (39)

)

� ‖u0‖Hs
x(0,∞) +

√
T sup

t∈[0,T]

∥
∥f (t)

∥
∥

Hs
x(0,∞),

(
by (28) and (31)

)
.
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Hence, we obtain the following two space estimates:

sup
t∈[0,T]

∥
∥S[0, G0; 0](t)

∥
∥

Hs
x(0,∞)

� ‖g0‖
H

2s–1
4

t (0,T)
+ ‖u0‖Hs

x(0,∞) +
√

T sup
t∈[0,T]

∥
∥f (t)

∥
∥

Hs
x(0,∞) (52)

and

sup
t∈[0,T]

∥
∥S[0, H0; 0](t)

∥
∥

Hs
x(0,∞) � ‖u0‖Hs

x(0,∞) +
√

T sup
t∈[0,T]

∥
∥f (t)

∥
∥

Hs
x(0,∞). (53)

Now, we estimate ‖S[u0, g0; f ](t)‖Hs
x(0,∞) to obtain the following inequality:

∥
∥S[u0, g0; f ](t)

∥
∥

Hs
x(0,∞)

=
∥
∥S[U0; 0]|x>0 + S[0; F]|x>0 + S[0, G0; 0] + S[0, H0; 0]

∥
∥

Hs
x(0,∞)

≤ ∥
∥S[U0; 0]|x>0

∥
∥

Hs
x(0,∞) +

∥
∥S[0; F]|x>0

∥
∥

Hs
x(0,∞)

+
∥
∥S[0, G0; 0]

∥
∥

Hs
x(0,∞) +

∥
∥S[0, H0; 0]

∥
∥

Hs
x(0,∞)

� ‖U0‖Hs
x(R) + T sup

t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R) + ‖G0‖

H
2s–1

4
t (0,T)

+ ‖H0‖
H

2s–1
4

t (0,T)

(
by (25), (36), and (38)

)

� ‖u0‖Hs
x(0,∞) + ‖g0‖

H
2s–1

4
t (0,T)

+
√

T sup
t∈[0,T]

∥
∥f (t)

∥
∥

Hs
x(0,∞)

(
by (28), (31), (52), and (53)

)
.

Hence, we obtain the following space estimates of (35):

∥
∥S[u0, g0; f ](t)

∥
∥

Hs
x(0,∞) � ‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s–1
4

t (0,T)
+

√
T sup

t∈[0,T]

∥
∥f (t)

∥
∥

Hs
x(0,∞). (54)

Finally, we commence the derivation of time estimates for (35). For 1/2 < s < 3/2 and
T ∈ (0, 1), we estimate ‖S[u0, g0; f ](t)‖Hs

x(0,∞) to obtain the following inequality:

∥
∥S[u0, g0; f ](t)

∥
∥

H
2s+1

4
t (0,T)

=
∥
∥S[U0; 0]|x>0 + S[0; F]|x>0 + S[0, G0; 0] + S[0, H0; 0]

∥
∥

H
2s–1

4
t (0,T)

≤ ∥
∥S[U0; 0]|x>0

∥
∥

H
2s+1

4
t (0,T)

+
∥
∥S[0; F]|x>0

∥
∥

H
2s+1

4
t (0,T)

+
∥
∥S[0, G0; 0]

∥
∥

H
2s+1

4
t (0,T)

+
∥
∥S[0, H0; 0]

∥
∥

H
2s+1

4
t (0,T)

� ‖U0‖Hs
x(R) +

√
T sup

t∈[0,T]

∥
∥F(t)

∥
∥

Hs
x(R) + ‖G0‖

H
2s–1

4
t (0,T)

+ ‖H0‖
H

2s–1
4

t (0,T)

(
by (26), (37), and (39)

)

� ‖u0‖Hs
x(0,∞) + ‖g0‖

H
2s–1

4
t (0,T)

+
√

T sup
t∈[0,T]

∥
∥f (t)

∥
∥

Hs
x(0,∞)
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(
by (28), (31), (52), and (53)

)
.

Hence, we obtain the following time estimates of (35):

∥
∥S[u0, g0; f ](t)

∥
∥

H
2s+1

4
t (0,T)

� ‖u0‖Hs
x(0,∞) + ‖g0‖

H
2s–1

4
t (0,T)

+
√

T sup
t∈[0,T]

∥
∥f (t)

∥
∥

Hs
x(0,∞). (55)

Accoring to (54) and (55), we obtain the inequality (5):

sup
t∈[0,T]

∥
∥u(t)

∥
∥

Hs
x(0,∞) + sup

x∈[0,∞)

∥
∥u(x)

∥
∥

H
2s+1

4
t (0,T)

≤ Cs

(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s–1
4

t (0,T)
+

√
T sup

t∈[0,T]

∥
∥f (t)

∥
∥

Hs
x(0,∞)

)
,

where Cs = C(s) ≥ max{Cs, C̃s} is a constant depending on s. Hence, we have concluded the
proof of Theorem 1.4.

To discuss the local well-posedness of (1), it is essential to consider the following IBVPs:
For 1

2 < s < 3
2 ,

⎧
⎪⎪⎨

⎪⎪⎩

vt – vxx = p(x, t), x ∈ (0,∞), 0 < t < T < 1,

v(x, 0) = v0(x) ∈ Hs
x(0,∞), x ∈ [0,∞),

vx(0, t) – βv(0, t) = h0(t) ∈ H
2s–1

4
t (0, T), 0 ≤ t ≤ T < 1,β ≥ 1.

(56)

Since the estimation processes of (3) and (56) are similar, we can also obtain the follow-
ing result:

sup
t∈[0,T]

∥
∥v(t)

∥
∥

Hs
x(0,∞) + sup

x∈[0,∞)

∥
∥v(x)

∥
∥

H
2s+1

4
t (0,T)

(57)

≤ d̃s

(
‖v0‖Hs

x(0,∞) + ‖h0‖
H

2s–1
4

t (0,T)
+

√
T sup

t∈[0,T]

∥
∥p(t)

∥
∥

Hs
x(0,∞)

)
,

where d̃s > 0 is a constant depending on s.
In the upcoming section, we will establish the proof for Theorem 1.5. Inequalities (5)

and (57) play a crucial role in the proof of Theorem 1.5.

4 The local well-posedness of the coupled system of the reaction–diffusion
equations (the proof of Theorem 1.5)

In this section, we define the iteration map. Subsequently, in Lemma 4.1 and Lemma 4.2,
we prove that the iteration map is a contraction and onto a closed ball. We then utilize the
contraction mapping theorem to establish the uniqueness of the solution. In the following
Lemma 4.3, we prove that the data-to-solution is locally Lipschitz continuous. Therefore,
we can use Lemma 4.1, Lemma 4.2, and Lemma 4.3 to complete the proof of Theorem 1.5.

Now, we define the iteration map:

(u, v) 
−→ �T∗ × �T∗ (u, v) .=
(
�T∗ (u, v),�T∗ (u, v)

)
,

which is obtained from the UTM solution formulas:

u(x, t) .= S[u0, g0; f ](x, t)
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=
1

2π

∫

R

eikx–k2tû0(k) dk –
1

2π

∫

∂D+
eikx–k2t α + ik

α – ik
û0(–k)) dk

–
1

2π

∫

∂D+
eikx–k2t –2ik

α – ik

(∫ t

0
ek2yg0(y) dy

)

dk

–
1

2π

∫

∂D+
eikx–k2t α + ik

α – ik

(∫ t

0
ek2 ŷf (–k, y) dy

)

dk

+
1

2π

∫ ∞

–∞
eikx–k2t

(∫ t

0
ek2 ŷf (k, y) dy

)

dk

and

v(x, t) .= S[v0, h0; p](x, t)

=
1

2π

∫

R

eikx–k2t v̂0(k) dk –
1

2π

∫

∂D+
eikx–k2t β + ik

β – ik
v̂0(–k)) dk

–
1

2π

∫

∂D+
eikx–k2t –2ik

β – ik

(∫ t

0
ek2yh0(y) dy

)

dk

–
1

2π

∫

∂D+
eikx–k2t β + ik

β – ik

(∫ t

0
ek2 ŷp(–k, y) dy

)

dk

+
1

2π

∫ ∞

–∞
eikx–k2t

(∫ t

0
ek2 ŷp(k, y) dy

)

dk.

More precisely, we have

�T∗ (u, v) .= S
[
u0, g0; –u2 – cuv

]
,

�T∗ (u, v) .= S
[
v0, h0; –v2 – duv

]
,

i.e., the iteration map

E(u, v) = �T∗ × �T∗ (u, v) .=
(
S
[
u0, g0; –u2 – cuv

]
, S

[
v0, h0; –v2 – duv

])
. (58)

We will demonstrate that our iteration map (58) is a contraction in the complete metric
space

X = X × X, where X = C
([

0, T∗]; Hs
x(0,∞)

) ∩ C
(
[0,∞); H

2s+1
4

t
(
0, T∗)), (59)

with the norm

∥
∥(u, v)

∥
∥
X

= sup
t∈[0,T∗]

∥
∥u(t)

∥
∥

Hs
x(0,∞) + sup

x∈[0,∞)

∥
∥u(x)

∥
∥

H
2s+1

4
t (0,T∗)

+ sup
t∈[0,T∗]

∥
∥v(t)

∥
∥

Hs
x(0,∞) + sup

x∈[0,∞)

∥
∥v(x)

∥
∥

H
2s+1

4
t (0,T∗)

.

Next, we consider a closed ball B(0, r) = {(u, v) ∈ X : ‖(u, v)‖X ≤ r}, where C∗
s =

max{Cs, d̃s} and r = 2C∗
s ‖(u0, v0, g0, h0)‖D. In the following lemma, we determine the con-

straint on T∗ such that E is onto B(0, r).
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Lemma 4.1 For C∗
s = max{Cs, d̃s} and r = 2C∗

s ‖(u0, v0, g0, h0)‖D. The iteration map E(u, v)
is onto B(0, r), when the following condition on T∗ holds:

0 < T∗ ≤ min

{

T ,
1

42(C∗
s )4(2 + |c| + |d|)2‖(u0, v0, g0, h0)‖2

D

}

. (60)

Proof For (u, v) ∈ B(0, r), we obtain the following inequality,

∥
∥E(u, v)

∥
∥
X

=
∥
∥
(
S
[
u0, g0; –u2 – cuv

]
, S

[
v0, h0; –v2 – duv

])∥
∥
X

= sup
t∈[0,T∗]

∥
∥S

[
u0, g0; –u2 – cuv

]
(t)

∥
∥

Hs
x(0,∞) + sup

x∈[0,∞)

∥
∥S

[
u0, g0; –u2 – cuv

]
(x)

∥
∥

H
2s+1

4
t (0,T∗)

+ sup
t∈[0,T∗]

∥
∥S

[
v0, h0; –v2 – duv

]
(t)

∥
∥

Hs
x(0,∞)

+ sup
x∈[0,∞)

∥
∥S

[
v0, h0; –v2 – duv

]
(x)

∥
∥

H
2s+1

4
t (0,T∗)

≤ Cs

(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s–1
4

t (0,T∗)
+

√
T∗ sup

t∈[0,T∗]

∥
∥u2 + cuv

∥
∥

Hs
x(0,∞)

)

+ d̃s

(
‖v0‖Hs

x(0,∞) + ‖h0‖
H

2s–1
4

t (0,T∗)
+

√
T∗ sup

t∈[0,T∗]

∥
∥v2 + duv

∥
∥

Hs
x(0,∞)

)
,

(
by (5) and (57)

)

≤ C∗
s

(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s–1
4

t (0,T∗)
+

√
T∗ sup

t∈[0,T∗]

∥
∥u2 + cuv

∥
∥

Hs
x(0,∞)

)

+ C∗
s

(
‖v0‖Hs

x(0,∞) + ‖h0‖
H

2s–1
4

t (0,T∗)
+

√
T∗ sup

t∈[0,T∗]

∥
∥v2 + duv

∥
∥

Hs
x(0,∞)

)

≤ r
2

+ C∗
s
√

T∗
(

sup
t∈[0,T∗]

‖u‖2
Hs

x(0,∞) + |c| sup
t∈[0,T∗]

‖u‖Hs
x(0,∞)‖v‖Hs

x(0,∞)

)

+ C∗
s
√

T∗
(

sup
t∈[0,T∗]

‖v‖2
Hs

x(0,∞) + |d| sup
t∈[0,T∗]

‖u‖Hs
x(0,∞)‖v‖Hs

x(0,∞)

)

(
by the algebra property for Hs(R) with s > 1/2

)

≤ r
2

+ C∗
s
√

T∗(2 + |c| + |d|)r2.

Hence, we obtain the inequality

∥
∥E(u, v)

∥
∥
X

≤ r
2

+ C∗
s
√

T∗(2 + |c| + |d|)r2.

Now, we want to choose T∗ such that

r
2

+ C∗
s
√

T∗(2 + |c| + |d|)r2 ≤ r

holds, i.e., the condition

0 < T∗ ≤ min

{

T ,
1

42(C∗
s )4(2 + |c| + |d|)2‖(u0, v0, g0, h0)‖2

D

}

is satisfied. Hence, we obtain that E is onto B(0, r) when T∗ satisfies (60). �
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Next, we determine the constraint on T∗ such that E is a contraction on B(0, r), for
C∗

s = max{Cs, d̃s} and r = 2C∗
s ‖(u0, v0, g0, h0)‖D, and it is stated in the following lemma.

Lemma 4.2 For C∗
s = max{Cs, d̃s} and r = 2C∗

s ‖(u0, v0, g0, h0)‖D. The iteration map E(u, v)
is a contraction on B(0, r), when the following condition on T∗ holds:

0 < T∗ ≤ min

{

T ,
1

82(C∗
s )4(2 + |c| + |d|)2‖(u0, v0, g0, h0)‖2

D

}

. (61)

Proof For (u1, v1), (u2, v2) ∈ B(0, r), we obtain the following inequality:

∥
∥E(u1, v1) – E(u2, v2)

∥
∥
X

=
∥
∥
(
S
[
0, 0; –u2

1 + u2
2 – cu1v1 + cu2v2

]
, S

[
0, 0; –v2

1 + v2
2 – du1v1 + du2v2

])∥
∥
X

= sup
t∈[0,T∗]

∥
∥S

[
0, 0; –u2

1 + u2
2 – cu1v1 + cu2v2

]
(t)

∥
∥

Hs
x(0,∞)

+ sup
x∈[0,∞)

∥
∥S

[
0, 0; –u2

1 + u2
2 – cu1v1 + cu2v2

]
(x)

∥
∥

H
2s+1

4
t (0,T∗)

+ sup
t∈[0,T∗]

∥
∥S

[
0, 0; –v2

1 + v2
2 – du1v1 + du2v2

]
(t)

∥
∥

Hs
x(0,∞)

+ sup
x∈[0,∞)

∥
∥S

[
0, 0; –v2

1 + v2
2 – du1v1 + du2v2

]
(x)

∥
∥

H
2s+1

4
t (0,T∗)

≤ Cs
√

T∗ sup
t∈[0,T∗]

∥
∥–u2

1 + u2
2 – cu1v1 + cu2v2

∥
∥

Hs
x(0,∞)

+ d̃s
√

T∗ sup
t∈[0,T∗]

∥
∥–v2

1 + v2
2 – du1v1 + du2v2

∥
∥

Hs
x(0,∞),

(
by (5) and (57)

)

≤ C∗
s
√

T∗
(

sup
t∈[0,T∗]

∥
∥(u1 – u2)(u1 + u2)

∥
∥

Hs
x(0,∞) + |c| sup

t∈[0,T∗]

∥
∥(u1 – u2)v1

∥
∥

Hs
x(0,∞)

+ |c| sup
t∈[0,T∗]

∥
∥u2(v1 – v2)

∥
∥

Hs
x(0,∞) + sup

t∈[0,T∗]

∥
∥(v1 – v2)(v1 + v2)

∥
∥

Hs
x(0,∞)

+ |d| sup
t∈[0,T∗]

∥
∥(u1 – u2)v1

∥
∥

Hs
x(0,∞) + |d| sup

t∈[0,T∗]

∥
∥u2(v1 – v2)

∥
∥

Hs
x(0,∞)

)

≤ 2C∗
s
√

T∗(2 + |c| + |d|)r
∥
∥(u1 – u2, v1 – v2)

∥
∥
X

.

Therefore, we aim for E to be a contraction, which requires the fulfillment of the condi-
tion

2C∗
s
√

T∗(2 + |c| + |d|)r ≤ 1
2

,

i.e., the condition

0 < T∗ ≤ min

{

T ,
1

82(C∗
s )4(2 + |c| + |d|)2‖(u0, v0, g0, h0)‖2

D

}

is satisfied. Hence, we obtain E is a contraction on B(0, r) when T∗ satisfies (61). �
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Now, if we choose the lifespan

T∗ = min

{

T ,
1

82(C∗
s )4(2 + |c| + |d|)2‖(u0, v0, g0, h0)‖2

D

}

, (62)

then T∗ satisfies (60) and (61). Thus, the iteration map is a contraction and onto B(0, r).
Hence, (u, v) = E(u, v) has a unique solution (u, v) ∈ B(0, r) ⊂X.

Next, we will show the data-to-solution map (u0, v0, g0, h0) 
−→ (u, v) is locally Lipschitz
continuous.

Let (u0, v0, g0, h0) and (U0,V0,G0,H0) be two different data lying inside a ball Bρ ⊂ D of
radius ρ > 0 centered at a distance R from the origin, where

D = Hs
x(0,∞) × Hs

x(0,∞) × H
2s–1

4
t (0, T) × H

2s–1
4

t (0, T),

with the norm defined by (6).
Furthermore, we denote the corresponding solutions to the reaction–diffusion system

IBVP (1) by

(u, v) =
(
S
[
u0, g0; –u2 – cuv

]
, S

[
v0, h0; –v2 – duv

])
.

Then, by the contraction condition (62), we observe that the lifespan

Tη = min

{

T ,
1

82(C∗
s )4(2 + |c| + |d|)2(R + ρ)2

}

is common, and we have that both solutions (u, v) and (U ,V) exist for any 0 < t ≤ Tη .
Additionally, we denote Xη as the solution space X (59) with T∗ = Tη .

In the following lemma, we prove the data-to-solution map (u0, v0, g0, h0) 
−→ (u, v) is
locally Lipschitz continuous.

Lemma 4.3 Given C∗
s = max{Cs, d̃s} and rη = 1/(4C∗

s (2 + |c| + |d|)T1/2
η ). For any (u, v),

(U ,V) ∈ B(0, rη) ⊂ Xη with data in the ball Bρ , then we obtain the following inequality:

∥
∥(u, v) – (U ,V)

∥
∥
Xη

≤ 2C∗
s
∥
∥(u0, v0, g0, h0) – (U0,V0,G0,H0)

∥
∥

D. (63)

Hence, the data-to-solution map (u0, v0, g0, h0) 
−→ (u, v) is locally Lipschitz continuous.

Proof For any (u, v), (U ,V) ∈ B(0, rη) ⊂ Xη with data in the ball Bρ , then we obtain the
following inequality:

∥
∥(u, v) – (U ,V)

∥
∥
Xη

=
∥
∥E(u, v) – E(U ,V)

∥
∥
Xη

=
∥
∥
(
S
[
u0 – U0, g0 – G0; –u2 + U2 – cuv + cUV

]
,

S
[
v0 – V0, h0 – H0; –v2 + V2 – duv + dUV

])∥
∥
Xη

= sup
t∈[0,Tη]

∥
∥S

[
u0 – U0, g0 – G0; –u2 + U2 – cuv + cUV

]
(t)

∥
∥

Hs
x(0,∞)
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+ sup
x∈[0,∞)

∥
∥S

[
u0 – U0, g0 – G0; –u2 + U2 – cuv + cUV

]
(x)

∥
∥

H
2s+1

4
t (0,Tη)

+ sup
t∈[0,Tη]

∥
∥S

[
v0 – V0, h0 – H0; –v2 + V2 – duv + dUV

]
(t)

∥
∥

Hs
x(0,∞)

+ sup
x∈[0,∞)

∥
∥S

[
v0 – V0, h0 – H0; –v2 + V2 – duv + dUV

]
(x)

∥
∥

H
2s+1

4
t (0,Tη)

≤ Cs

(
‖u0 – U0‖Hs

x(0,∞) + ‖g0 – G0‖
H

2s–1
4

t (0,Tη)

+
√

Tη sup
t∈[0,Tη]

∥
∥–u2 + U2 – cuv + cUV

∥
∥

Hs
x(0,∞)

)

+ d̃s

(
‖v0 – V0‖Hs

x(0,∞) + ‖h0 – H0‖
H

2s–1
4

t (0,Tη)

+
√

Tη sup
t∈[0,Tη]

∥
∥–v2 + V2 – duv + dUV

∥
∥

Hs
x(0,∞)

)

(
by (5) and (57)

)

≤ C∗
s
∥
∥(u0, v0, g0, h0) – (U0,V0,G0,H0)

∥
∥

D

+ C∗
s
√

Tη

(
sup

t∈[0,Tη]

∥
∥(u – U )(u + U )

∥
∥

Hs
x(0,∞) + |c| sup

t∈[0,Tη]

∥
∥(u – U )v

∥
∥

Hs
x(0,∞)

+ |c| sup
t∈[0,Tη]

∥
∥U (v – V)

∥
∥

Hs
x(0,∞)

)

+ C∗
s
√

Tη

(
sup

t∈[0,Tη]

∥
∥(v – V)(v + V)

∥
∥

Hs
x(0,∞) + |d| sup

t∈[0,Tη]

∥
∥(u – U )v

∥
∥

Hs
x(0,∞)

+ |d| sup
t∈[0,Tη]

∥
∥U (v – V)

∥
∥

Hs
x(0,∞)

)

≤ C∗
s
∥
∥(u0, v0, g0, h0) – (U0,V0,G0,H0)

∥
∥

D

+ C∗
s
√

Tη

(
4 + 2|c| + 2|d|)rη

∥
∥(u, v) – (U ,V)

∥
∥
Xη

.

Therefore, we obtain the following inequality:

∥
∥(u, v) – (U ,V)

∥
∥
Xη

≤ C∗
s

1 – 2C∗
s (2 + |c| + |d|)√Tηrη

∥
∥(u0, v0, g0, h0) – (U0,V0,G0,H0)

∥
∥

D.

Hence, when we set

rη =
1

4C∗
s (2 + |c| + |d|)√Tη

,

then the following two inequalities

1
1 – 2C∗

s (2 + |c| + |d|)√Tηrη

≤ 2 and 1 – 2C∗
s
(
2 + |c| + |d|)√Tηrη > 0

hold. Therefore, we establish (63), which implies that the data-to-solution map is locally
Lipschitz continuous. This completes the proof of Lemma 4.3. �
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Now, we can prove Theorem 1.5. We set the lifespan

T∗ = min

{

T ,
1

82(C∗
s )4(2 + |c| + |d|)2‖(u0, v0, g0, h0)‖2

D

}

,

and then, by employing Lemma 4.1 to Lemma 4.3, we can complete the proof of Theo-
rem 1.5.
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