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Abstract
This paper focuses on the long time behavior of the solutions to the Cauchy problem
of the three-dimensional compressible magneto-micropolar fluids. More precisely, we
aim to establish the optimal rates of temporal decay for the highest-order spatial
derivatives of the global strong solutions by the method of decomposing frequency.
Our result can be regarded as the further investigation of the one in (Wei, Guo and Li
in J. Differ. Equ. 263:2457–2480, 2017), in which the authors only provided the optimal
rates of temporal decay for the lower-order spatial derivatives of the perturbations of
both the velocity and the micro-rotational velocity.
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1 Introduction
The three-dimensional (3D) motion of compressible magneto-micropolar fluids can be
described as the following system [19]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u) + ∇P(ρ)

= (μ + ν)�u + (μ + λ – ν)∇ div u + 2ν∇ × ω + (∇ × B) × B,

(ρω)t + ∇ · (ρu ⊗ ω) + 4νω = μ′�ω + (μ′ + λ′)∇ divω + 2ν∇ × u,

Bt – ∇ × (u × B) = –∇ × (σ∇ × B),

∇ · B = 0.

(1.1)

Here the unknowns ρ(x, t) > 0, u(x, t), ω(x, t), and B(x, t) mean the density, the velocity,
the micro-rotational velocity, and the magnetic field, respectively. The pressure P(ρ) is
a smooth and strictly increasing scalar function. The positive constant ν is the so-called
dynamics micro-rotation viscosity. Both the shear and bulk viscosity coefficients of fluids
are represented by the parameters μ and λ satisfying that μ > 0 and 2μ + 3λ – 4ν ≥ 0.
Besides, the angular viscosity coefficients μ′ and λ′ fulfill the conditions μ′ > 0 and 2μ′ +
3λ′ ≥ 0. The magnetic diffusivity coefficient is denoted by σ .
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While the magnetic field is absent, i.e., B = 0, (1.1) reduces to the micropolar system.
Huang, Kong, and Lian [9, 10] obtained the exponential stability of the generalized spher-
ically symmetric solutions. For the Cauchy problem of the 3D compressible viscous mi-
cropolar system, Liu and Zhang [13] derived the optimal rates of decay-in-time of the
global strong solutions with the smallness of initial perturbation in HN (R3) ∩ L1(R3) with
N ≥ 4. Furthermore, Tong, Pan, and Tan [18] used the method of spectrum analyzing to
establish both the lower and upper decay-in-time rates for the solutions, which explic-
itly shows that the obtained convergence rates are optimal. Recently, Qin and Zhang [16]
investigated the optimal decay rates for higher-order derivatives of solutions of the 3D
compressible micropolar fluids system. In particular, the authors showed that the highest-
order spatial derivatives of both the perturbation density and the perturbation velocity
converge to zero with the decay rate (1 + t)–( 3

4 + N
2 ) for the L2(R3)-norm.

Due to the strong nonlinearity and interactions among the physical quantities, it be-
comes more difficult to analyze the compressible magneto-micropolar system, i.e., B �= 0
in system (1.1). Amirat and Hamdache [1] extended the results in [5, 12] by establishing
the global existence of weak solutions with finite energy for multi-dimensional compress-
ible magneto-micropolar equations. The blow-up criterion of strong solutions to system
(1.1) with initial vacuum can be referred to [22]. By employing Lp–Lq estimates for the lin-
earized equations and the Fourier splitting method, Wei, Guo, and Li [19] first obtained
the global-in-time existence and optimal temporal decay rates of the strong solutions to
the Cauchy problem of system (1.1), in which the results can be read as follows: Supposing
the initial data (ρ0, u0,ω0, B0) ∈ HN (R3) ∩ L1(R3) satisfy

(ρ, u,ω, B)|t=0 = (ρ0, u0,ω, B0)(x, t) → (ρ̄, 0, 0, 0) as |x| → ∞ (1.2)

and

∥
∥(ρ0 – ρ̄, u0,ω0, B0)

∥
∥

HN (R3) ≤ δ,

where the integer N ≥ 3 and δ is small enough, then Cauchy problem (1.1)–(1.2) admits
unique global-in-time strong solutions such that

∥
∥∇ l(ρ – ρ̄, u)(t)

∥
∥

HN–l(R3) ≤ C(1 + t)– 3+2l
4 , (1.3)

∥
∥∇ lω(t)

∥
∥

HN–l(R3) ≤ C(1 + t)– 3+2(l+1)
4 , (1.4)

∥
∥∇kB(t)

∥
∥

HN–k (R3) ≤ C(1 + t)– 3+2k
4 (1.5)

for l = 0, 1, . . . , N – 1 and k = 0, 1, . . . , N . Without the L1-integrability of the initial data, Jia,
Tan, and Zhou [11] recently derived the temporal decay estimates of the solution in the
homogeneous Sobolev and Besov spaces. For other mathematical issues of system (1.1),
the interested readers can refer to [2, 4, 6, 7, 9, 10, 17, 20–24].

However, there is no available result about the long time behavior of the highest-order
spatial derivatives of the perturbation (ρ – ρ̄, u,ω). In this paper, inspired by the new
method of decomposing the frequency in [15], we establish the optimal temporal decay
rates of the highest-order (i.e., N th order) spatial derivatives of the global strong solution
for the Cauchy problem (1.1)–(1.2).
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Notation Before stating the main results, we shall introduce some basic notations used
frequently in the sequel. The norm of Sobolev space Hk(R3) is denoted by ‖ · ‖Hk . We
use 〈f , g〉 to denote the L2-inner product between the functions f and g . Lp represents the
usual Lebesgue space Lp(R3) with the norm ‖ · ‖Lp , where 1 ≤ p ≤ ∞. Enabling the cut-off
function φ ∈ C∞

0 (R3
ξ ) to satisfy φ(ξ ) = 1 when |ξ | ≤ 1 and φ(ξ ) = 0 when |ξ | ≥ 2, we define

both the low-frequency and the high-frequency parts of f as follows:

f l = F
–1[φ(ξ )̂f )

]
and f h = F

–1[(1 – φ(ξ )
)
f̂
]
,

where F(f ) or f̂ denotes the Fourier transform of f , and F–1 is its inverse. The notation
f � g signifies that f ≤ Cg with C > 0 being a common constant that may vary from one
line to another. f ≈ g means that f � g and g � f . For simplicity, we denote ‖A‖X + ‖B‖X

by ‖(A, B)‖X .
Now we are in a position to state our main theorem.

Theorem 1.1 Suppose (ρ0 – ρ̄, u0,ω0, B0) ∈ HN (R3) with any given integer N ≥ 3. There
exists a constant δ > 0 such that if

∥
∥(ρ0 – ρ̄, u0,ω0, B0)

∥
∥

HN ≤ δ,

then Cauchy problem (1.1)–(1.2) admits a unique global-in-time solution (ρ, u,ω, B) satis-
fying

∥
∥(ρ – ρ̄, u,ω, B)(t)

∥
∥2

HN +
∫ t

0

(∥
∥∇ρ(τ )

∥
∥2

HN–1 +
∥
∥∇(u,ω, B)(τ )

∥
∥2

HN
)

dτ

�
∥
∥(ρ0 – ρ̄, u0, ω0, B0)

∥
∥2

HN . (1.6)

Moreover, if (ρ0 – ρ̄, u0,ω0, B0) ∈ L1(R3), then the following temporal decay estimates hold:

∥
∥∇N (ρ – ρ̄, u, B)(t)

∥
∥

L2 � (1 + t)–( 3
4 + N

2 ) (1.7)

and

∥
∥∇N (ρ – ρ̄)h, uh, Bh)(t)

∥
∥

L2 +
∥
∥∇Nω(t)

∥
∥

L2 � (1 + t)–( 5
4 + N

2 ). (1.8)

Remark 1.1 The temporal decay rate in (1.7) is optimal in the sense that it is the same as
the one of linear solutions shown in Lemma 2.1. In addition, the estimate (1.8) implies that
the L2-norms of any N th order derivatives of the micro-rotational velocity approach zero
along with a rate of decay-in-time (1 + t)( 5

4 + N
2 ). This convergence rate is quicker than the

ones of both the density and the velocity.

Since the global-in-time existence and the a priori energy estimate (1.6) of the solution
have been proved in [19], it suffices to establish both the temporal decay estimates (1.7) and
(1.8). The remarkable thing is that, thanks to the formula (A.10), the high-frequency parts
of solutions exhibit exponential decay-in-time by using an energy method, see the proof
of Lemma 2.5. However, such property can not be expected for the lower frequency com-
ponents. Therefore, we will first derive the decay-in-time estimates of the low-frequency
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parts in Sect. 2.1, and then the decay estimates of the high-frequency parts in Sect. 2.2.
Based to the decay estimates as mentioned earlier and the formula (A.8), we further ar-
rive at (1.7) (see (2.61) for the detailed derivation). Finally, we derive the faster decay-in-
time (1.8) for the high-frequency parts and the micro-rotational velocity by a finer energy
method in Sect. 3.

2 Decay-in-time of highest-order spatial derivatives
This section is served to establish the optimal temporal decay rate for the N th order spa-
tial derivatives of the solution (ρ, u, B) to Cauchy problem (1.1)–(1.2). Making use of the
formulas

(curlB) × B = (B · ∇)B –
1
2
∇(|B|2),

�B = ∇ div B – curlcurlB,

curl(u × B) = (B · ∇)u – (u · ∇)B + u div B – B div u,

and then letting n = ρ – 1, we can rewrite system (1.1)–(1.2) into the perturbation form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nt + div u = S1,

ut + γ∇n – (μ + ν)�u – (μ + λ – ν)∇ div u – 2ν∇ × ω = S2,

ωt + 4νω – μ′�ω – (μ′ + λ′)∇ divω – 2ν∇ × u = S3,

Bt – σ�B = S4,

∇ · B = 0

(n, u,ω, B)(x, 0) = (n0, u0,ω0, B0)(x, 0) → (0, 0, 0) as |x| → ∞.

(2.1)

Here the positive constant γ = P′(1), and the nonhomogeneous source terms Si (i = 1, 2,
3, 4) are defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 = –n div u – u · ∇n,

S2 = –u · ∇u – f (n)[(μ + ν)�u + (μ + λ – ν)∇ div u + 2ν∇ × ω] – h(n)∇n

+g(n)[B · ∇B – 1
2∇(|B|2)],

S3 = –u · ∇ω – f (n)[μ′�ω + (μ′ + λ′)∇ divω – 4νω + 2ν∇ × u],

S4 = (B · ∇)u – (u · ∇)B – B(div u)

(2.2)

with the nonlinear functions

f (n) =
n

n + 1
, h(n) =

P′(n + 1)
n + 1

– P′(1), and g(n) =
1

n + 1
.

By the a priori assumption

∥
∥(n, u,ω, B)(t)

∥
∥

H3 ≤ δ (2.3)

with some sufficiently small constant δ and Sobolev’s inequality of H2 ↪→ L∞, we obtain

1
2

≤ n + 1 ≤ 3
2

.
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This implies that

∣
∣f (n)

∣
∣,

∣
∣h(n)

∣
∣ � |n|, (2.4)

and for any given k ≥ 1 and l ≥ 0,

∣
∣f (k)(n)

∣
∣,

∣
∣h(k)(n)

∣
∣,

∣
∣g(l)(n)

∣
∣� 1. (2.5)

Define an increasing energy functional

M(t) = sup
0≤τ≤t

(1 + τ )
3+2N

2
∥
∥∇N (n, u,ω, B)

∥
∥2

L2 . (2.6)

Then the following proposition leads us to estimate (1.7) in Theorem 1.1.

Proposition 2.1 Under the assumptions in Theorem 1.1, it holds that

M(t) � C0 + ‖U0‖2
L1 , (2.7)

where U0 = (n0, u0,ω0, B0).

Afterwards, our dedication turns towards demonstrating the validity of Proposition 2.1.

2.1 Decay estimates on the low-frequency part
Before establishing the temporal decay estimates on the low-frequency part of the solu-
tions (n, u,ω, B), we shall recall some decay results for the linearized system of (2.1).

Lemma 2.1 ([19]) Let Ũ = (̃n, ũ, ω̃, B̃) be the global solution to the Cauchy problem of the
linearized system of (2.1). Then the following time decay properties hold for any integer
m ≥ 0:

∥
∥∇m (̃n, ũ, B̃)

∥
∥

Lq � (1 + t)– 3
2 ( 1

p – 1
q )– m

2
∥
∥(̃n0, ũ0, B̃0)

∥
∥

Lp (2.8)

and

∥
∥∇mω̃

∥
∥

Lq � (1 + t)– 3
2 ( 1

p – 1
q )– m+1

2
∥
∥(̃u0, ω̃0)

∥
∥

Lp , (2.9)

where 1 ≤ p ≤ 2 ≤ q ≤ ∞.

Based on Lemma 2.1, we now present the time decay rate of the L2-norm for the low-
frequency part of the N th order derivatives of the solution to the nonlinear system (2.1)
as follows.

Lemma 2.2 Under the assumptions in Theorem 1.1, the solution U := (n, u,ω, B) to the
Cauchy problem of nonlinear system (2.1) satisfies the following decay estimate:

∥
∥∇N(

nl, ul,ωl, Bl)∥∥
L2 �

(‖U0‖L1 + δ
√

M(t)
)
(1 + t)–( 3

4 + N
2 ). (2.10)
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Proof From Lemma 2.1, Duhamel’s principle, Plancherel’s theorem, and Hausdorff–
Young’s inequality, it holds that

∥
∥∇N(

nl, ul,ωl, Bl)∥∥
L2 � (1 + t)–( 3

4 + N
2 )‖U0‖L1 +

∫ t
2

0
(1 + t – τ )–( 3

4 + N
2 )∥∥S(τ )

∥
∥

L1 dτ

+
∫ t

t
2

(1 + t – τ )– 5
4
∥
∥∇N–1Sl(τ )

∥
∥

L1 dτ , (2.11)

where S = (S1, S2, S3, S4)T . By the method of decomposing the frequency, the last two terms
on the right-hand side of (2.11) can be treated as follows. With the help of estimates
(1.3)–(1.5), (2.4), (2.5), Lemmas A.1–A.2, and Lemma A.4, we can deduce that

∥
∥S(τ )

∥
∥

L1 �
∥
∥div(nu)(τ )

∥
∥

L1 +
∥
∥u · ∇u(τ )

∥
∥

L1 +
∥
∥f (n)[2ν∇ × ω](τ )

∥
∥

L1 +
∥
∥u · ∇ω(τ )

∥
∥

L1

+
∥
∥f (n)

[
(μ + ν)�u + (μ + λ – ν)∇ div u

]
(τ )

∥
∥

L1 +
∥
∥f (n)ω(τ )

∥
∥

L1

+
∥
∥f (n)

[
μ′�ω +

(
μ′ + λ′)∇ divω

]
(τ )

∥
∥

L1 +
∥
∥f (n)[∇ × u]

∥
∥

L1 +
∥
∥h(n)∇n

∥
∥

L1

+
∥
∥(B · ∇)u(τ )

∥
∥

L1 +
∥
∥(u · ∇)B(τ )

∥
∥

L1 +
∥
∥B(div u)(τ )

∥
∥

L1

+
∥
∥g(n)

[
B · ∇B – ∇(|B|2)/2

]∥
∥

L1

�
∥
∥(n, u, B)(τ )

∥
∥

L2

∥
∥∇(n, u,ω, B)(τ )

∥
∥

L2 +
∥
∥n(τ )

∥
∥

L2

∥
∥�(u,ω)(τ )

∥
∥

L2

+
∥
∥n(τ )

∥
∥

L2

∥
∥ω(τ )

∥
∥

L2

� (1 + τ )–2. (2.12)

Similarly, using estimates (1.3)–(1.5) and definition (2.6) of M(t), we get

∥
∥∇N–1Sl(τ )

∥
∥

L1

�
∥
∥∇N–1 div(nu)(τ )

∥
∥

L1 +
∥
∥∇N–1(u · ∇u)(τ )

∥
∥

L1 +
∥
∥∇N–1[f (n)(2ν∇ × ω)

]
(τ )

∥
∥

L1

+
∥
∥∇N–2{f (n)

[
(μ + ν)�u + (μ + λ – ν)∇ div u

]}
(τ )

∥
∥

L1 +
∥
∥∇N–1[(B · ∇)u

]
(τ )

∥
∥

L1

+
∥
∥∇N–1(u · ∇ω)(τ )

∥
∥

L1 +
∥
∥∇N–1{f (n)

[
μ′�ω +

(
μ′ + λ′)∇ divω

]}
(τ )

∥
∥

L1

+
∥
∥∇N–1f (n)(4νω)(τ )

∥
∥

L1 +
∥
∥∇N–1[f (n)(2ν∇ × u)

]∥
∥

L1 +
∥
∥∇N–1[(u · ∇)B(τ )

]∥
∥

L1

+
∥
∥
∥
∥∇N–1

{

g(n)
[

B · ∇B –
1
2
∇(|B|2)

]}

(τ )
∥
∥
∥
∥

L1
+

∥
∥∇N–1[B(div u)

]
(τ )

∥
∥

L1

+
∥
∥∇N–1[h(n)∇n

]
(τ )

∥
∥

L1

�
∥
∥(n, u, B)(τ )

∥
∥

L2

∥
∥∇N (n, u,ω, B)(τ )

∥
∥

L2 +
∥
∥∇N–1(n, u, B)(τ )

∥
∥

L2

∥
∥∇(n, u,ω, B)(τ )

∥
∥

L2

+
∥
∥∇N–2n(τ )

∥
∥

L2

∥
∥∇2(u,ω)(τ )

∥
∥

L2 +
∥
∥n(τ )

∥
∥

L2

∥
∥∇N–2ω(τ )

∥
∥

L2

+
∥
∥ω(τ )

∥
∥

L2

∥
∥∇N–2n(τ )

∥
∥

L2

� δ(1 + τ )– 3
4 – N

2
√

M(τ ) + (1 + τ )–1– N
2 . (2.13)

Inserting (2.12) and (2.13) into (2.11) gives estimate (2.10). �



Cui et al. Boundary Value Problems         (2024) 2024:33 Page 7 of 25

2.2 Decay estimates on the high-frequency part
To prove Proposition 2.1, we also need to establish the temporal decay estimates on the
higher-frequency parts of the highest-order derivatives of the global solutions. The fol-
lowing lemma first provides the energy dissipation for ∇N+1(uh,ωh, Bh).

Lemma 2.3 With the assumptions in Theorem 1.1, it holds that

1
2

d
dt

(
γ
∥
∥∇N nh∥∥2

L2 +
∥
∥∇N uh∥∥2

L2 +
∥
∥∇Nωh∥∥2

L2 +
∥
∥∇N Bh∥∥2

L2
)

+ (2μ + λ – ν)
∥
∥∇N+1uh∥∥2

L2 + (2μ′ + λ′∥∥∇N+1ωh∥∥2
L2 + σ

∥
∥∇N+1Bh∥∥2

L2

� δ
∥
∥
(∇N n,∇N u,∇N+1ω,∇N+1u,∇N+1B

)∥
∥2

L2 . (2.14)

Proof Performing the operator F–1[(1 – φ(ξ ))F(·)] onto system (2.1) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tnh + div uh = Sh
1 ,

∂tuh + γ∇nh – (μ + υ)�uh – (μ + λ – υ)∇ div uh – 2υ∇ × ωh = Sh
2 ,

∂tω
h + 4υωh – μ′�ωh – (μ′ + λ′)∇ divωh – 2ν∇ × uh = Sh

3 ,

∂tBh – σ�Bh = Sh
4 .

(2.15)

By taking the L2 inner product of ∇N (2.15)1–∇N (2.15)4 with ∇N nh, ∇N uh, ∇Nωh, and
∇N Bh, respectively, we further obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

d
dt ‖∇N nh‖2

L2 + 〈∇N nh,∇N div uh〉 = 〈∇N Sh
1 ,∇N nh〉,

1
2

d
dt ‖∇N uh‖2

L2 + γ 〈∇N uh,∇N∇nh〉 – (μ + ν)〈∇N uh,∇N�uh〉
– (μ + λ – ν)〈∇N uh,∇N∇ div uh〉 – 2ν〈∇N uh,∇N∇ × ωh〉

= 〈∇N uh,∇N Sh
2〉,

1
2

d
dt ‖∇Nωh‖2

L2 + 4ν〈∇Nωh,∇Nωh〉 – μ′〈∇Nωh,∇N�ωh〉
– (μ′ + λ′)〈∇Nωh,∇N∇ divωh〉 – 2ν〈∇Nωh,∇N∇ × uh〉

= 〈∇Nωh,∇N Sh
3〉,

1
2

d
dt ‖∇N Bh‖2

L2 – σ 〈∇N Bh,∇N�Bh〉 = 〈∇N Bh,∇N Sh
4〉.

(2.16)

Summing up the identities γ × (2.16)1, (2.16)2, (2.16)3, and (2.16)4 leads to

1
2

d
dt

(
γ
∥
∥∇N nh∥∥2

L2 +
∥
∥∇N uh∥∥2

L2 +
∥
∥∇Nωh∥∥2

L2 +
∥
∥∇N Bh∥∥2

L2
)

+ (μ + ν)
∥
∥∇N+1uh∥∥2

L2 + (μ + λ – ν)
∥
∥∇N div uh∥∥2

L2 + 4ν
∥
∥∇Nωh∥∥2

L2

+ μ′∥∥∇N+1ωh∥∥2
L2 +

(
μ′ + λ′)∥∥∇N divωh∥∥2

L2 + σ
∥
∥∇N+1Bh∥∥2

L2

= 4ν
〈∇Nωh,∇N∇ × uh〉 + γ

〈∇N nh,∇N Sh
1
〉
+

〈∇N uh,∇N Sh
2
〉

+
〈∇Nωh,∇N Sh

3
〉
+

〈∇N Bh,∇N Sh
4
〉

=
5∑

i=1

Ji. (2.17)

We next deal with Ji (i = 1, 2, . . . , 5) terms by terms.
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(1) Term J1. Following Hölder’s inequality and Young’s inequality, it holds that

J1 = 4ν
〈∇Nωh,∇N∇ × uh〉 ≤ 4ν

∥
∥∇Nωh∥∥2

L2 + ν
∥
∥∇N∇ × uh∥∥2

L2 . (2.18)

(2) Term J2. To estimate the second term J2, we reformulate it as follows:

J2 =
〈∇N Sh

1 ,∇N nh〉

= –
〈∇N (n div u + u · ∇n),∇N nh〉

= –
〈∇N (n div u)h,∇N nh〉 –

〈∇N (u · ∇n)h,∇N nh〉

= K1 + K2. (2.19)

By Lemmas A.2, A.5, Hölder’s inequality, and Young’s inequality, one has

|K1|�
∥
∥∇N (n div u)h∥∥

L2

∥
∥∇N nh∥∥

L2

�
∥
∥∇N (n div u)

∥
∥

L2

∥
∥∇N n

∥
∥

L2

�
(‖n‖L∞

∥
∥∇N div u

∥
∥

L2 +
∥
∥∇N n

∥
∥

L2‖div u‖L∞
)∥
∥∇N n

∥
∥

L2

�
(‖∇n‖H1

∥
∥∇N div u

∥
∥

L2 +
∥
∥∇N n

∥
∥

L2‖∇ div u‖H1
)∥
∥∇N n

∥
∥

L2

� δ
(∥
∥∇N n

∥
∥2

L2 +
∥
∥∇N+1u

∥
∥2

L2
)
. (2.20)

In addition, from the formula f = f h + f l , it holds that

K2 = –
〈∇N (u · ∇n)h,∇N nh〉

= –
〈∇N (u · ∇n) – ∇N (u · ∇n)l,∇N nh〉

= –
〈∇N(

u · ∇nh) + ∇N(
u · ∇nl) – ∇N (u · ∇n)l,∇N nh〉

= –
〈∇N(

u · ∇nh),∇N nh〉 –
〈∇N(

u · ∇nl),∇N nh〉 +
〈∇N (u · ∇n)l,∇N nh〉

= K2,1 + K2,2 + K2,3. (2.21)

Employing Lemma A.3 yields

|K2,1|�
∣
∣
〈
u · ∇∇N nh,∇N nh〉∣∣ +

∣
∣
〈[∇N , u

]∇nh,∇N nh〉∣∣

� 1
2
∣
∣
〈
div u,

∣
∣∇N nh∣∣2〉∣∣ +

∥
∥
[∇N , u

]∇nh∥∥
L2

∥
∥∇N nh∥∥

L2

� ‖∇u‖L∞
∥
∥∇N nh∥∥2

L2

+
(‖∇u‖L∞

∥
∥∇N nh∥∥

L2 +
∥
∥∇N u

∥
∥

L6

∥
∥∇nh∥∥

L3
)∥
∥∇N nh∥∥

L2

� ‖∇u‖L∞
∥
∥∇N nh∥∥2

L2

+
(∥
∥∇2u

∥
∥

H1

∥
∥∇N nh∥∥

L2 +
∥
∥∇N+1u

∥
∥

L2

∥
∥∇nh∥∥

H1
)∥
∥∇N nh∥∥

L2

� δ
(∥
∥∇N n

∥
∥2

L2 +
∥
∥∇N+1u

∥
∥2

L2
)
. (2.22)
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With the help of Lemma A.6, we get

|K2,2|�
∥
∥∇N(

u · ∇nl)∥∥
L2

∥
∥∇N nh∥∥

L2

�
(‖u‖L∞

∥
∥∇N+1nl∥∥

L2 +
∥
∥∇N u

∥
∥

L6

∥
∥∇nl∥∥

L3
)∥
∥∇N nh∥∥

L2

�
(‖∇u‖H1

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N+1u

∥
∥

L2‖∇n‖H1
)∥
∥∇N n

∥
∥

L2

� δ
(∥
∥∇N n

∥
∥2

L2 +
∥
∥∇N+1u

∥
∥2

L2
)
. (2.23)

It can be obtained in a similar way that

|K2,3|�
∥
∥∇N (u · ∇n)l∥∥

L2

∥
∥∇N nh∥∥

L2

�
∥
∥∇N–1(u · ∇n)

∥
∥

L2

∥
∥∇N n

∥
∥

L2

�
(‖u‖L∞

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N–1u

∥
∥

L6‖∇n‖L3
)∥
∥∇N n

∥
∥

L2

�
(‖∇u‖H1

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N u

∥
∥

L2‖∇n‖H1
)∥
∥∇N n

∥
∥

L2

� δ
(∥
∥∇N n

∥
∥2

L2 +
∥
∥∇N u

∥
∥2

L2
)
. (2.24)

Gathering estimates (2.22)–(2.24), we can derive from (2.21) that

|K2|� δ
∥
∥
(∇N n,∇N u,∇N+1u

)∥
∥2

L2 . (2.25)

Furthermore, inserting (2.20) and (2.25) into (2.19), we arrive at

|J2|� δ
∥
∥
(∇N n,∇N u,∇N+1u

)∥
∥2

L2 . (2.26)

(3) Terms J3 and J4. Following similar lines as in (2.19), the third term J3 can be
rewritten as follows:

J3 = –
〈∇N (u · ∇u)h,∇N uh〉

+
〈∇N–1{f (n)

[
(μ + ν)�u + (μ + λ – ν)∇ div u

]}h,∇N div uh〉

– 2ν
〈∇N[

f (n)(∇ × ω)
]h,∇N uh〉 +

〈∇N–1[h(n)∇n
]h,∇N div uh〉

–
〈

∇N
{

g(n)
[

B · ∇B –
1
2
∇(|B|2)

]}h

,∇N uh
〉

:= K3 + K4 + K5 + K6 + K7. (2.27)

From Lemmas A.2 and A.6, it holds for K3 that

|K3|�
∥
∥∇N (u · ∇u)h∥∥

L2

∥
∥∇N uh∥∥

L2

�
∥
∥∇N (u · ∇u)

∥
∥

L2

∥
∥∇N+1u

∥
∥

L2

�
(‖u‖L∞

∥
∥∇N+1u

∥
∥

L2 +
∥
∥∇N u

∥
∥

L6‖∇u‖L3
)∥
∥∇N+1u

∥
∥

L2

�
(‖∇u‖H1

∥
∥∇N+1u

∥
∥

L2 +
∥
∥∇N+1u

∥
∥

L2‖∇u‖H1
)∥
∥∇N+1u

∥
∥

L2

� δ
∥
∥∇N+1u

∥
∥2

L2 . (2.28)
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Using Lemmas A.1, A.2, A.6 and Hausdorff–Young’s inequality, we infer that

|K4|�
∥
∥∇N–1{f (n)

[
(μ + ν)�u + (μ + λ – ν)∇ div u

]}h∥∥
L2

∥
∥∇N div uh∥∥

L2

�
∥
∥∇N–1{f (n)

[
(μ + ν)�u + (μ + λ – ν)∇ div u

]}∥
∥

L2

∥
∥∇N+1u

∥
∥

L2

�
(‖n‖L∞

∥
∥∇N+1u

∥
∥

L2 +
∥
∥∇N–1n

∥
∥

L6‖�u‖L3
)∥
∥∇N+1u

∥
∥

L2

�
(‖∇n‖H1

∥
∥∇N+1u

∥
∥

L2 +
∥
∥∇N n

∥
∥

L2‖�u‖H1
)∥
∥∇N+1u

∥
∥

L2

� δ
(∥
∥∇N+1u

∥
∥2

L2 +
∥
∥∇N n

∥
∥2

L2
)
. (2.29)

Applying a similar argument used for K3, we have

|K5|�
∥
∥∇N[

f (n)∇ × ω
]h∥∥

L2

∥
∥∇N uh∥∥

L2

�
∥
∥∇N[

f (n)∇ × ω
]∥
∥

L2

∥
∥∇N uh∥∥

L2

�
(‖n‖L∞

∥
∥∇N+1ω

∥
∥

L2 +
∥
∥∇N n

∥
∥

L2‖∇ω‖L∞
)∥
∥∇N+1u

∥
∥

L2

�
(‖∇n‖H1

∥
∥∇N+1ω

∥
∥

L2 +
∥
∥∇N n

∥
∥

L2

∥
∥∇2ω

∥
∥

H1
)∥
∥∇N+1u

∥
∥

L2

� δ
∥
∥
(∇N+1u,∇N n,∇N+1ω

)∥
∥2

L2 . (2.30)

Besides, the following hold:

|K6|�
∥
∥∇N–1[h(n)∇n

]h∥∥
L2

∥
∥∇N+1uh∥∥

L2

�
∥
∥∇N–1[h(n)∇n

]∥
∥

L2

∥
∥∇N+1uh∥∥

L2

�
(‖n‖L∞

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N–1n

∥
∥

L6‖∇n‖L3
)∥
∥∇N+1u

∥
∥

L2

�
(‖∇n‖H1

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N n

∥
∥

L2‖∇n‖H1
)∥
∥∇N+1u

∥
∥

L2

� δ
(∥
∥∇N+1u

∥
∥2

L2 +
∥
∥∇N n

∥
∥2

L2
)

(2.31)

and

|K7|�
∥
∥
∥
∥∇N

{

g(n)
[

B · ∇B –
1
2
∇(|B|2)

]}h∥∥
∥
∥

L2

∥
∥∇N uh∥∥

L2

�
∥
∥
∥
∥∇N

{

g(n)
[

B · ∇B –
1
2
∇(|B|2)

]}∥
∥
∥
∥

L2

∥
∥∇N uh∥∥

L2

�
∥
∥
∥
∥∇N

[

B · ∇B –
1
2
∇(|B|2)

]∥
∥
∥
∥

L2

∥
∥∇N uh∥∥

L2

�
(‖B‖L∞

∥
∥∇N+1B

∥
∥

L2 +
∥
∥∇N B

∥
∥

L6‖∇B‖L3
)∥
∥∇N uh∥∥

L2

� δ
∥
∥
(∇N+1B,∇N+1u

)∥
∥2

L2 . (2.32)

Inserting (2.28)–(2.32) into (2.27) gets that

|J3|� δ
∥
∥
(∇N n,∇N+1ω,∇N+1u,∇N+1B

)∥
∥2

L2 . (2.33)
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The estimate on term J4 can be obtained from a similar argument used for J3, and it
is presented as follows:

|J4|� δ
∥
∥
(∇N n,∇N+1u,∇N+1ω

)∥
∥2

L2 . (2.34)

(4) Term J5. Recall that

J5 =
〈∇N[

(B · ∇)u
]h,∇N Bh〉 –

〈∇N[
(u · ∇)B

]h,∇N Bh〉

–
〈∇N[

B(div u)
]h,∇N Bh〉

:= K8 + K9 + K10. (2.35)

By Lemmas A.2 and A.6, we have

|K8|�
∥
∥∇N[

(B · ∇)u
]h∥∥

L2

∥
∥∇N Bh∥∥

L2

�
∥
∥∇N[

(B · ∇)u
]∥
∥

L2

∥
∥∇N+1B

∥
∥

L2

�
(‖B‖L∞

∥
∥∇N+1u

∥
∥

L2 +
∥
∥∇N B

∥
∥

L6‖∇u‖L3
)∥
∥∇N+1B

∥
∥

L2

� δ
(∥
∥∇N+1B

∥
∥2

L2 +
∥
∥∇N+1u

∥
∥2

L2
)

(2.36)

and

|K9|�
∥
∥∇N[

(u · ∇)B
]h∥∥

L2

∥
∥∇N Bh∥∥

L2

�
∥
∥∇N[

(u · ∇)B
]∥
∥

L2

∥
∥∇N+1B

∥
∥

L2

�
(‖u‖L∞

∥
∥∇N+1B

∥
∥

L2 +
∥
∥∇N u

∥
∥

L6‖∇B‖L3
)∥
∥∇N+1B

∥
∥

L2

� δ
(∥
∥∇N+1B

∥
∥2

L2 +
∥
∥∇N+1u

∥
∥2

L2
)
. (2.37)

It holds for term K10 that

|K10|�
∥
∥∇N[

B(div u)
]h∥∥

L2

∥
∥∇N Bh∥∥

L2

�
∥
∥∇N [B div u]

∥
∥

L2

∥
∥∇N+1B

∥
∥

L2

�
(‖B‖L∞

∥
∥∇N+1u

∥
∥

L2 +
∥
∥∇N B

∥
∥

L6‖∇u‖L3
)∥
∥∇N+1B

∥
∥

L2

� δ
(∥
∥∇N+1B

∥
∥2

L2 +
∥
∥∇N+1u

∥
∥2

L2
)
. (2.38)

Inserting (2.36)–(2.38) into (2.35) yields that

|J5|� δ
∥
∥
(∇N+1u,∇N+1B

)∥
∥2

L2 . (2.39)

Inserting estimates (2.18), (2.26), (2.33), (2.34), and (2.39) into (2.17), we can obtain the
desired estimate (2.14). �

Next, we turn to provide the dissipation estimate for nh.
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Lemma 2.4 With the assumptions in Theorem 1.1, it holds that

d
dt

∫

R3
∇N–1uh∇N nh dx +

γ

2
∥
∥∇N nh∥∥2

L2

� δ
∥
∥
(∇N n,∇N u,∇N+1u,∇N+1B,∇N+1ω

)∥
∥2

L2 +
∥
∥∇N+1uh∥∥2

L2 +
∥
∥∇N+1ωh∥∥2

L2 . (2.40)

Proof Performing the operator F–1[(1 – φ(ξ ))F(·)] to ∇N–1(2.1)2 and taking the L2 inner
product of both the resulting equation and ∇N nh, we get

d
dt

∫

R3
∇N–1uh∇N nh dx + γ

∥
∥∇N nh∥∥2

L2

=
∥
∥∇N uh∥∥2

L2 + (μ + ν)
〈∇N+1uh,∇N nh〉 + (μ + λ – ν)

〈∇N div uh,∇N nh〉

+ 2ν
〈∇N–1∇ × ωh,∇N nh〉 +

〈∇N Sh
1 ,∇N–1uh〉 +

〈∇N–1Sh
2 ,∇N nh〉.

=
∥
∥∇N uh∥∥2

L2 +
10∑

i=6

Ji. (2.41)

(1) Terms J6, J7, and J8. Using Hölder’s inequality and Hausdorff–Young’s inequality, we
can estimate for term Ji (6 ≤ i ≤ 8) as follows:

|J6| ≤ 3(μ + ν)2

2γ

∥
∥∇N+1uh∥∥2

L2 +
γ

6
∥
∥∇N nh∥∥2

L2 , (2.42)

|J7| ≤ 3(μ + λ – ν)2

2γ

∥
∥∇N div uh∥∥2

L2 +
γ

6
∥
∥∇N nh∥∥2

L2 , (2.43)

and

|J8| ≤ 6ν2

γ

∥
∥∇Nωh∥∥2

L2 +
γ

6
∥
∥∇N nh∥∥2

L2 . (2.44)

(2) Term J9. For term J9, we get

J9 = –
〈∇N (n div u)h,∇N–1uh〉 –

〈∇N (u · ∇n)h,∇N–1uh〉

=: K11 + K12. (2.45)

By using Hölder’s inequality, Young’s inequality, Lemmas A.1, A.2, and A.6, we
arrive at

|K11|�
∥
∥∇N (n div u)h∥∥

L2

∥
∥∇N–1uh∥∥

L2

�
∥
∥∇N (n div u)

∥
∥

L2

∥
∥∇N uh∥∥

L2

�
(‖n‖L∞

∥
∥∇N+1u

∥
∥

L2 +
∥
∥∇N n

∥
∥

L2‖∇u‖L∞
)∥
∥∇N+1u

∥
∥

L2

� δ
(∥
∥∇N n

∥
∥2

L2 +
∥
∥∇N+1u

∥
∥2

L2
)
. (2.46)

In the same way, we can get

|K12|�
∥
∥∇N–1(u · ∇n)h∥∥

L2

∥
∥∇N uh∥∥

L2

�
∥
∥∇N–1(u · ∇n)

∥
∥

L2

∥
∥∇N u

∥
∥

L2
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�
(‖u‖L∞

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N–1u

∥
∥

L6‖∇n‖L3
)∥
∥∇N u

∥
∥

L2

� δ
(∥
∥∇N n

∥
∥2

L2 +
∥
∥∇N u

∥
∥2

L2
)
. (2.47)

Substituting (2.46) and (2.47) into (2.45) leads to

|J9|� δ
∥
∥
(∇N n,∇N u,∇N+1u

)∥
∥2

L2 . (2.48)

(3) Term J10. For term J10, we directly have

J10 = –
〈∇N–1(u · ∇u)h,∇N nh〉

–
〈∇N–1{f (n)

[
(μ + ν)�u + (μ + λ – ν)∇ div u

]}h,∇N nh〉

– 2ν
〈∇N–1[f (n)(∇ × ω)

]h,∇N nh〉 –
〈∇N–1[h(n)∇n

]h,∇N nh〉

–
〈

∇N–1
{

g(n)
[

B · ∇B –
1
2
∇(|B|2)

]}h

,∇N nh
〉

:= K13 + K14 + K15 + K16 + K17. (2.49)

With the help of Young’s inequality and Hölder’s inequality, we obtain

|K13|�
∥
∥∇N–1(u · ∇u)h∥∥

L2

∥
∥∇N nh∥∥

L2

�
∥
∥∇N (u · ∇u)

∥
∥

L2

∥
∥∇N nh∥∥

L2

�
(‖u‖L∞

∥
∥∇N+1u

∥
∥

L2 +
∥
∥∇N u

∥
∥

L6‖∇u‖L3
)∥
∥∇N n

∥
∥

L2

� δ
(∥
∥∇N n

∥
∥2

L2 +
∥
∥∇N+1u

∥
∥2

L2
)

(2.50)

and

|K14|�
∥
∥∇N–1{f (n)

[
(μ + ν)�u + (μ + λ – ν)∇ div u

]}h∥∥
L2

∥
∥∇N nh∥∥

L2

�
(‖n‖L∞

∥
∥∇N+1u

∥
∥

L2 +
∥
∥∇N–1n

∥
∥

L6‖�u‖L3
)∥
∥∇N n

∥
∥

L2

� δ
(∥
∥∇N n

∥
∥2

L2 +
∥
∥∇N+1u

∥
∥2

L2
)
. (2.51)

Similarly, we get

|K15|�
∥
∥∇N–1[f (n)(∇ × ω)

]h∥∥
L2

∥
∥∇N nh∥∥

L2

�
∥
∥∇N–1[f (n)(∇ × ω)

]∥
∥

L2

∥
∥∇N nh∥∥

L2

�
(‖n‖L3

∥
∥∇Nω

∥
∥

L6 +
∥
∥∇N–1n

∥
∥

L6‖∇ω‖L3
)∥
∥∇N n

∥
∥

L2

� δ
(∥
∥∇N n

∥
∥2

L2 +
∥
∥∇N+1ω

∥
∥2

L2
)

(2.52)

and

|K16|�
∥
∥∇N–1[h(n)∇n

]h∥∥
L2

∥
∥∇N nh∥∥

L2

�
∥
∥∇N[

h(n)∇n
]∥
∥

L2

∥
∥∇N nh∥∥

L2
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�
(‖n‖L∞

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N–1n

∥
∥

L6‖∇n‖L3
)∥
∥∇N n

∥
∥

L2

� δ
∥
∥∇N n

∥
∥2

L2 . (2.53)

For term K17, we have

|K17|�
∥
∥
∥
∥∇N–1

{

g(n)
[

B · ∇B –
1
2
∇(|B|2)

]}h∥∥
∥
∥

L2

∥
∥∇N nh∥∥

L2

�
∥
∥
∥
∥∇N

{

g(n)
[

B · ∇B –
1
2
∇(|B|2)

]}∥
∥
∥
∥

L2

∥
∥∇N nh∥∥

L2

�
(‖B‖L∞

∥
∥∇N+1B

∥
∥

L2 +
∥
∥∇N B

∥
∥

L6‖∇B‖L3
)∥
∥∇N n

∥
∥

L2

�δ
∥
∥
(∇N n,∇N+1B

)∥
∥2

L2 . (2.54)

Inserting (2.50)–(2.54) into (2.49) gets

|J10|�
∥
∥
(∇N n,∇N+1u,∇N+1ω,∇N+1B

)∥
∥2

L2 . (2.55)

Gathering (2.42)–(2.44), (2.48), and (2.55), we derive estimate (2.40) from (2.41). �

Based on the above two lemmas, we now present the temporal decay rate for the high-
frequency of the N th order derivatives of the solution.

Lemma 2.5 With the assumptions in Theorem 1.1, it holds that

∥
∥∇N(

nh, uh,ωh, Bh)(t)
∥
∥2

L2 �
(
C0 + δ

√
M(t)

)
(1 + t)–( 3

4 + N
2 ). (2.56)

Proof By estimates (2.14), (2.40), Lemma A.6, and the smallness of δ, we have

d
dt

C1(t) +
∥
∥∇N nh∥∥2

L2 +
∥
∥∇N+1uh∥∥2

L2 +
∥
∥∇N+1ωh∥∥2

L2 +
∥
∥∇N+1Bh∥∥2

L2

�
∥
∥∇N(

nl, ul,ωl, Bl)∥∥2
L2 , (2.57)

where

C1(t) = D1
∥
∥∇N(

nh, uh,ωh, Bh)∥∥2
L2 +

∫

R3
∇N–1uh∇N nh dx (2.58)

with some large enough positive constant D1. Recalling

C1C1(t) �
∥
∥∇N nh∥∥2

L2 +
∥
∥∇N+1uh∥∥2

L2 +
∥
∥∇N+1ωh∥∥2

L2 +
∥
∥∇N+1Bh∥∥2

L2 , (2.59)

thus, by the formula (A.10), Gronwall’s inequality, Lemmas 2.2 and A.7, we can get

C1(t) ≤ C1(0)e–C1t +
∫ t

0
e–C1(t–τ )∥∥∇N(

nl, ul,ωl, Bl)∥∥2
L2 dτ

≤ C1(0)e–C1t + C
∫ t

0
e–C1(t–τ )(‖U0‖2

L1 + δ2M(τ )
)
(1 + τ )– 3+2N

2 dτ
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� (1 + t)– 3+2N
2

(
C1(0) + ‖U0‖2

L1 + δ2M(τ )
)
. (2.60)

Due to the relation

C1(t) ≈ ∥
∥∇N(

nh, uh,ωh, Bh)∥∥2
L2 ,

estimate (2.56) can be easily obtained from (2.60). �

Proof of Proposition 2.1 Now we are in a position to prove Proposition 2.1. With the help
of Lemmas 2.2, 2.5 and the frequency decompositions, we deduce that

∥
∥∇N (n, u,ω, B)

∥
∥2

L2 ≤∥
∥∇N(

nh, uh,ωh, Bh)∥∥2
L2 +

∥
∥∇N(

nl, ul,ωl, Bl)∥∥2
L2

�
(
C1(0) + ‖U0‖2

L1 + δ2M(t)
)2(1 + t)– 3+2N

2

�(1 + t)– 3+2N
2

(
C1(0) + ‖U0‖2

L1 + δ2M(t)
)
. (2.61)

From the definition of M(t), it holds that

M(t) � C1(0) + ‖U0‖2
L1 + δ2M(t).

By the smallness of δ, we further obtain

M(t) � C1(0) + ‖U0‖2
L1 .

Thus, we complete the proof of Proposition 2.1, which immediately implies the decay rate
(1.7) in Theorem 1.1. �

3 Derivation of the decay-in-time of high-frequency parts
In this section, we further derive the optimal temporal rate of decay-in-time for the N th
order spatial derivatives of the solution ω. To this end, we shall first establish the decay
estimate on ‖∇Nωl‖L2 , which is presented as follows.

Lemma 3.1 With the assumptions in Theorem 1.1, the lower frequency part of solution ω

to the Cauchy problem of system (2.1) satisfies that

∥
∥∇Nωl(t)

∥
∥

L2 � (1 + t)–( 5
4 + N

2 ). (3.1)

Proof Using estimate (2.9), Duhamel’s principle, Plancherel theorem, and Hausdorff–
Young’s inequality, we have

∥
∥∇Nωl(t)

∥
∥

L2 � (1 + t)– 5
4 – N

2
∥
∥ω(0)

∥
∥

L1 +
∫ t

2

0
(1 + t – τ )– 5

4 – N
2
∥
∥S3(τ )

∥
∥

L1 dτ

+
∫ t

t
2

(1 + t – τ )– 7
4
∥
∥∇N–1Sl

3(τ )
∥
∥

L1 dτ . (3.2)

Employing a similar argument used for (2.12), we easily have

∥
∥S3(τ )

∥
∥

L1 � (1 + τ )–2. (3.3)
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On the other hand, from the decay rates (1.3)–(1.5), it holds for ‖∇N–1Sl
3(τ )‖L1 that

∥
∥∇N–1Sl

3(τ )
∥
∥

L1

�
∥
∥∇N–1(u · ∇ω)(τ )

∥
∥

L1 +
∥
∥∇N–2{f (n)

[
μ′�ω +

(
μ′ + λ′)∇ divω(τ )

]}∥
∥

L1

+
∥
∥∇N–1f (n)(4νω)(τ )

∥
∥

L1 +
∥
∥∇N–1[f (n)(2ν∇ × u)

]
(τ )

∥
∥

L1

�
∥
∥∇N–1(n, u)(τ )

∥
∥

L2

∥
∥∇(n, u,ω)(τ )

∥
∥

L2 +
∥
∥(n, u)(τ )

∥
∥

L2

∥
∥∇N (n, u,ω)(τ )

∥
∥

L2

+
∥
∥∇N–2n(τ )

∥
∥

L2

∥
∥�ω(τ )

∥
∥

L2 +
∥
∥n(τ )

∥
∥

L2

∥
∥∇N–1ω(τ )

∥
∥

L2 +
∥
∥ω(τ )

∥
∥

L2

∥
∥∇N–1n(τ )

∥
∥

L2

� (1 + τ )– 3
4 – 3

4 – N
2 + (1 + τ )– 3

4 – N–2
2 – 9

4 + (1 + τ )– 3
4 – 5

4 – N–1
2

� (1 + τ )–( 5
4 + N

2 ). (3.4)

Inserting (3.3) and (3.4) into (3.2), we arrive at the decay rate (3.1). �

We next establish the temporal decay estimates on ‖∇N (nh, uh,ωh, Bh)‖L2 .

Lemma 3.2 With the assumptions in Theorem 1.1, it holds that

1
2

d
dt

(
γ
∥
∥∇N nh∥∥2

L2 +
∥
∥∇N uh∥∥2

L2 +
∥
∥∇Nωh∥∥2

L2 +
∥
∥∇N Bh∥∥2

L2
)

+ (2μ + λ – ν)
∥
∥∇N+1uh∥∥2

L2 +
(
2μ′ + λ′)∥∥∇Nωh∥∥2

L2 + σ
∥
∥∇N Bh∥∥2

L2

� (1 + t)– 5+2N
2 +

(
δ + (1 + t)– 3

2
)(∥

∥∇N nh∥∥2
L2 +

∥
∥∇N+1uh∥∥2

L2 +
∥
∥∇N+1ωh∥∥2

L2

+
∥
∥∇N+1Bh∥∥2

L2
)
. (3.5)

Proof Due to the decay rate (1.7) and the fine structures of the decomposition of both low
and high frequencies, we next deal with the nonlinear terms Ji (2 ≤ i ≤ 5) on the right-hand
side of (2.17) by a manner that is different from the one used in the proof of Lemma 2.5.

(1) Term J2. For term K1, one has

|K1|�
∥
∥∇N (n div u)h∥∥

L2

∥
∥∇N nh∥∥

L2

�
∥
∥∇N (n div u)

∥
∥

L2

∥
∥∇N nh∥∥

L2

�
(‖n‖L∞

∥
∥∇N div

(
ul + uh)∥∥

L2 +
∥
∥∇N n

∥
∥

L2‖div u‖L∞
)∥
∥∇N nh∥∥

L2

�
(‖∇n‖H1

∥
∥∇N div ul∥∥

L2 + ‖∇n‖H1
∥
∥∇N div uh∥∥

L2

+
∥
∥∇N n

∥
∥

L2‖∇ div u‖H1
)∥
∥∇N nh∥∥

L2

�
(
(1 + t)– 5

4 – 3
4 – N

2 + δ
∥
∥∇N div uh∥∥

L2
)∥
∥∇N nh∥∥

L2 )

� (1 + t)– 5+2N
2 +

(
δ + (1 + t)– 3

2
)(∥

∥∇N div uh∥∥2
L2 +

∥
∥∇N nh∥∥2

L2
)
. (3.6)

For term K2,1, we can derive that

|K2,1|�
∣
∣
〈
u · ∇∇N nh,∇N nh〉∣∣ +

∣
∣
〈[∇N , u

]∇nh,∇N nh〉∣∣

� 1
2
∣
∣
〈
div u,

∣
∣∇N nh∣∣2〉∣∣ +

∥
∥
[∇N , u

]∇nh∥∥
L2

∥
∥∇N nh∥∥

L2
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� ‖∇u‖L∞
∥
∥∇N nh∥∥2

L2

+
(‖∇u‖L∞

∥
∥∇N nh∥∥

L2 +
∥
∥∇N u

∥
∥

L2

∥
∥∇nh∥∥

L∞
)∥
∥∇N nh∥∥

L2

� δ
∥
∥∇N nh∥∥2

L2 + (1 + t)– 7
4 – 3

4 – N
2
∥
∥∇N nh∥∥

L2

� (1 + t)– 5+2N
2 +

(
(1 + t)– 5

2 + δ
)∥
∥∇N nh∥∥2

L2 . (3.7)

Similarly, we also have

|K2,2|�
∥
∥∇N(

u · ∇nl)∥∥
L2

∥
∥∇N nh∥∥

L2

�
(‖u‖L∞

∥
∥∇N+1nl∥∥

L2 +
∥
∥∇N u

∥
∥

L2

∥
∥∇nl∥∥

L∞
)∥
∥∇N nh∥∥

L2

�
(‖∇u‖H1

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N u

∥
∥

L2

∥
∥∇2n

∥
∥

H1
)∥
∥∇N nh∥∥

L2

� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N nh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N nh∥∥2

L2 (3.8)

and

|K2,3|�
∥
∥∇N (u · ∇n)l∥∥

L2

∥
∥∇N nh∥∥

L2

�
∥
∥∇N–1(u · ∇n)

∥
∥

L2

∥
∥∇N nh∥∥

L2

�
(‖u‖L∞

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N–1u

∥
∥

L6‖∇n‖L3
)∥
∥∇N nh∥∥

L2

�
(‖∇u‖H1

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N u

∥
∥

L2‖∇n‖H1
)∥
∥∇N nh∥∥

L2

� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N nh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N nh∥∥2

L2 . (3.9)

From estimates (3.7)–(3.9), it holds that

|K2|� (1 + t)– 5+2N
2 +

(
(1 + t)– 3

2 + δ
)∥
∥∇N nh∥∥2

L2 . (3.10)

Inserting (3.6) and (3.10) into (2.19) yields that

|J2|� |K1| + |K2|
� (1 + t)– 5+2N

2 +
(
(1 + t)– 3

2 + δ
)(∥

∥∇N div uh∥∥2
L2 +

∥
∥∇N nh∥∥2

L2
)
. (3.11)

(2) Terms J3 and J4. For term J3, integrating by parts, we get

J3 =
〈∇N–1(u · ∇u)h,∇N div uh〉

+
〈∇N–1{f (n)

[
(μ + ν)�u + (μ + λ – ν)∇ div u

]}h,∇N div uh〉

+ 2ν
〈∇N–1[f (n)(∇ × ω)

]h,∇N div uh〉 +
〈∇N–1[h(n)∇n

]h,∇N div uh〉

+
〈

∇N–1
{

g(n)
[

B · ∇B –
1
2
∇(|B|2)

]}h

,∇N div uh
〉

:= K′
3 + K′

4 + K′
5 + K′

6 + K′
7. (3.12)
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It holds for K′
3 that

∣
∣K′

3
∣
∣ �

∥
∥∇N–1(u · ∇u)h∥∥

L2

∥
∥∇N+1uh∥∥

L2

�
∥
∥∇N–1(u · ∇u)

∥
∥

L2

∥
∥∇N+1uh∥∥

L2

�
(‖u‖L∞

∥
∥∇N u

∥
∥

L2 +
∥
∥∇N–1u

∥
∥

L6‖∇u‖L3
)∥
∥∇N+1uh∥∥

L2

�
(‖∇u‖H1

∥
∥∇N u

∥
∥

L2 +
∥
∥∇N u

∥
∥

L2‖∇u‖H1
)∥
∥∇N+1uh∥∥

L2

� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N+1uh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N+1uh∥∥2

L2 . (3.13)

For K′
4, we have

∣
∣K′

4
∣
∣ �

∥
∥∇N–1{f (n)

[
(μ + ν)�u + (μ + λ – ν)∇ div u

]}h∥∥
L2

∥
∥∇N div uh∥∥

L2

�
∥
∥∇N–1{f (n)

[
(μ + ν)�u + (μ + λ – ν)∇ div u

]}∥
∥

L2

∥
∥∇N+1uh∥∥

L2

�
(‖n‖L∞

∥
∥∇N+1(ul + uh)∥∥

L2 +
∥
∥∇N–1n

∥
∥

L6‖�u‖L3
)∥
∥∇N+1uh∥∥

L2

�
(‖∇n‖H1

∥
∥∇N+1ul∥∥

L2 + ‖∇n‖H1
∥
∥∇N+1uh∥∥

L2 +
∥
∥∇N n

∥
∥

L2‖�u‖H1
)

× ∥
∥∇N+1uh∥∥

L2

�
(
(1 + t)– 5

4 – 3
4 – N

2 + δ
∥
∥∇N+1uh∥∥

L2
)∥
∥∇N+1uh∥∥

L2

� (1 + t)– 5+2N
2 +

(
δ + (1 + t)– 3

2
)∥
∥∇N+1uh∥∥2

L2 . (3.14)

Similarly, we deduce

∣
∣K′

5
∣
∣ �

∥
∥∇N–1[f (n)∇ × ω

]h∥∥
L2

∥
∥∇N+1uh∥∥

L2

�
∥
∥∇N–1[f (n)∇ × ω

]∥
∥

L2

∥
∥∇N+1uh∥∥

L2

�
(‖n‖L∞

∥
∥∇Nω

∥
∥

L2 +
∥
∥∇N–1n

∥
∥

L6‖∇ω‖L3
)∥
∥∇N+1uh∥∥

L2

�
(‖∇n‖H1

∥
∥∇Nω

∥
∥

L2 +
∥
∥∇N n

∥
∥

L2‖∇ω‖H1
)∥
∥∇N+1uh∥∥

L2

� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N+1uh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N+1uh∥∥2

L2 (3.15)

and

∣
∣K′

6
∣
∣ �

∥
∥∇N–1[h(n)∇n

]h∥∥
L2

∥
∥∇N+1uh∥∥

L2

�
∥
∥∇N–1[h(n)∇n

]∥
∥

L2

∥
∥∇N+1uh∥∥

L2

�
(‖n‖L∞

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N–1n

∥
∥

L6‖∇n‖L3
)∥
∥∇N+1uh∥∥

L2

�
(‖∇n‖H1

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N n

∥
∥

L2‖∇n‖H1
)∥
∥∇N+1u

∥
∥

L2

� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N+1uh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N+1uh∥∥2

L2 . (3.16)
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For term K′
7, we have

∣
∣K′

7
∣
∣ �

∥
∥
∥
∥∇N

{

g(n)
[

B · ∇B –
1
2
∇(|B|2)

]}h∥∥
∥
∥

L2

∥
∥∇N uh∥∥

L2

�
∥
∥
∥
∥∇N

{

g(n)
[

B · ∇B –
1
2
∇(|B|2)

]}∥
∥
∥
∥

L2

∥
∥∇N uh∥∥

L2

�
∥
∥
∥
∥∇N

[

B · ∇B –
1
2
∇(|B|2)

]∥
∥
∥
∥

L2

∥
∥∇N uh∥∥

L2

�
(‖B‖L∞

∥
∥∇N+1B

∥
∥

L2 +
∥
∥∇N B

∥
∥

L6‖∇B‖L3
)∥
∥∇N uh∥∥

L2

�
(‖∇B‖H1

∥
∥∇N+1(Bl + Bh)∥∥

L2 +
∥
∥∇N+1(Bl + Bh)∥∥

L2‖∇B‖H1
)∥
∥∇N uh∥∥

L2

�
(
(1 + t)– 5

4 – 3
4 – N

2 + δ
∥
∥∇N+1Bh∥∥

L2
)∥
∥∇N+1uh∥∥

L2

� (1 + t)– 5+2N
2 +

(
δ + (1 + t)– 3

2
)(∥

∥∇N+1Bh∥∥2
L2 +

∥
∥∇N uh∥∥2

L2
)
. (3.17)

Substituting (3.13)–(3.17) into (3.12), we can arrive at

|J3|� (1 + t)– 5+2N
4 +

(
δ + (1 + t)– 3

2
)(∥

∥∇N+1Bh∥∥2
L2 +

∥
∥∇N uh∥∥2

L2
)
. (3.18)

Employing a similar argument used for J3, we have

|J4|� (1 + t)– 5+2N
4 +

(
δ + (1 + t)– 3

2
)∥
∥∇N+1ωh∥∥2

L2 . (3.19)

(3) Term J5. For the last term J5, one has

J5 = –
〈∇N–1[(B · ∇)u

]h,∇N div Bh〉 +
〈∇N–1[(u · ∇)B

]h,∇N div Bh〉

+
〈∇N–1[B(div u)

]h,∇N div Bh〉

=: K′
8 + K′

9 + K′
10. (3.20)

It holds for term K′
8 that

∣
∣K′

8
∣
∣ �

∥
∥∇N–1[(B · ∇)u

]h∥∥
L2

∥
∥∇N+1Bh∥∥

L2

�
∥
∥∇N–1[(B · ∇)u

]∥
∥

L2

∥
∥∇N+1Bh∥∥

L2

�
(‖B‖L∞

∥
∥∇N u

∥
∥

L2 +
∥
∥∇N–1B

∥
∥

L6‖∇u‖L3
)∥
∥∇N+1Bh∥∥

L2

�
(‖∇B‖H1

∥
∥∇N u

∥
∥

L2 +
∥
∥∇N B

∥
∥

L2‖∇u‖H1
)∥
∥∇N+1Bh∥∥

L2

� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N+1Bh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N+1Bh∥∥2

L2 . (3.21)

Similarly, we have

∣
∣K′

9
∣
∣ �

∥
∥∇N–1[(u · ∇)B

]h∥∥
L2

∥
∥∇N+1Bh∥∥

L2

�
∥
∥∇N–1[(u · ∇)B

]∥
∥

L2

∥
∥∇N+1Bh∥∥

L2



Cui et al. Boundary Value Problems         (2024) 2024:33 Page 20 of 25

�
(‖u‖L∞

∥
∥∇N B

∥
∥

L2 +
∥
∥∇N–1u

∥
∥

L6‖∇B‖L3
)∥
∥∇N+1Bh∥∥

L2

�
(‖∇u‖H1

∥
∥∇N B

∥
∥

L2 +
∥
∥∇N u

∥
∥

L2‖∇B‖H1
)∥
∥∇N+1Bh∥∥

L2

� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N+1Bh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N+1Bh∥∥2

L2 (3.22)

and

∣
∣K′

10
∣
∣�

∥
∥∇N–1[B(div u)

]h∥∥
L2

∥
∥∇N+1Bh∥∥

L2

�
∥
∥∇N–1[B div u]

∥
∥

L2

∥
∥∇N+1Bh∥∥

L2

�
(‖B‖L∞

∥
∥∇N u

∥
∥

L2 +
∥
∥∇N–1B

∥
∥

L6‖∇u‖L3
)∥
∥∇N+1Bh∥∥

L2

�
(‖∇B‖H1

∥
∥∇N u

∥
∥

L2 +
∥
∥∇N B

∥
∥

L2‖∇u‖H1
)∥
∥∇N+1Bh∥∥

L2

� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N+1Bh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N+1Bh∥∥2

L2 . (3.23)

Inserting (3.21)–(3.23) into (3.20) leads to

|J5|� (1 + t)– 5+2N
4 + (1 + t)– 3

2
∥
∥∇N+1Bh∥∥2

L2 . (3.24)

Then we complete the proof of Lemma 3.2 by substituting estimates (3.11), (3.18), (3.19),
and (3.24) into (2.17). �

To enclose the energy estimate, it is necessary to establish the dissipation estimate for
∇N nh in a different way.

Lemma 3.3 With the assumptions in Theorem 1.1, it holds that

d
dt

∫

R3
∇N–1uh∇N nh dx +

γ

2
∥
∥∇N nh∥∥2

L2

� (1 + t)– 5+2N
2 +

(
δ + (1 + t)– 3

2
)(∥

∥∇N+1uh∥∥2
L2 +

∥
∥∇N nh∥∥2

L2
)

+
∥
∥∇N+1uh∥∥2

L2 +
∥
∥∇N+1ωh∥∥2

L2 . (3.25)

Proof Now, we aim to present the estimates on the last two terms on the right-hand side
of (2.41).

(1) Term J9. Integrating by parts, one has

|K11|�
∥
∥∇N–1(n div u)h∥∥

L2

∥
∥∇N uh∥∥

L2

�
∥
∥∇N–1(n div u)

∥
∥

L2

∥
∥∇N+1uh∥∥

L2

�
(‖n‖L∞

∥
∥∇N u

∥
∥

L2 +
∥
∥∇N–1n

∥
∥

L6‖∇u‖L3
)∥
∥∇N+1uh∥∥

L2

�
(‖∇n‖H1

∥
∥∇N u

∥
∥

L2 +
∥
∥∇N n

∥
∥

L2‖∇u‖H1
)∥
∥∇N+1uh∥∥

L2
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� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N+1uh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N+1uh∥∥2

L2 (3.26)

and

|K12|�
∥
∥∇N–1(u · ∇n)h∥∥

L2

∥
∥∇N uh∥∥

L2

�
∥
∥∇N–1(u · ∇n)

∥
∥

L2

∥
∥∇N+1uh∥∥

L2

�
(‖u‖L∞

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N–1u

∥
∥

L6‖∇n‖L3
)∥
∥∇N+1uh∥∥

L2

�
(‖∇u‖H1

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N u

∥
∥

L2‖∇n‖H1
)∥
∥∇N+1uh∥∥

L2

� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N+1uh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N+1uh∥∥2

L2 . (3.27)

Plugging (3.26) and (3.27) into (2.45), we have

|J9|� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N+1uh∥∥2

L2 . (3.28)

(2) Term J10. In the same way, we deduce

|K13|�
∥
∥∇N–1(u · ∇u)h∥∥

L2

∥
∥∇N nh∥∥

L2

�
∥
∥∇N–1(u · ∇u)

∥
∥

L2

∥
∥∇N nh∥∥

L2

�
(‖u‖L∞

∥
∥∇N u

∥
∥

L2 +
∥
∥∇N–1u

∥
∥

L6‖∇u‖L3
)∥
∥∇N nh∥∥

L2

�
(‖∇u‖H1

∥
∥∇N u

∥
∥

L2 +
∥
∥∇N u

∥
∥

L2‖∇u‖H1
)∥
∥∇N nh∥∥

L2

� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N nh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N nh∥∥2

L2 (3.29)

and

|K14|�
∥
∥∇N–1{f (n)

[
(μ + ν)�u + (μ + λ – ν)∇ div u

]}h∥∥
L2

∥
∥∇N nh∥∥

L2

�
(‖n‖L∞

∥
∥∇N+1(ul + uh)∥∥

L2 +
∥
∥∇N–1n

∥
∥

L6‖�u‖L3
)∥
∥∇N nh∥∥

L2

�
(‖∇n‖H1

∥
∥∇N+1ul∥∥

L2 + ‖∇n‖H1
∥
∥∇N+1uh∥∥

L2

+
∥
∥∇N n

∥
∥

L2‖�u‖H1
)∥
∥∇N nh∥∥

L2

�
(
(1 + t)– 5

4 – 3
4 – N

2 + δ
∥
∥∇N+1uh∥∥

L2
)∥
∥∇N nh∥∥

L2

� (1 + t)– 5+2N
2 +

(
δ + (1 + t)– 3

2
)(∥

∥∇N+1uh∥∥2
L2 +

∥
∥∇N nh∥∥2

L2
)
. (3.30)

By Lemmas A.2 and A.5, we get

|K15|�
∥
∥∇N–1[f (n)(∇ × ω)

]h∥∥
L2

∥
∥∇N nh∥∥

L2

�
∥
∥∇N[

f (n)(∇ × ω)
]∥
∥

L2

∥
∥∇N nh∥∥

L2
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�
(‖n‖L∞

∥
∥∇Nω

∥
∥

L2 +
∥
∥∇N–1n

∥
∥

L6‖∇ω‖L3
)∥
∥∇N nh∥∥

L2

�
(‖∇n‖H1

∥
∥∇Nω

∥
∥

L2 +
∥
∥∇N n

∥
∥

L2‖∇ω‖H1
)∥
∥∇N nh∥∥

L2

� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N nh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N nh∥∥2

L2 (3.31)

and

|K16|�
∥
∥∇N–1[h(n)∇n

]h∥∥
L2

∥
∥∇N nh∥∥

L2

�
∥
∥∇N–1[h(n)∇n

]∥
∥

L2

∥
∥∇N nh∥∥

L2

�
(‖n‖L∞

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N–1n

∥
∥

L6‖∇n‖L3
)∥
∥∇N n

∥
∥

L2

�
(‖∇n‖H1

∥
∥∇N n

∥
∥

L2 +
∥
∥∇N n

∥
∥

L2‖∇n‖H1
)∥
∥∇N nh∥∥

L2

� (1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N nh∥∥

L2

� (1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N nh∥∥2

L2 . (3.32)

For term K17, we have

|K17|�
∥
∥
∥
∥∇N–1

{

g(n)
[

B · ∇B –
1
2
∇(|B|2)

]}h∥∥
∥
∥

L2

∥
∥∇N nh∥∥

L2

�
∥
∥
∥
∥∇N–1

{

g(n)(B · ∇B) –
[

g(n)
1
2
∇(|B|2)

]h}∥
∥
∥
∥

L2

∥
∥∇N nh∥∥

L2

�
(‖B‖L∞

∥
∥∇N B

∥
∥

L2 +
∥
∥∇N–1B

∥
∥

L6‖∇B‖L3
)∥
∥∇N nh∥∥

L2

�
(‖∇B‖H1

∥
∥∇N B

∥
∥

L2 +
∥
∥∇N B

∥
∥

L2‖B‖H1
)∥
∥∇N nh∥∥

L2

�(1 + t)– 5
4 – 3

4 – N
2
∥
∥∇N nh∥∥

L2

�(1 + t)– 5+2N
2 + (1 + t)– 3

2
∥
∥∇N nh∥∥2

L2 . (3.33)

Putting estimates (3.29)–(3.33) together, we can derive from (2.49) that

|J10|� (1 + t)– 5+2N
2 +

(
δ + (1 + t)– 3

2
)(∥

∥∇N+1uh∥∥2
L2 +

∥
∥∇N nh∥∥2

L2
)
. (3.34)

Plugging (2.42)–(2.44), (3.28), and (3.34) into (2.41), we can derive estimate (3.25). �

From Lemmas 3.2, 3.3 and the smallness of δ, we can obtain

d
dt

C2(t) +
∥
∥∇N nh∥∥2

L2 +
∥
∥∇N+1uh∥∥2

L2 +
∥
∥∇N+1ωh∥∥2

L2 +
∥
∥∇N+1Bh∥∥2

L2

� (1 + t)– 5+2N
2 , (3.35)

where

C2(t) = D2
∥
∥∇N(

nh, uh,ωh, Bh)∥∥2
L2 +

∫

R3
∇N–1uh∇N nh dx (3.36)
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with some large enough positive constant D2. Besides, it can be easily obtained that

∥
∥∇N nh∥∥2

L2 +
∥
∥∇N+1uh∥∥2

L2 +
∥
∥∇N+1ωh∥∥2

L2 +
∥
∥∇N+1Bh∥∥2

L2 ≥ C2C2(t). (3.37)

Making use of estimates (3.35), (3.37) and Gronwall’s inequality yields

C2 � (1 + t)– 5+2N
2 . (3.38)

Thanks to the relations

C2 ≈ ∥
∥∇N(

nh, uh,ωh, Bh)∥∥2
L2

and f = f l + f h, the decay rate (1.8) can be derived from (3.1) and (3.38). Thus we complete
the proof of Theorem 1.1.

Appendix
This appendix is devoted to providing some basic mathematical tools used frequently in
the previous sections. The detailed proof of the following Gagliardo–Nirenberg inequality
can be referred to [3, 14].

Lemma A.1 Let 0 ≤ i, j ≤ k, it holds that

∥
∥∇ i(f )

∥
∥

Lp �
∥
∥∇ jf

∥
∥1–α

Lq

∥
∥∇kf

∥
∥α

Lr , (A.1)

where α ∈ [ i
k , 1] and satisfies

i
3

–
1
p

=
(

i
3

–
1
q

)

(1 – α) +
k
3

–
1
r
α. (A.2)

Especially, while p = q = r = 2, we have

∥
∥∇ i(f )

∥
∥

L2 �
∥
∥∇ jf

∥
∥

k–i
k–j
L2

∥
∥∇kf

∥
∥

i–j
k–j
Lr . (A.3)

Lemma A.2 It holds that for k ≥ 0,

∥
∥∇k(fg)

∥
∥

Lp � ‖f ‖Lp1
∥
∥∇kg

∥
∥

Lp2 +
∥
∥∇kf

∥
∥

Lp3 ‖g‖Lp4 , (A.4)

where p1, p2, p3 ∈ (1, +∞) and

1
p

=
1
p1

+
1
p2

=
1
p3

+
1
p4

. (A.5)

We can further deduce the following commutator estimate from Lemma A.2.

Lemma A.3 Let f and g be smooth functions belonging to Hk ∩ L∞ for any integer k ≥ 1,
and then we define the commutator

[∇k , f
]
g = ∇k(fg) – f ∇kg. (A.6)
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It holds that

∥
∥
[∇k , f

]
g
∥
∥

Lp � ‖∇f ‖Lp1
∥
∥∇k–1g

∥
∥

Lp2 +
∥
∥∇kf

∥
∥

Lp3 ‖g‖Lp4 . (A.7)

Here p, p1, p2, p3 are defined as in Lemma A.2.

Lemma A.4 Assume that ‖f ‖L∞ ≤ 1. Let F(f ) be a smooth function of f with bounded
derivatives of any order. Then, for any given integer k ≥ 1 and any given real number 1 ≤
p ≤ ∞, we have

∥
∥∇k[F(f )

]∥
∥

Lp �
∥
∥∇kf

∥
∥

Lp .

Lemma A.5 We have, for any function f ∈ H2(R3),
(i) ‖f ‖Lr � ‖f ‖H1 , 2 ≤ r ≤ 6,

(ii) ‖f ‖L∞ � ‖∇f ‖H1 .

Lemma A.6 If f ∈ Hk(R3), then we have

∥
∥∇kf

∥
∥

L2 ≤ ∥
∥∇kf h∥∥

L2 +
∥
∥∇kf l∥∥

L2 , k ≥ 0, (A.8)
∥
∥∇kf l∥∥

L2 �
∥
∥∇k–1f l∥∥

L2 , k ≥ 1, (A.9)
∥
∥∇kf h∥∥

L2 �
∥
∥∇k+1f h∥∥

L2 , k ≥ 1. (A.10)

Lemma A.7 ([8]) Suppose that b1, b2 ∈R
3 and b1 > 0, b2 > 0, it holds that for t ∈R+,

∫ t

0
(1 + τ )–b1 e–b2(t–τ ) dτ � C(b1, b2)(1 + t)–b1 , (A.11)

where C(b1, b2) is the constant that only depends on b1, b2.
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