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Abstract
In this paper, we study the existence, nonexistence, and multiplicity of positive
solutions to a nonlinear impulsive Sturm–Liouville boundary value problem with a
parameter. By using a variational method, we prove that the problem has at least two
positive solutions for the parameter λ ∈ (0,�), one positive solution for λ =�, and
no positive solution for λ >�, where � > 0 is a constant.
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1 Introduction
In this paper, we investigate the following nonlinear impulsive Sturm–Liouville boundary
value problem:

⎧
⎪⎪⎨

⎪⎪⎩

–Lu(t) = f (t, u(t)), t ∈ J/{t1, t2, . . . , tp},
�(h(tk)u′(tk)) = –λIk(u(tk)), k = 1, 2, . . . , p,

R1(u) = R2(u) = 0,

(1.1)

where J = [0, 1], p is a positive integer, 0 = t0 < t1 < t2 < · · · < tp < tp+1 = 1, Lu = (h(t)u′(t))′ –
q(t)u(t), R1(u) = αu′(0) – βu(0), R2(u) = γ u′(1) + σu(1), α,β ,γ ,σ ∈ R, �(h(tk)u′(tk)) =
h(t+

k )u′(t+
k ) – h(t–

k )u′(t–
k ), u′(t+

k ) and u′(t–
k ) represent the right limit and the left limit of u′(t)

at tk , respectively, and λ is a positive parameter.
The following conditions are assumed:
(H1) h ∈ C1(J), q ∈ C(J), h > 0, q > 0 for all t ∈ J , α,β ,γ ,σ ≥ 0, α2 + β2 > 0,γ 2 + σ 2 > 0,

and the linear equation (2.1) has only a trivial solution.
(H2) f ∈ C(J × R

+,R+), where R
+ = (0, +∞). f (t, x) = o(x) as x → 0+ uniformly to t ∈ J ,

and there exist constants μ > 2 and r > 0 such that for x ≥ r, t ∈ J ,

μF(t, x) ≤ xf (t, x),

where F(t, x) =
∫ x

0 f (t, s) ds.
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(H3) Ik ∈ C([0, +∞), [0, +∞)). For any k ∈ {1, 2, . . . , p}, Ik(x) → +∞ as x → +∞ or
supx>0 Ik(x) < ∞, and there exist 1 ≤ K ≤ p, 0 ≤ τ0 < 1,κ > 0 such that IK (x) ≥ κxτ0

for x > 0.
It should be noted that impulsive differential equations are important models described

by phenomena with abrupt changes in their states. Such models have considerable pop-
ularity in physics, population dynamics, ecology, industrial robotics, economics, biotech-
nology, and so on, see [1–3].

In recent years, boundary value problems of impulsive differential equations have been
researched extensively, see for example [4–18] and the references therein. In [19], Tian
and Ge studied the special cases of (1.1) without parameters

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(t) – μu(t) = g(t, u(t)), t ∈ J/{t1, t2, . . . , tp},
�(h(tk)u′(tk)) = sk(u(tk)), k = 1, 2, . . . , p,

R1(u) = R2(u) = 0,

(1.2)

where μ ∈ R, g and sk are of superlinear growth or sublinear growth, the authors showed
the existence of one or two positive solutions for (1.2). In [20], authors obtained the exis-
tence of a sign-changing solution and multiple solutions of

⎧
⎪⎪⎨

⎪⎪⎩

–Lu(t) = g(t, u(t)), t ∈ J/{t1, t2, . . . , tp},
�(h(tk)u′(tk)) = sk(u(tk)), k = 1, 2, . . . , p,

R1(u) = R2(u) = 0.

(1.3)

The technical approach makes use of the minimax method.
In [21], by using a three critical point theorem, authors considered the following fourth

order impulsive differential equations with two control parameters:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(4)(t) + Au′′(t) + Bu(t) = λf (t, u(t)) + μg(t, u(t)), t �= tk , t ∈ J ,

�(u′′(tk)) = I1k(u′(tk)), k = 1, 2, . . . , p,

�(u′′′(tk)) = I2k(u(tk)), k = 1, 2, . . . , p,

u(0) = u(T) = u′′(0) = u′′(T) = 0.

(1.4)

They established the sharp bounds of the parameters λ and μ for which problem (1.4)
admits at least three solutions. For the existence and multiplicity results of solutions of
impulsive boundary value problems obtained by using variational methods, we refer to
[22–31].

To our knowledge, there are few studies on the connection between the number of solu-
tions and the given parameter for impulsive differential equations. The aim of this paper
is to show the multiplicity, existence, and nonexistence of positive solutions for various
values of the given parameter. Our result shows that the number of positive solutions of
(1.1) changes if the parameter crosses a certain threshold.

This paper is organized as follows. In Sect. 2, we recall some preliminary results. In
Sect. 3, by using the mountain pass principle, we prove that (1.1) has at least two positive
solutions if λ is sufficiently small, and no solution if λ is sufficiently large, see Theorem 3.1.
Throughout the paper, the symbols C1, C2, . . . denote various positive constants whose
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exact values are not essential to the analysis of the problem. In addition, without loss of
generality, we may assume that f (t, x) = 0, Ik(x) = 0(1 ≤ k ≤ p) for x < 0 as we only consider
positive solutions.

2 Basic lemma
Let G(t, s) be Green’s function of the problem

⎧
⎨

⎩

–Lu = 0,

R1(u) = R2(u) = 0.
(2.1)

From [32], G(t, s) can be written as

G(t, s) =
1
ω

⎧
⎨

⎩

m(t)n(s), 0 ≤ t ≤ s ≤ 1,

m(s)n(t), 0 ≤ s ≤ t ≤ 1.
(2.2)

Lemma 2.1 The function G(t, s) defined by (2.2) has the following properties:
(1) m ∈ C2(J ,R) is increasing and m(t) > 0, t ∈ (0, 1].
(2) n ∈ C2(J ,R) is decreasing and n(t) > 0, t ∈ [0, 1).
(3) Lm ≡ 0, m(0) = α, m′(0) = β .
(4) Ln ≡ 0, n(1) = γ , n′(1) = –σ .
(5) ω is a positive constant and p(t)(m′(t)n(t) – m(t)n′(t)) ≡ ω.
(6) G(t, s) is continuous and symmetric in {(t, s) : 0 ≤ t ≤ s ≤ 1} × {(t, s) : 0 ≤ s ≤ t ≤ 1}.
(7) G(t, s) has continuous partial derivatives in {(t, s) : 0 ≤ t ≤ s ≤ 1}, {(t, s) : 0 ≤ s ≤ t ≤

1}.
(8) For each fixed s ∈ [0, 1], G(t, s) satisfies LG(t, s) = 0 for t �= s, t ∈ J and R1(G) = R2(G) =

0.
(9) G′

t has a discontinuous point of the first kind at t = s and G′
t(s + 0, s) – G′

t(s – 0, s) =
– 1

h(s) , s ∈ (0, 1).

Let P = {u ∈ C(J), u ≥ 0} and (Tu)(t) =
∫ 1

0 G(t, s)u(s) ds, then

T
(
P/{0}) ⊂ int P.

By the Krein–Rutman theorem, the spectral radius r(T) > 0 is determined by a simple
eigenvalue of T having an eigenfunction ϕ0(t) ∈ P with ϕ0 > 0, t ∈ (0, 1). It is easy to check
that λ∗ = r–1(T) is the smallest eigenvalue of the eigenvalue problem:

⎧
⎨

⎩

–Lu = λu,

R1(u) = R2(u) = 0,
(2.3)

and ϕ0 is eigenfunction corresponding to λ1.

Definition 2.1 A function u ∈  = {x ∈ C(J) : hx′ ∈ C(J/{t1, . . . , tp}), x′(t+
k ), x′(t–

k ) exists and
x′(tk) = x′(t–

k )} is said to be a solution of (1.1) if u satisfies the equation in (1.1) for t ∈
J/{t1, t2, . . . , tp} and impulsive conditions, boundary conditions of (1.1). The function u is
a positive solution of (1.1) if u is a solution of (1.1) and u(t) > 0 for t ∈ (0, 1).
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Let

H1(0, 1) =
{

u ∈ L2(0, 1) : u′ ∈ L2(0, 1)
}

,

H1
0 (0, 1) =

{
u ∈ H1(0, 1) : u(0) = u(1) = 0

}
,

�1 =
{

u ∈ H1(0, 1) : u(0) = 0
}

,

�2 =
{

u ∈ H1(0, 1) : u(1) = 0
}

,

A =

⎧
⎨

⎩

σ
γ

, γ �= 0,

0, γ = 0,
B =

⎧
⎨

⎩

β

α
, α �= 0,

0, α = 0,

H =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H1(0, 1), α �= 0,γ �= 0,

H1
0 (0, 1), α = γ = 0,

�1, α = 0,γ �= 0,

�2, α �= 0,γ = 0.

Define an inner product in H as follows:

(u, v) =
∫ 1

0

(
h(t)u′v′ + q(t)uv

)
dt + h(1)Au(1)v(1) + h(0)Bu(0)v(0).

This inner product induces the norm

‖u‖ =
(∫ 1

0

(
h
(
u′)2 + qu2)dt + h(1)Au2(1) + h(0)Bu2(0)

) 1
2

.

It is easy to check that H with the inner product (·, ·) is a Hilbert space, and u+ =
max{u, 0} ∈ H , u– = max{–u, 0} ∈ H for u ∈ H .

Define the functional �λ in H by

�λ(u) =
1
2
‖u‖2 –

∫ 1

0
F
(
t, u(t)

)
dt – λ

p∑

k=1

∫ u(tk )

0
Ik(s) ds.

Then �λ ∈ C1(H , R), and

〈
�′

λ(u), v
〉

= (u, v) –
∫ 1

0
f
(
t, u(t)

)
v(t) dt – λ

p∑

k=1

Ik
(
u(tk)

)
v(tk).

Lemma 2.2 If u ∈ H , then there is C > 0 such that

|u|0 ≤ C‖u‖, ∀u ∈ H ,

where |u|0 = maxt∈J |u(t)|.

Proof Let ‖ · ‖H be the usual norm of H1(0, 1). From the imbedding theorem, we know
that there is C0 > 0 such that

|u|0 ≤ C0‖u‖H .
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Note that there exists C > 0 such that

|u|0 ≤ C0‖u‖H ≤ C‖u‖.

The claim follows. �

Lemma 2.3 The problem of finding a solution u of (1.1) is equivalent to that of finding a
critical point of �λ, that is, 〈�′

λ(u), v〉 = 0 for all v ∈ H .

Proof Assume that u ∈  is a solution of (1.1). It is easy to check that u ∈ H . For any v ∈ H ,

∫ 1

0

[
–
(
hu′)′ + qu

]
v dt =

∫ 1

0
f (t, u)v dt,

that is,

–
∫ t1

0
v
(
hu′)′ dt –

∫ t2

t1

v
(
hu′)′ dt – · · · –

∫ 1

tp

v
(
hu′)′ dt +

∫ 1

0
quv dt =

∫ 1

0
f (t, u)v dt,

∫ 1

0
hu′v′ dt +

∫ 1

0
huv dt + h(0)u′(0)v(0) – h(1)u′(1)v(1)

=
∫ 1

0
f (t, u)v dt + λ

p∑

k=1

Ik
(
u(tk)

)
v(tk),

(u, v) =
∫ 1

0
f (t, u)v dt + λ

p∑

k=1

Ik
(
u(tk)

)
v(tk).

Hence, u is a critical point of �λ in H .
Let u ∈ H be a critical point of �λ, then 〈�′

λ(u), v〉 = 0 for any v ∈ H . Without generality,
we have

0 =
∫ tk+1

tk

(
hu′v′ + quv – f (t, u)v

)
dt

=
∫ tk+1

tk

hu′v′ dt +
∫ tk+1

tk

v d
(∫ tk

t

(
q(s)u(s) – f

(
s, u(s)

))
ds

)

=
∫ tk+1

tk

[

h(t)u′ –
∫ tk

t

(
q(s)u(s) – f

(
s, u(s)

))
ds

]

v′(t) dt.

Hence,

h(t)u′(t) –
∫ tk

t

(
q(s)u(s) – f

(
s, u(s)

))
ds ≡ C, a.e t ∈ (tk , tk+1).

So, hu′ has a weak derivative satisfying

(
hu′)′ – q(t)u(t) + f

(
t, u(t)

)
= 0, a.e. t ∈ (tk , tk+1).

From the continuity of h, q, f , u, we see that (hu′)′ exists for t ∈ (tk , tk+1). Hence u satisfies
the equality in (1.1).
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Noting that

0 = (u, v) –
∫ 1

0
f
(
t, u(t)

)
v(t) dt – λ

p∑

k=1

Ik
(
u(tk)

)
v(tk)

=
p∑

k=0

h(t)u′(t)v(t)|tk+1
t+
k

+
∫ 1

0
(–Lu)v dt + h(1)Au(1)v(1) + h(0)Bu(0)v(0)

–
∫ 1

0
f
(
t, u(t)

)
v(t) dt – λ

p∑

k=1

Ik
(
u(tk)

)
v(tk)

=
∫ 1

0

(
–Lu – f (t, u)

)
v dt + h(1)

[
u′(1) + Au(1)

]
v(1) + h(0)

[
–u′(0) + Bu(0)

]
v(0)

–
p∑

k=1

[
�

(
h(tk)u′(tk)

)
+ λIk

(
u(tk)

)]
v(tk),

we get

h(1)
[
u′(1) + Au(1)

]
v(1) + h(0)

[
–u′(0) + Bu(0)

]
v(0)

–
p∑

k=1

[
�

(
h(tk)u′(tk)

)
+ λIk

(
u(tk)

)]
v(tk) = 0. (2.4)

Next, we show that u satisfies the impulsive conditions in (1.1). If this is not the case,
without loss of generality, we may assume that there exists i ∈ {1, 2, . . . , p} such that

�
(
h(ti)u′(ti)

)
+ λIi

(
u(ti)

) �= 0.

Let v = �
p+1
j=0,j �=i(t – tj), then by (2.4),

h(1)
[
u′(1) + Au(1)

]
v(1) + h(0)

[
–u′(0) + Bu(0)

]
v(0)

–
p∑

k=1

[
�

(
h(tk)u′(tk)

)
+ λIk

(
u(tk)

)]
v(t)

= –
[
�

(
h(ti)u′(ti)

)
+ λIi

(
u(ti)

)]
v(ti) �= 0,

which contradicts (2.4). So u satisfies the impulsive conditions in (1.1). Similarly, u satisfies
the boundary conditions. �

Lemma 2.4 The function u ∈  is a solution of (1.1), then u satisfies

u(t) =
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds + λ

p∑

k=1

G(t, tk)Ik
(
u(tk)

)
.

Proof Let g ∈ C(J), dk ∈ R (1 ≤ k ≤ p) and consider the equation

⎧
⎪⎪⎨

⎪⎪⎩

–Lu = g(t), t �= tk ,

�(h(tk)u′(tk)) = –dk , k = 1, 2, . . . , p,

R1(u) = R2(u) = 0.

(2.5)
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We only need to show that the solution u of (2.5) satisfies

u(t) =
∫ 1

0
G(t, s)g(s) ds +

p∑

k=1

G(t, tk)dk .

It is easy to check that (2.5) has a unique solution. Let

S1(t) =
∫ 1

0
G(t, s)g(s) ds, S2(t) =

p∑

k=1

G(t, tk)dk , S(t) = S1(t) + S2(t).

It follows from Theorem 3.1.1 in [32] that S1 ∈ C2(J) and

–LS1 = g(t), R1(S1) = R2(S1) = 0.

Hence,–�(h(tk)S′
1(tk)) = 0 for 1 ≤ k ≤ p. From (8) and (9) of Lemma 2.1, one easily shows

that S2 ∈ C(J) and

⎧
⎪⎪⎨

⎪⎪⎩

–LS2 = 0, t �= tk ,

–�(h(tk)S′
2(tk)) = dk , k = 1, 2, . . . , p,

R1(u) = R2(u) = 0,

(2.6)

which implies that (hS2)′ = qS2 ∈ C(J/{t1, . . . , tp}). Hence, S is the solution of (2.5). �

Corollary 2.1 Let g ≥ 0 for t ∈ J and dk ≥ 0 for 1 ≤ k ≤ p, then the solution of (2.5) is
positive if g �≡ 0 or dk �≡ 0.

3 Main result
In this section, we give our main result. Firstly, we need to prove some lemmas.

Lemma 3.1 Let (H1) – (H3) hold. Then the problem

⎧
⎪⎪⎨

⎪⎪⎩

–Lu = f (t, u(t)), t �= tk ,

–�(h(tk)u(tk)) = τ ∈R
+, k = 1, 2, . . . , p,

R1(u) = R2(u) = 0

(3.1)

has a positive solution for sufficiently small τ > 0.

Proof Let

C̃ = inf

{

C :
∫ 1

0
u2 dt ≤ C‖u‖, u ∈ H

}

,

Ĉ = inf
{

C : |u|0 ≤ C‖u‖,∀u ∈ H
}

.

By the imbedding theorem, C̃ > 0, Ĉ > 0. From (H2), there exist a > 0, b > 0,σ > 0 such that

F(t, ε) ≤ 1
4C̃

ε2, ∀t ∈ J ,∀ε < σ , (3.2)
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F(t, s) ≥ asμ – b, ∀t ∈ J ,∀s ≥ 0. (3.3)

Consider the functional

J(u) =
1
2
‖u‖2 –

∫ 1

0
F
(
t, u(t)

)
dt – τ

p∑

k=1

u(tk),

whose critical point is a solution of (3.1). If u �= 0 is a solution of (3.1), from Corollary 2.1,
u is a positive solution of (3.1).

Taking τ < σ

8Ĉp , for ‖u‖ = 8pτ , we have

J(u) =
1
2
‖u‖2 –

∫ 1

0
F(t, u) dt – τ

p∑

k=1

u(tk)

≥ 1
2
‖u‖2 –

1
4C̃

∫ 1

0
u2 dt – τp|u|0

≥ ‖u‖
(

1
4
‖u‖ – τpĈ

)

= 8(pĈτ )2 > 0.

For any u+ �= 0,

J
(
tu+)

=
t2

2
∥
∥u+∥

∥2 –
∫ 1

0
F
(
s, tu+)

ds – τ t
p∑

k=1

u+(tk)

=
t2

2
∥
∥u+∥

∥2 – atμ

∫ 1

0

(
u+)μ ds + b – τ t

p∑

k=1

u+(tk)

→ –∞

as t → +∞ since μ > 2. Hence, there exists e ∈ H with ‖e‖ > 8pτ such that J(e) < 0.
It remains to check that J satisfies the PS condition. Let {un} ⊂ H such that |J(un)| ≤ M

and |J ′(un)| → as n → ∞. Then

M +
1
μ

‖un‖

≥ J(un) –
1
μ

J ′(un)un

=
(

1
2

–
1
μ

)

‖un‖2 –
∫ 1

0

[

F(t, un) –
1
μ

f (t, un)un

]

dt – τ

(

1 –
1
μ

) p∑

k=1

un(tk)

≥
(

1
2

–
1
μ

)

‖un‖2 – C2‖un‖ – C1

for some constants C1 > 0 and C2 > 0. So, {un} is bounded in H . Considering a subsequence
if necessary, we may assume that un ⇀ u in H . Thus,

0 ← (J ′(un) – J ′(u), un – u)

= ‖un – u‖2 –
∫ 1

0
[f (t, un) – f (t, u)](un – u) dt – τ

p∑

k=1

(un(tk) – u(tk)).



Yang et al. Boundary Value Problems         (2024) 2024:51 Page 9 of 19

Noting that un ⇀ u in H implies un → u in C(J), we have

∫ 1

0

[
f (t, un) – f (t, u)

]
(un – u) dt → 0,

p∑

k=1

(
un(tk) – u(tk)

) → 0

as n → ∞. Hence, ‖un – u‖ → 0, that is, un → u in H . Then the mountain pass theorem
implies that J has the critical point u with J(u) > 0. Clearly, u �≡ 0. �

Let �1 = {λ > 0, (1.1) has positive solution} and � = sup�1.

Lemma 3.2 There exists λ̄ > 0 such that (1.1) has at least a positive solution uλ for λ ∈ (0, λ̄)
and uλ is the local minimum of �λ with �λ(uλ) < 0. Moreover, uλ1 ≤ uλ2 for 0 < λ1 ≤ λ2 < λ̄.

Proof Let τ > 0 be sufficiently small and xτ be the positive solution of (3.1) in Lemma 3.1.
Consider the equation

⎧
⎪⎪⎨

⎪⎪⎩

–Lu = f (t, Txτ (u)), t �= tk ,

–�h(tk)u(tk) = λ0Ik(Txτ (tk )(u(tk))), k = 1, 2, . . . , p,

R1(u) = R2(u) = 0,

(3.4)

where

λ0 =
τ

max1≤k≤p(Ik(xτ (tk)))
,

Tα(u) =

⎧
⎪⎪⎨

⎪⎪⎩

α, u > α,

u, 0 ≤ u ≤ α, if α > 0

0, u < 0.

Obviously, the solution of (3.4) is equivalent to the critical point of φλ0,Txτ
, where

φλ,Txτ
(u) =

1
2
‖u‖2 –

∫ 1

0
FTxτ

(
t, u(t)

)
dt – λ

p∑

k=1

I
Txτ (tk )
k

(
u(tk)

)
,

FTxτ
(t, u) =

∫ u

0
f
(
t, Txτ (s)

)
ds, I

Txτ (tk )
k (u) =

∫ u

0
Ik

(
Txτ (tk )(s)

)
ds.

Since Txτ (s), Txτ (tk )(s) are bounded, we obtain that for any u ∈ H ,

∣
∣FTxτ

(t, u)
∣
∣ ≤ C3|u|0 ≤ C4‖u‖,

∣
∣I

Txτ (tk )
K

(
u(tk)

)∣
∣ ≤ C5|u|0 ≤ C6‖u‖,

which imply that φλ0,Txτ (u) → +∞ as ‖u‖ → +∞. In addition, φλ0,Txτ (u) is sequentially
weakly lower semicontinuous. It follows that there exists uλ0 ∈ H such that

φλ0,Txτ
(uλ0 ) = inf

{
φλ0,Txτ

(u) : u ∈ H
}

= mλ0 .
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Let ξ > 0 be sufficiently small such that ξϕ0(tK ) ≤ xτ (tK ). We obtain

φλ0,Txτ
(ξϕ0) =

ξ 2

2
‖u‖2 –

∫ 1

0
FTxτ

(t, ξϕ0) dt – λ0

p∑

k=0

ITxτ

k
(
ξϕ0(tk)

)
,

≤ ξ 2

2
‖u‖2 – λ0

∫ ξϕ0(tK )

0
IK

(
Txτ (tK )(s)

)
ds,

≤ ξ 2

2
‖u‖2 –

κλ0

1 + τ0

(
ξϕ0(tK )

)τ0+1 := g(ξ ),

where we use the fact that

FTxτ
(t, ξϕ0) ≥ 0, I

Txτ (tk )
k

(
ξϕ0(tk)

) ≥ 0 (k �= K).

Clearly,

mλ0 ≤ min
ξ>0

g(ξ ) =
τ0 – 1

2
(
κλ0ϕ

1+τ0
0 (tK )

) 1
1–τ0 < 0 = φλ0,Txτ

(0),

which implies that uλ0 �≡ 0. It is easy to show that uλ0 ≥ 0 and

(uλ0 , v) =
∫ 1

0
f
(
t, Txτ

(
uλ0 (t)

))
v(t) + λ0

p∑

k=1

Ik
(
Txτ (tk )

(
uλ0 (tk)

))
v(tk). (3.5)

Choosing v = (uλ0 – xτ )+ ∈ H as a test function, we have

(
uλ0 , (uλ0 – xτ )+)

=
∫ 1

0
f
(
t, Txτ (uλ0 )

)
(uλ0 – xτ )+ dt + λ0

p∑

k=1

Ik
(
Txτ (tk )

(
uλ0 (tk)

))
(uλ0 – xτ )+(tk)

≤
∫ 1

0
f (t, xτ )(uλ0 – xτ )+ dt + λ0

p∑

k=1

Ik
(
xτ (tk)

)
(uλ0 – xτ )+(tk)

≤
∫ 1

0
f (t, xτ )(uλ0 – xτ )+ dt + τ

p∑

k=1

(uλ0 – xτ )+(tk) =
(
xτ , (uλ0 – xτ )+)

⇒ (
uλ0 – xτ , (uλ0 – xτ )+) ≤ 0,

⇒ ∥
∥(uλ0 – xτ )+∥

∥ ≤ 0,

⇒ uλ0 ≤ xτ ,

⇒

⎧
⎪⎪⎨

⎪⎪⎩

–Luλ0 = f (t, uλ0 ),

–�(h(tk)u′
λ0

(tk)) = λ0Ik(uλ0 (tk)),

R1(uλ0 ) = R2(uλ0 ) = 0.

Next we show that uλ0 is a positive solution of (1.1) with λ = λ0. Since uλ0 �≡ 0 and uλ0 ≥ 0,
we may assume that there exists t∗ ∈ (0, 1) such that uλ0 (t∗) > 0. Because uλ0 is continuous,
there exists an open interval D ⊂ J with t∗ ∈ D such that uλ0 (t) > 0 for all t ∈ D. Hence
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f (t, uλ0 (t)) > 0 for t ∈ D. From Lemma 2.3, we obtain

uλ0 (t) =
∫ 1

0
G(t, s)f

(
s, uλ0 (s)

)
ds + λ0

p∑

k=1

Ik
(
uλ(tk)

)

≥
∫

D
G(t, s)f

(
s, uλ(s)

)
ds > 0

for t ∈ (0, 1).
Assume that μ ∈ (0,λ) and uλ is a positive solution of (1.1) with the parameter λ. We

consider the functional φμ,Tuλ
. By using a similar reasoning as above, one may obtain that

φμ,Tuλ
has the critical point uμ ≤ uλ, which is a positive solution of (1.1) with μ and the

local minimum of �μ with �μ(uμ) < 0. �

Lemma 3.3 0 < � < +∞.

Proof Clearly, �1 �= ∅. Let uλ be a positive solution of (1.1), then

(uλ, v) =
∫ 1

0
f (t, uλ)v dt + λ

p∑

k=1

Ik
(
uλ(tk)

)
v(tk), ∀v ∈ H . (3.6)

Note that ϕ0 is the solution of (2.3) with λ = λ∗, which satisfies

(ϕ0, v) = λ∗
∫ 1

0
ϕ0(t)v(t) dt, ∀v ∈ H . (3.7)

From (3.6) and (3.7), we have

λ∗
∫ 1

0
ϕ0uλ dt =

∫ 1

0
f (t, uλ)ϕ0 dt + λ

p∑

k=1

Ik
(
uλ(tk)

)
ϕ0(tk). (3.8)

By (H2) and (3.3), there exists C7 > 0 such that

f (t, s) ≥ (
1 + λ∗)s – C7, ∀t ∈ J ,∀s ≥ 0.

Hence,

∫ 1

0
ϕ0uλ dt ≤ C8, (3.9)

λκuτ0
λ (tK )ϕ0(tK ) ≤ λ∗

∫ 1

0
ϕ0uλ dt ≤ λ∗C8. (3.10)

In addition, by Lemma 2.3 and (H3), we have

uλ(tK ) ≥ λ

p∑

k=1

G(tk , tk)Ik
(
uλ(tk)

) ≥ λκG(tK , tK )uτ0
λ (tK ),

uλ(tK ) ≥ (
λκG(tK , tK )

) 1
1–τ0 ,
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which implies that

λ ≤ κ–1
(

λ∗C8

ϕ0(tK )

)1–τ0

G–1(tK , tK ) < +∞.

Hence, � < +∞. �

Remark 3.1 Since λ∗ ∫ 1
0 ϕ0uλ dt ≥ λ

∑p
k=1 Ik(uλ(tk))ϕ0(tk), there exists M > 0 independent

of λ such that Ik(uλ(tk)) < M for ∀1 ≤ k ≤ p. By (H3), there exists C > 0 independent of λ

such that for any 1 ≤ k ≤ p,

∫ uλ(tk )

0
Ik(t) dt ≤ C‖uλ‖.

Lemma 3.4 � ∈ �1.

Proof Let {λn} ∈ �1 be an increasing sequence such that λn → � as n → ∞. For every
n ≥ 1, one can find un ∈ H such that un is a positive solution of (1.1) with λ = λn. Since
f ≥ 0, Ik ≥ 0 and λ is increasing, if m > n,

⎧
⎨

⎩

–Lum = f (t, um), t �= tk ,

–�(h(tk)u′
m(tk)) = λmIk(um(tk)) ≥ λnIk(um(tk)), k = 1, 2, . . . , p.

Consider the functional φλn ,Tum . Similar to Lemma 3.2, we obtain that φλn ,Tum has a critical
point uλn ≤ um, which is a local minimum of φλn with �λn (uλn ) < 0. Hence, without loss
of generality, we may assume that for all n ≥ 1,

�λn (un) ≤ τ0 – 1
2

(
κλnϕ

1+τ0
0 (tK )

) 1
1–τ0 < 0.

Hence,

(un, un) =
∫ 1

0
f (t, un)un dt + λn

p∑

k=1

Ik
(
un(tk)

)
un(tk),

(un, un) ≤ 2
∫ 1

0
F(t, un) dt + 2λn

p∑

k=1

∫ un(tk )

0
Ik(s) ds,

∫ 1

0

[
f (t, un)un – 2F(t, un)

]
dt ≤ λn

[ p∑

k=1

2
∫ un(tk )

0
Ik(s) ds – Ik

(
un(tk)

)
un(tk)

]

.

From Remark 3.1 and (H2), we have

(

1 –
2
μ

)∫ 1

0
f (t, un)un dt + 2

∫

un≥r

[
f (t, un)un

μ
– F(t, un)

]

dt

+ 2
∫

un≤r

[
f (t, un)un

μ
– F(t, un)

]

dt ≤ C9‖un‖,

∫ 1

0
f (t, un)un ≤ C10‖un‖ + C11.
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Hence

‖u‖2 = (un, un) ≤ C12‖un‖ + C13,

which implies that {un} is bounded in H . Up to a subsequence, we have

un ⇀ û ∈ H in H , un → û ∈ H in C(J).

It follows that for any v ∈ H ,

(un, v) → (û, v),
∫ 1

0
f (t, un)v dt →

∫ 1

0
f (t, û)v dt, Ik

(
un(tk)

) → Ik
(
û(tk)

)
.

Combining with 〈�′
λn (un), v〉 = 0 and λn → �, we have

〈
φ′

λ(û), v
〉
= (û, v) –

∫ 1

0
f (t, û)v dt – �

p∑

k=1

Ik
(
û(tk)

)
v(tk) = 0.

Hence, û is a solution of (1.1) with λ = �. Finally, we show that û > 0 for t ∈ (0, 1). Clearly,
û ≥ 0 since un ≥ 0. In addition,

(un, un – û) =
∫ 1

0
f (t, un)(un – û) dt + λn

p∑

k=1

Ik
(
un(tk)

)(
un(tk) – û(tk)

)

→ 0,

(un, û) → (û, û),

and therefore, ‖un‖ → ‖û‖. Hence,

��(û) ← �λn (un) ≤ (κλnϕ
1+τ0
0 (tk))

1
1–τ0

τ0 – 1
2

< 0,

which implies that û �≡ 0, which is the positive solution of (1.1) with λ = �. �

Define

f0(t, x) =

⎧
⎨

⎩

f (t, uλ), x < uλ,

f (t, x), x ≥ uλ,
ik(x) =

⎧
⎨

⎩

Ik(uλ), x < uλ,

Ik(x), x ≥ uλ.

�0(u) =
1
2
‖u‖2 –

∫ 1

0
F0(t, u) dt – λ

p∑

k=1

Ĩk
(
u(tk)

)
,

F0(t, x) =
∫ x

0
f0(t, s) ds, Ĩk(x) =

∫ x

0
ik(s) ds,

where uλ is the local minimum of �λ with �λ(uλ) < 0 obtained in Lemma 3.2.
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Definition 3.1 Let � ⊆ H be a closed set and ϕ ∈ C1(H ,R). We say that a sequence {vn} ⊂
H is a (PS)�,c sequence of ϕ if

dist(vn,�) → 0, ϕ(vn) → c,
∥
∥ϕ′(vn)

∥
∥ → 0

as n → ∞. ϕ satisfies the (PS)�,c condition if every (PS)�,c sequence of ϕ has a convergent
subsequence.

Lemma 3.5 [33] Let ϕ ∈ C1(H ,R). Consider the number

c = inf
γ∈�

max
t∈[0,1]

ϕ
(
γ (t)

)
,

where � is the set of all continuous paths joining two points u and v in H . Suppose that �

is a closed subset of H such that

� ∩ {
w ∈ H : ϕ(w) ≥ c

}

separates u and v. If ϕ satisfies the (PS)�,c condition, then ϕ has a critical point of level c
on �.

Lemma 3.6 Suppose that � is a close subset of H , then �0 satisfies the (PS)�,c condition
for any c ∈R.

Proof Clearly, �0 ∈ C1(H ,R), and there exist C14 > 0, C15 > 0 such that

xf0(t, x)x – μF0(t, x) > –C14, ∀t ∈ J ,∀x ∈R, (3.11)

f0(t, x) ≥ (
1 + λ∗)x – C14, ∀t ∈ J ,∀x ∈R, (3.12)

F0(t, x) ≥ C15xμ – C14, ∀t ∈ J ,∀x > 0, (3.13)

f0(t, x) ≥ 0, ik(x) ≥ 0 (1 ≤ i ≤ p),∀t ∈ J , x ∈R, (3.14)

ik(x) → +∞ as x → +∞ or sup
x>0

ik(x) < +∞, ∀1 ≤ k ≤ p. (3.15)

Assume that {un} ⊂ H is a (PS)�,c sequence of �0, we have

(un, v) =
∫ 1

0
f0(t, un)v dt + λ

p∑

k=1

ik
(
un(tk)

)
v(tk) + on(1), ∀v ∈ H . (3.16)

Similar to (3.8), using (3.7) and (3.16), we have

λ∗
∫ 1

0
unϕ0 dt =

∫ 1

0
f0(t, un)ϕ0 dt + λ

p∑

k=1

ik
(
un(tk)

)
ϕ0(tk) + on(1). (3.17)

Let �1
n = {t ∈ J : un(t) ≥ 0},�2

n = {t ∈ J : un(t) < 0}, then if n is sufficiently large,

1 + λ∗
∫

�1
n

unϕ0 dt ≥
∫

�1
n

f0(t, un)ϕ0 dt – λ∗
∫

�2
n

unϕ0 dt ≥
∫

�1
n

f0(t, un)ϕ0 dt. (3.18)
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From (3.12), there exists C16 > 0 such that

0 ≤
∫

�1
n

unϕ0 dt ≤ C16 if n is sufficiently large. (3.19)

It follows that there exist C17 > 0, C18 > 0 such that if n is sufficiently large,

0 ≤ ik
(
un(tk)

) ≤ C17, 0 ≤ Ĩn
(
un(tk)

) ≤
∫ un(tk )

0
ik(s) ds ≤ C18‖un‖.

Hence, if n is sufficiently large, we have

1 + c +
1
μ

‖un‖ ≥ �0(un) –
1
μ

〈
�0(un), un

〉

=
(

1
2

–
1
μ

)

‖un‖ –
∫ 1

0

(

F0(t, un) –
1
μ

f0(t, un)un

)

dt

– λ

p∑

k=1

[

Ĩk
(
un(tk)

)
–

1
μ

ik
(
un(tk)

)
un(tk))

]

≥
(

1
2

–
1
μ

)

‖un‖2 – C19 – C20‖un‖.

This implies that {un} ⊂ H is bounded. By a standard argument, one can show that {un}
has a convergent subsequence. �

Remark 3.2 For �0,

〈
�′

0(uλ), v
〉
=

〈
�′

λ(uλ), v
〉
= 0, ∀v ∈ H , (3.20)

�0
(
uλ + v+)

= �λ

(
uλ + v+) ≥ �λ(uλ) = �0(uλ), ∀v ∈ H . (3.21)

Theorem 3.1 There exists 0 < � < +∞ such that (1.1) has at least two positive solutions
for all λ ∈ (0,�), one positive solution for λ = �, and no positive solutions for λ > �.

Proof From Lemma 3.2 and Lemma 3.3, (1.1) has no solution for λ > �, at least one posi-
tive solution for λ = � and a positive solution uλ with �λ(uλ) < 0 for 0 < λ < �.

It is easy to show that �0(uλ + sϕ0) → –∞ as s → +∞. Noting that

(uλ,ϕ0) =
∫ 1

0
f (t, uλ)ϕ0 dt + λ

p∑

k=1

Ik
(
uλ(tk)

)
ϕ0(tk) > 0,

‖uλ + sϕ0‖2 = (uλ + sϕ0, uλ + sϕ0) = ‖uλ‖2 + s(uλ,ϕ0) + s2‖ϕ0‖2 ≥ ‖uλ‖2 + s2‖ϕ0‖2,

we fix s0 > 0 such that R2 =: ‖uλ + s0ϕ0‖ > R1 =: ‖uλ‖, and

�0(uλ + s0ϕ0) < �λ(uλ) – 1.

Let � = {ξ ∈ C([0, 1], H)|ξ (0) = uλ, ξ (1) = uλ + s0ϕ0}, and

ρ = inf
ξ∈�

max
t∈[0,1]

�0
(
ξ (t)

)
.
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It follows that ρ ≥ �0(uλ) = �λ(uλ). If ρ = �λ(uλ), from (3.21), there exists 0 < δ < R2 – R1

such that inf{�0(u)|‖u‖ = R} = ρ for all R ∈ (R1, R1 + δ). Let � = H if ρ > �λ(uλ) and � =
{u : ‖u‖ = R1 + δ/2} if ρ = �λ(uλ). Clearly,

� ∩ {
w ∈ H ,�0(w) ≥ ρ

}

separates uλ and uλ + s0ϕ0. Hence, �0 has a critical point vλ such that �0(vλ) = ρ and
vλ ∈ �. If ρ = �λ(uλ),‖vλ‖ = R1 + δ/2 > ‖uλ‖, if ρ > φλ(uλ), �0(vλ) = ρ > �λ(uλ) = �0(uλ).
Hence, vλ �≡ uλ and

(vλ, w) =
∫ 1

0
f0(t, vλ)w dt + λ

p∑

k=1

ik
(
vλ(tk)

)
w(tk), ∀w ∈ H ,

(uλ, w) =
∫ 1

0
f (t, uλ)w dt + λ

p∑

k=1

Ik
(
uλ(tk)

)
w(tk), ∀w ∈ H .

Choosing w = (uλ – vλ)+, we have

(
uλ – vλ, (uλ – vλ)+)

=
∫ 1

0

[
f (t, uλ) – f0(t, vλ)

]
(uλ – vλ)+ dt

+ λ

p∑

k=1

(
Ik

(
uλ(tk)

)
– ik

(
vλ(tk)

))
(uλ – vλ)+(tk) = 0,

which implies that ‖(uλ – vλ)+‖ = 0 and uλ ≤ vλ. Hence,

f0(t, vλ) = f (t, vλ), ik
(
vλ(tk)

)
= Ik

(
v(tk)

)
,

�0(vλ) = �λ(vλ),
〈
�′

0(vλ), w
〉

=
〈
�λ(vλ), w

〉
= 0, ∀w ∈ H ,

and vλ is the second positive solution of (1.1). �

Remark 3.3 In fact, the function f satisfying (H2) is of superlinear growth, and the impul-
sive function affecting the number of positive solutions is of sublinear growth.

Example 3.1 Consider the differential equation

⎧
⎪⎪⎨

⎪⎪⎩

–x′′(t) + x(t) = x2(t), t �= 0.5,

x′(0.5+) = x′(0.5) – λ,

x′(0) = x′(1) = 0.

(3.22)

Clearly, the nonimpulsive differential equation corresponding (3.22) has a positive so-
lution x ≡ 1. The results in [19] cannot be applied to (3.22) since the nonlinear function
and impulsive functions in [19] are of superlinear growth or of sublinear growth.

Assume that x is a positive solution of (3.22), then

–
∫ 0.5

0
x′′(t) dt –

∫ 1

0.5
x′′(t) dt +

∫ 1

0
x(t) dt =

∫ 1

0
x2(t) dt
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Figure 1 Positive solutions to the equation of Example 3.22

and

∫ 1

0
x(t) dt =

∫ 1

0

(
x2(t) + λ

)
dt.

Clearly, x �≡ 1. If λ ≥ 1/4, then we have

∫ 1

0
x(t) dt > 2

√
λ

∫ 1

0
x(t) dt ≥

∫ 1

0
x(t) dt.

Hence, (3.22) has no positive solution if λ ≥ 1/4. From Theorem 3.1, (3.22) has two positive
solutions for sufficiently small λ > 0. When λ = 0.0001, two positive solutions of (3.22) can
be found in Fig. 1.

4 Conclusion
In this paper, we discussed the existence, nonexistence, and multiplicity of positive so-
lutions for a class of impulsive Sturm–Liouville boundary value problems with a param-
eter. Using the mountain pass principle, we show that the number of positive solutions
depends on the change of parameters, in which sublinear impulsive perturbation plays
an important role. In fact, one can prove that the nonimpulsive case of (1.1), that is,
Ik ≡ 0(1 ≤ k ≤ p), has at least a positive solution. How does the combination of impul-
sive perturbation and parameter affect the behavior of the equation? We will discuss the
issue in follow-up research.
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21. Afrouzi, G.A., Hadjian, A., Rădukescu, V.D.: Variational approach to fourth-order impulsive differential equations with
two control parameters. Results Math. 65, 371–384 (2014). https://doi.org/10.1007/s00025-013-0351-5

22. Afroui, G.A., Hadjian, A.Z.: A variational approach for boundary value problems for impulsive fractional differential
equations. Fract. Calc. Appl. Anal. 21, 1565–1584 (2018). https://doi.org/10.1515/fca-2018-0082

23. Chen, P., Tang, X.: New existence and multiplicity of solutions for some Dirichlet problems with impulsive effects.
Math. Comput. Model. 55, 723–739 (2012). https://doi.org/10.1016/j.mcm.2011.08.046

24. Heidarkhani, S., Ferrara, M., Salari, A.: Infinitely many periodic solutions for a class of perturbed second-order
differential equations with impulses. Acta Appl. Math. 139, 81–94 (2015). https://doi.org/10.1007/s10440-014-9970-4

25. Sun, J.T., Chen, H., Yang, L.: The existence and multiplicity of solutions for an impulsive differential equation with two
parameters via a variational method. Nonlinear Anal. 72, 440–449 (2010). https://doi.org/10.1016/j.na.2010.03.035

26. Tian, Y., Zhang, M.: Variational method to differential equations with instantaneous and non-instantaneous impulses.
J. Mol. Med. 94, 160–165 (2019). https://doi.org/10.1016/j.aml.2019.02.034

27. Wang, S.H., Tian, Y.: Variational methods to the fourth-order linear and nonlinear differential equations with
non-instantaneous impulses. J. Appl. Anal. Comput. 10, 2521–2536 (2020). https://doi.org/10.11948/20190413

28. Wang, W.B.: Infinitely many solutions for nonlinear periodic boundary value problem with impulses. RACSAM 111,
1093–1103 (2017). https://doi.org/10.1007/s13398-016-0348-5

29. Wang, W.B., Liu, Y.: Infinitely many solutions for higher order impulsive equations without symmetry. Rocky Mt. J.
Math. 52, 1473–1484 (2022). https://doi.org/10.1216/rmj.2022.52.1473

30. Wang, W.B., Zuo, X.X.: Bifurcation type phenomena for positive solutions of a class of impulsive differential equations.
Math. Methods Appl. Sci. 23, 1–14 (2023). https://doi.org/10.1002/mma.9011

31. Zhang, D., Dai, B.X.: Infinitely many solutions for a class of nonlinear impulsive differential equations with periodic
boundary conditions. Comput. Math. Appl. 61, 3153–3160 (2011). https://doi.org/10.1016/j.camwa.2011.04.003

32. Guo, D., Sun, J., Liu, Z.: Functional Methods in Nonlinear Ordinary Differential Equation. Shandong Science and
Technology Press, Jinan (1995)

33. Youssef, J.: The Mountain Pass Theorem, Variant,Generalizations and Some Applications. Encyclopedia of
Mathematics and Its Applications. Cambridge University Press, Britain (2003)

https://doi.org/10.1007/s00010-004-2735-9
https://doi.org/10.1016/j.na.2007.09.018
https://doi.org/10.32523/2077-9879-2022-13-4-54-60
https://doi.org/10.1016/j.jmaa.2006.09.021
https://doi.org/10.2989/16073606.2021.1945702
https://doi.org/10.1016/j.jmaa.2005.04.005
https://doi.org/10.1016/j.jmaa.2006.01.027
https://doi.org/10.1016/j.amc.2018.07.003
https://doi.org/10.1515/fca-2021-0046
https://doi.org/10.1016/j.nonrwa.2007.10.022
https://doi.org/10.18514/MMN.2022.3767
https://doi.org/10.1016/j.jmaa.2004.08.034
https://doi.org/10.12775/TMNA.2014.050
https://doi.org/10.1186/s13662-015-0601-9
https://doi.org/10.1007/s10255-007-7136-0
https://doi.org/10.1016/j.na.2009.06.051
https://doi.org/10.1016/j.jmaa.2011.08.042
https://doi.org/10.1007/s00025-013-0351-5
https://doi.org/10.1515/fca-2018-0082
https://doi.org/10.1016/j.mcm.2011.08.046
https://doi.org/10.1007/s10440-014-9970-4
https://doi.org/10.1016/j.na.2010.03.035
https://doi.org/10.1016/j.aml.2019.02.034
https://doi.org/10.11948/20190413
https://doi.org/10.1007/s13398-016-0348-5
https://doi.org/10.1216/rmj.2022.52.1473
https://doi.org/10.1002/mma.9011
https://doi.org/10.1016/j.camwa.2011.04.003


Yang et al. Boundary Value Problems         (2024) 2024:51 Page 19 of 19

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Multiplicity and nonexistence of positive solutions to impulsive Sturm-Liouville boundary value problems
	Abstract
	Keywords

	Introduction
	Basic lemma
	Main result
	Conclusion
	Funding
	Declarations
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note


