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Abstract
We investigate a generalized poly-Laplacian system with a parameter on weighted
finite graphs, a generalized poly-Laplacian system with a parameter and Dirichlet
boundary value on weighted locally finite graphs, and a (p,q)-Laplacian system with a
parameter on weighted locally finite graphs. We utilize a critical points theorem built
by Bonanno and Bisci [Bonanno, Bisci, and Regan, Math. Comput. Model.
52(1-2):152–160, 2010], which is an abstract critical points theorem without
compactness condition, to obtain that these systems have infinitely many nontrivial
solutions with unbounded norm when the parameters locate some well-determined
range.
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1 Introduction
Assume that G = (V , E) is a graph, where V is the vertex set and E is the edge set. G is
usually known as a finite graph when V and E have finite elements, and G is usually known
as a locally finite graph when for any x ∈ V , there exist finite y ∈ V satisfying xy ∈ E, where
xy represents an edge linking x and y. The weight on any given edge xy ∈ E is denoted by
ωxy, which is supposed to satisfy ωxy > 0 and ωxy = ωyx. Moreover, we set deg(x) =

∑
y∼x ωxy

for any fixed x ∈ V . Here, we use y ∼ x to represent those y linked to x. d(x, y) represents
the distance between any two points x, y ∈ V , which is defined by the minimal number of
edges linking x to y. Suppose that � is a subset in V . If there exists a positive constant D
such that d(x, y) ≤ D for all x, y ∈ �, then � is known as a bounded domain in V . Set

∂� := {y ∈ V , y /∈ � : ∃x ∈ � satisfying xy ∈ E},

which is known as the boundary of �. The interior of � is represented by �◦ = �\∂�,
which obviously satisfies �◦ = �.
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Thereinafter, μ : V → R

+ is supposed to be a finite measure. Set

Dw,yu(x) :=
1√
2
(
u(x) – u(y)

)
√

wxy

μ(x)
, (1.1)

which is the directional derivative of u : V →R, and then the gradient of u is defined as

∇u(x) :=
(
Dw,yu(x)

)
y∈V (1.2)

that is a vector and is indexed by y. Set

�(u, v)(x) =
1

2μ(x)
∑

y∼x
wxy

(
u(y) – u(x)

)(
v(y) – v(x)

)
. (1.3)

Then it is obvious that

�(u, v) = ∇u · ∇v. (1.4)

Define

|∇u|(x) =
√

�(u, u)(x) =
(

1
2μ(x)

∑

y∼x
wxy

(
u(y) – u(x)

)2
) 1

2
, (1.5)

which represents the length of ∇u. Furthermore, the length of m-order gradient of u is
represented by |∇mu| that is defined by

∣
∣∇mu

∣
∣ =

⎧
⎨

⎩

|∇�
m–1

2 u|, if m is an odd number,

|� m
2 u|, if m is an even number.

(1.6)

Here, we define ∇�
m–1

2 u by (1.2) with substituting �
m–1

2 u for u, and �
m
2 u = �(� m

2 –1u),
where the Laplacian operator � of u is defined as

�u(x) :=
1

μ(x)
∑

y∼x
wxy

(
u(y) – u(x)

)
. (1.7)

For any given l > 1, set

�lu(x) :=
1

2μ(x)
∑

y∼x

(|∇u|l–2(y) + |∇u|l–2(x)
)
ωxy

(
u(y) – u(x)

)
, (1.8)

which is known as the l-Laplacian operator of u. l-Laplacian operator obviously becomes
the Laplacian operator of u as l = 1.

For convenience, we set

∫

V
u(x) dμ =

∑

x∈V

μ(x)u(x). (1.9)
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For any r ∈ R with r ≥ 1, set

Lr(V ) =
{

u : V → R|
∫

V

∣
∣u(x)

∣
∣r dμ < ∞

}

equipped by the norm

‖u‖Lr (V ) =
(∫

V

∣
∣u(x)

∣
∣r dμ

) 1
r
. (1.10)

For any u : V →R, according to the distributional sense, we write �l as

∫

V
(�lu)v dμ = –

∫

V
|∇u|l–2�(u, v) dμ, (1.11)

where v ∈ Cc(V ) and Cc(V ) is the set of all real functions with compact support. Further-
more, a more general operator £m,l could be defined as

∫

V
(£m,lu)φ dμ

=

⎧
⎨

⎩

∫
V |∇mu|l–2�(� m–1

2 u,� m–1
2 φ) dμ, when m is an odd number,

∫
V |∇mu|l–2�

m
2 u�

m
2 φ dμ, when m is an even number,

(1.12)

for any φ ∈ Cc(V ), where l ∈ R with l > 1 and m ∈ N. £m,p is known as the poly-Laplacian
of u as m = 2, and £m,l degenerates to the l-Laplacian operator as m = 1. Those above
concepts and more related details refer to [6] and [10].

In this paper, we focus on the existence of infinitely many solutions for the following
generalized poly-Laplacian system on finite graph G = (V , E):

⎧
⎨

⎩

£m1,pu + h1(x)|u|p–2u = λFu(x, u, v), x ∈ V ,

£m2,qv + h2(x)|v|q–2v = λFv(x, u, v), x ∈ V ,
(1.13)

where mi ∈N, hi : V → R

+, i = 1, 2, 1 < p, q < +∞, λ > 0, and F : V ×R

2 →R.
Moreover, if G = (V , E) is a locally finite graph, we focus on the existence of infinitely

many solutions for the following generalized poly-Laplacian system with Dirichlet bound-
ary condition:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

£m1,pu = λFu(x, u, v), x ∈ �◦,

£m2,qv = λFv(x, u, v), x ∈ �◦,

|∇ ju| = 0, x ∈ ∂�, 0 ≤ j ≤ m1 – 1,

|∇ iv| = 0, x ∈ ∂�, 0 ≤ i ≤ m2 – 1,

(1.14)

where 1 < p, q < +∞, λ > 0, mi ∈ N with mi ≥ 1, i = 1, 2, and � ⊂ G(V , E) is a bounded
domain.
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Finally, we are also concerned with the existence of infinitely many solutions for the
following (p, q)-Laplacian system on locally finite graph G = (V , E):

⎧
⎨

⎩

–�pu + h1(x)|u|p–2u = λFu(x, u, v), x ∈ V ,

–�qv + h2(x)|v|q–2v = λFv(x, u, v), x ∈ V ,
(1.15)

where –�p and –�q are defined by (1.8) with l = p, q, p ≥ 2 and q ≥ 2, F : V × R

2 → R,
hi : V →R

+, i = 1, 2, and λ > 0.
The existence and asymptotic properties of nontrivial solutions for quasilinear ellip-

tic equations have been studied extensively on Euclidean domain (for example, [13, 14,
16, 24]). With the development of machine learning, data analysis, social network, im-
age processing and traffic network, the analysis on graphs has attracted some attentions
[1–3, 7, 20, 21]. In particular, recently, in [10] and [11], Grigor’yan, Lin, and Yang studied
several nonlinear elliptic equations on graphs and first established the Sobolev spaces and
the variational framework on graphs. Subsequently, there have been some works on p-
Laplacian equations and more general poly-Laplacian equations on graphs. For example,
in [15], Pinamonti and Stefani studied some semi-linear equations with the poly-Laplacian
operator on locally finite graphs. They established some existence results of weak solutions
via a variational method by using the continuity properties of the energy functionals. In
[19], Shao studied a nonlinear p-Laplacian equation on a locally finite graph. Some exis-
tence results of positive solutions and positive ground state solutions are established by
exploiting the mountain pass theorem and the Nehari manifold. For more related results,
also refer to, for example, [8, 9, 12, 17], and [18].

In addition to the case of single equations, recently, the study of systems on graphs has
also yielded some results. For example, in [25], Zhang et al. considered system (1.13) with
λ = 1. They supposed that F takes on the super-(p, q) growth and then established the
existence result of a nontrivial solution by exploiting the mountain pass theorem. They
also established a multiplicity result by utilizing the symmetric mountain pass theorem.
In [23], Yu et al. considered (1.14) and system (1.15) with p = q, λ = 1, and F(x, u) =
–K(x, u) + W (x, u) for all x ∈ V . By utilizing the mountain pass theorem, they achieved
that (1.14) has a nontrivial solution. In [22], Yang and Zhang investigated (1.15) with per-
turbations and two parameters λ1 and λ2. Under the assumptions that the nonlinearity sat-
isfies a sub-(p, q) conditions, they achieved that system has at least one nontrivial solution
by Ekeland’s variational principle. When the nonlinearity equipped the super-(p, q) condi-
tions, they established that system has at least one nontrivial solution with positive energy
and one nontrivial solution with negative energy by exploiting mountain pass theorem and
Ekeland’s variational principle. In [17], when h1(x) = λa+1 and h2(x) = λb+1, Shao studied
(1.15) with p = q. By the Nehari manifold method and some analytical techniques, under
some suitable assumptions on the potentials and nonlinear terms, they proved that system
possesses a ground state solution (uλ, vλ) when the parameter λ is large enough.

Our investigation is mainly motivated by the above mentioned works and [4, 5]. In [4],
Bonanno and Bisci established the existence result of a sequence {un} of critical points for
the functional fλ := 	 – λ
 with λ ∈ R, and got a well-determined interval of the param-
eter λ. In [5], Bonanno and Bisci obtained that a class of quasilinear elliptic system in the
Euclidean framework possesses infinitely many weak solutions by the abstract theorem es-
tablished in [4]. In the present paper, we also apply the critical points theorem developed
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by Bonanno and Bisci [4] to system (1.13), (1.14), and (1.15), and we obtain that these
systems have infinitely many nontrivial solutions with unbounded norm when the param-
eters λ locate some well-determined ranges. To the best of our knowledge, there seemed
to be no works to investigate the existence of infinitely many solutions for equations or
systems on finite graph or locally finite graph. Our works are a preliminary attempt in this
field.

2 Preliminaries
In this section, we recall some basic knowledge on the Sobolev space on graph. For more
details, refer to [10, 22, 25]. We also recall an abstract critical point theorem built in [4],
which is exploited to prove our main results.

Suppose that G = (V , E) is a finite graph. For any fixed m ∈ N and any fixed l ∈ R with
l > 1, set

W m,l(V ) = {u : V →R}

equipped with the norm

‖u‖W m,l(V ) =
(∫

V

(∣
∣∇mu(x)

∣
∣l + h(x)

∣
∣u(x)

∣
∣l)dμ

) 1
l
, (2.1)

where h(x) > 0 for all x ∈ V . W m,l(V ) is a Banach space with finite dimension.
Suppose that G = (V , E) is a locally finite graph and � is a bounded domain in V . For

any fixed l ∈R with l > 1 and any fixed m ∈N, set

W m,l(�) = {u : � →R}

equipped with the norm

‖u‖W m,l(�) =

( m∑

k=0

∫

�∪∂�

(∣
∣∇ku(x)

∣
∣l dμ

) 1
l

.

Define

Cm
0 (�) =

{
u : � →R|u = |∇u| = · · · =

∣
∣∇m–1u

∣
∣ = 0

}
.

W m,l
0 (�) is seen as the completion of Cm

0 (�) in W m,l(�). W m,l
0 (�) is a finite dimensional

Banach space since � is a finite set. On W m,l
0 (�), one can also equip the following norm:

‖u‖W m,l
0 (�) =

(∫

�∪∂�

(∣
∣∇ku(x)

∣
∣l dμ

) 1
l

.

Then ‖u‖W m,l
0 (�) is equivalent to ‖u‖W m,l(�).

Suppose that G = (V , E) is a locally finite graph. W 1,l(V ) (l > 1) is the completion of Cc(V )
based on the norm

‖u‖W 1,l
h (V ) =

(∫

V

(∣
∣∇u(x)

∣
∣l + h(x)

∣
∣u(x)

∣
∣l)dμ

) 1
l
,
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where h : V →R and there exists a positive constant h0 such that h(x) ≥ h0. Set the space

W 1,l
h (V ) =

{

u ∈ W 1,l(V )
∣
∣
∣

∫

V
h(x)

∣
∣u(x)

∣
∣l dμ < ∞

}

equipped with the norm ‖u‖W 1,l
h (V ).

Lemma 2.1 ([10, 25]) Suppose that G = (V , E) is a finite graph. For any ψ ∈ W m,l(V ), there
exists

‖ψ‖∞,V ≤ Kl‖ψ‖W m,l(V ),

where ‖ψ‖∞ = maxx∈V |ψ(x)| and Kl = ( 1
μminhmin

)
1
l with μmin = minx∈V μ(x) and hmin =

minx∈V h(x).

Lemma 2.2 ([10, 25]) Suppose that G = (V , E) is a locally finite graph and � is a bounded
domain in V satisfying �◦ �= ∅. Let m ∈N and l > 1. Then W m,l

0 (�) is continuously embed-
ded into Lθ (�) for all 1 ≤ θ ≤ +∞. In particular, there exists a positive constant C(m, l,�),
which just depends on m, l, and � satisfying

(∫

�

|u|q dμ

) 1
q

≤ C(m, l,�)
(∫

�∪∂�

∣
∣∇mu

∣
∣p dμ

)

,

‖u‖∞,� ≤ C
μ1/l

min,�
‖u‖W m,l

0 (�)

for all 1 ≤ θ ≤ +∞ and all u ∈ W m,l
0 (�), where ‖u‖�,∞ = maxx∈� |u(x)| and μmin,� =

minx∈� μ(x). Moreover, W m,l
0 (�) is pre-compact, that is, if {un} is bounded in W m,l

0 (�), then
up to a subsequence, there exists some u ∈ W m,l

0 (�) such that un → u in W m,l
0 (�).

Lemma 2.3 ([22]) Suppose that G = (V , E) is a locally finite graph, and h(x) > h0 and μ(x) >
μ0 for all x ∈ V , some h0 > 0 and some μ0 > 0. If (H1) holds, then W 1,l

h (V ) is continuously
embedded into Lr(V ) for all 1 < l ≤ r ≤ ∞, and the following inequalities hold:

‖u‖∞ ≤ 1
h1/l

0 μ1/l
0

‖u‖W 1,l
h (V )

and

‖u‖Lr (V ) ≤ μ
l–r
lr

0 h
– 1

l
0 ‖u‖W 1,l

h (V ) for all l ≤ r < ∞.

Lemma 2.4 ([4]) Assume that X is a reflexive real Banach space, 	,
 : X → R are two
Gâteaux differentiable functionals satisfying 	 is continuous, sequentially weakly lower
semicontinuous, and coercive, and 
 is sequentially weakly upper semicontinuous. For each
r > infX 	, set

ϕ(r) := inf
u∈	–1([–∞,r])

(supu∈	–1([–∞,r]) 
(u)) – 
(u)
r – 	(u)
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and

γ := lim inf
r→+∞ ϕ(r).

Then,
(a) if γ < +∞, for each λ ∈ (0, 1

γ
), the following alternative holds: either

(a1) Iλ := 	 – λ
 admits a global minimum, or
(a2) there exists a sequence {un} of critical points (local minima) of Iλ satisfying

limn→∞ 	(un) = +∞.
(b) if δ < +∞, for each λ ∈ (0, 1

δ
), the following alternative holds: either

(b1) there exists a global minimum of 	 that is a local minimum of Iλ, or
(b2) there exists a sequence of pairwise distinct critical points (local minima) of Iλ that

weakly converges to a global minimum of 	.

3 Result and proofs for system (1.13)
In this section, we investigate the generalized poly-Laplacian system (1.13) and obtain the
following result.

Let

�V = max

{
1
p

∫

V
h1(x) dμ,

1
q

∫

V
h2(x) dμ

}

,

KV = max

{
1

μminh1,min
,

1
μminh2,min

}

.
(3.1)

Theorem 3.1 Suppose that G = (V , E) is a finite graph and the following conditions hold:
(H) hi(x) > 0 for all x ∈ V , i = 1, 2;
(F0) F(x, s, t) is continuously differentiable in (s, t) ∈R

2 for all x ∈ V ;
(F1)

∫
V F(x, 0, 0) dμ = 0;

(F2)

0 < AV := lim inf
y→+∞

∫
V max|s|+|t|≤y F(x, s, t) dμ

yδ
< lim sup

|s|+|t|→∞

∫
V F(x, s, t) dμ

|s|p + |t|q := BV ,

where δ = min{p, q}. Then, for each λ ∈ (λ1,V ,λ2,V ) with λ1,V = �V
BV

and λ2,V = 1
p2p–1KV AV

,
system (1.13) possesses an unbounded sequence of solutions.

To prove Theorem 3.1, we work in the space WV := W m1,p(V )×W m2,q(V ) equipped with
the norm ‖(u, v)‖V = ‖u‖W m1,p(V ) + ‖v‖W m2,q(V ). Then (WV ,‖ · ‖V ) is a finite dimensional
Banach space.

Consider the functional Iλ,V : WV →R as

Iλ,V (u, v) =
1
p

∫

V

(∣
∣∇m1 u

∣
∣p + h1(x)|u|p)dμ +

1
q

∫

V

(∣
∣∇m2 v

∣
∣q + h2(x)|v|q)dμ

– λ

∫

V
F(x, u, v) dμ.
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Then, under the assumptions of Theorem 3.1, Iλ,V ∈ C1(WV ,R) and

〈
I ′
λ,V (u, v), (φ1,φ2)

〉
=

∫

V

[
(£m1,pu)φ1 + h1(x)|u|p–2uφ1 – λFu(x, u, v)φ1

]
dμ

+
∫

V

[
(£m2,qv)φ2 + h2(x)|v|q–2vφ2 – λFv(x, u, v)φ2

]
dμ

for any (u, v), (φ1,φ2) ∈ WV .
A standard argument implies that (u, v) ∈ WV is a critical point of Iλ,V iff

∫

V

(
£m1,pu + h1(x)|u|p–2u – λFu(x, u, v)

)
φ1 dμ = 0

and
∫

V

(
£m2,qv + h2(x)|v|q–2v – λFv(x, u, v)

)
φ2 dμ = 0

for all (φ1,φ2) ∈ WV . Furthermore, by the arbitrariness of φ1 and φ2, it can be achieved
that

£m1,pu + h1(x)|u|p–2u = λFu(x, u, v),

£m2,qv + h2(x)|v|q–2v = λFv(x, u, v).

Therefore, seeking the solutions for system (1.13) is equivalent to seeking the critical
points of Iλ,V on WV (see [25] for example).

To apply Lemma 2.4, we shall exploit the functionals 	V : WV → R and 
V : WV → R,
which are set by

	V (u, v) =
1
p

∫

V

(∣
∣∇m1 u

∣
∣p + h1(x)|u|p)dμ +

1
q

∫

V

(∣
∣∇m2 v

∣
∣q + h2(x)|v|q)dμ

=
1
p
‖u‖p

W m1,p(V ) +
1
q
‖v‖q

W m2,q(V )

and


V (u, v) =
∫

V
F(x, u, v) dμ.

Then Iλ,V (u, v) = 	V – λ
V . For each r > infWV 	V , define

ϕV (r) = inf
(u,v)∈	–1

V ([–∞,r])

(sup(u,v)∈	–1
V ([–∞,r]) 
V (u, v)) – 
V (u, v)

r – 	V (u, v)
.

Lemma 3.1 Assume that (F2) holds. Then γV := lim infr→+∞ ϕV (r) < +∞.

Proof Let {cn} be a real sequence satisfying limn→∞ cn = +∞ and

lim
n→∞

∫
V max|s|+|t|≤cn F(x, s, t) dμ

cδ
n

= AV .
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Write

rn =
21–pcδ

n
pKV

for every n ∈N.

By Lemma 2.1, for all (u, v) ∈ W with 	V (u, v) ≤ rn, we get

‖u‖p
∞,V

p
+

‖v‖q
∞,V

q
≤ KV

(‖u‖p
W m1,p(V )

p
+

‖v‖q
W m2,q(V )

q

)

≤ KV rn. (3.2)

Next, we claim that there exists n0 ∈ N such that |u(x)| + |v(x)| ≤ cn for all n ≥ n0, all
x ∈ V , and all (u, v) ∈ WV with 	V (u, v) ≤ rn. We prove the claim through the following
three cases. Without loss of generality, we let δ = q.

(1) Assume that ‖u‖∞,V < 1 and ‖v‖∞,V < 1. It is obvious that there exists n1 ∈ N such
that ‖u‖∞,V + ‖v‖∞,V ≤ cn for all n > n1 by the fact limn→∞ cn = +∞.

(2) Assume that ‖u‖∞,V ≥ 1, ‖v‖∞,V ≥ 1 or ‖u‖∞,V ≥ 1, ‖u‖∞,V < 1. Then

‖u‖p
∞,V

p
+

‖v‖q
∞,V

q
≥ ‖u‖q

∞,V + ‖v‖q
∞,V

p

≥ 21–q(‖u‖∞,V + ‖v‖∞,V )q

p
,

which together with (3.2), implies that

cq
n ≥ 2p–q(‖u‖∞,V + ‖v‖∞,V

)q ≥ (‖u‖∞,V + ‖v‖∞,V
)q. (3.3)

Thus ‖u‖∞,V + ‖v‖∞,V ≤ cn.
(3) Assume that ‖u‖∞,V < 1 and ‖v‖∞,V ≥ 1. Then

‖u‖p
∞,V

p
+

‖v‖q
∞,V

q
≥ min

{
1
p

,
‖v‖q–p

∞,V

q

}
(‖u‖p

∞,V + ‖v‖p
∞,V

)

≥ min

{
1
p

,
‖v‖q–p

∞,V

q

}

21–p(‖u‖∞,V + ‖v‖∞,V
)p. (3.4)

If min{ 1
p , ‖v‖q–p

∞,V
q } = 1

p , by (3.2) and (3.4), we have

KV rn =
21–pcq

n

p

≥ 21–p(‖u‖∞,V + ‖v‖∞,V )p

p

≥ 21–p(‖u‖∞,V + ‖v‖∞,V )q

p
.

Thus ‖u‖∞,V + ‖v‖∞,V ≤ cn.
By (3.2), we have

‖v‖q
∞,V

q
≤ 21–pcq

n

p
.
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Note that q – p ≤ 0. Then the above inequality implies that

‖v‖q–p
∞,V ≥

(
q
p

) q–p
q

2
(1–p)(q–p)

q cq–p
n .

Thus, if min{ 1
p , ‖v‖q–p

∞,V
q } = ‖v‖q–p

∞,V
q , by (3.2) and (3.4), we have

KV rn =
21–pcq

n

p

≥ ‖v‖q–p
∞,V

q
21–p(‖u‖∞,V + ‖v‖∞,V

)p

≥
(

q
p

) q–p
q

2
(1–p)(q–p)

q cq–p
n

21–p

q
(‖u‖∞,V + ‖v‖∞,V

)p.

Hence, an easy computation implies that

cp
n ≥

(
p
q

) p
q

2
(1–p)(q–p)

q
(‖u‖∞,V + ‖v‖∞,V

)p ≥ (‖u‖∞,V + ‖v‖∞,V
)p.

Thus, based on the three cases, we conclude that for all (u, v) ∈ WV with 	V (u, v) ≤ rn, we
have |u(x)| + |v(x)| ≤ cn for all x ∈ V . Therefore, it follows from (F1) that

ϕV (rn)

= inf
1
p ‖u‖p

W m1,p(V )+ 1
q ‖v‖q

W m2,q(V )≤rn

sup 1
p ‖u‖p

Wm1 ,p (V )+ 1
q ‖v‖q

Wm2 ,q (V )≤rn

∫
V F(x, u, v) dμ –

∫
V F(x, u, v) dμ

rn – ( 1
p ‖u‖p

W m1,p(V ) + 1
q ‖v‖q

W m2,q(V ))

≤
sup 1

p ‖u‖p
W m1,p(V )+ 1

q ‖v‖q
W m2,q(V )≤rn

∫
V F(x, u, v) dμ

rn

= pKV 2p–1
sup 1

p ‖u‖p
W m1,p(V )+ 1

q ‖v‖q
W m2,q(V )≤rn

∫
V F(x, u, v) dμ

cδ
n

≤ pKV 2p–1
∫

V max|s|+|t|≤cn F(x, s, t) dμ

cδ
n

.

Hence, (F2) implies that

γV ≤ lim inf
n→∞ ϕV (rn) ≤ pKV 2p–1AV < pKV 2p–1BV ≤ +∞.

This finishes the proof of the lemma. �

Lemma 3.2 For any fixed λ ∈ (λ1,V ,λ2,V ), Iλ,V (u, v) = 	V (u, v) – λ
V (u, v) is unbounded
from below.

Proof Assume that {ξn} and {ηn} are two positive real sequences satisfying limn→∞ |ξn| +
|ηn| = +∞ and

lim sup
n→∞

∫
V F(x, ξn,ηn) dμ

ξ
p
n + η

q
n

= BV . (3.5)
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For each n ∈N, we define

un(x) ≡ ξn, vn(x) ≡ ηn, ∀x ∈ V .

It is obvious that (un, vn) ∈ WV , |∇mi un| = 0, and |∇mi vn| = 0 for all mi ≥ 1, i = 1, 2. Then,
for every n ∈N, we have

Iλ,V (un, vn) = 	V (un, vn) – λ
V (un, vn)

=
ξ

p
n

p

∫

V
h1(x) dμ +

η
q
n

q

∫

V
h2(x) dμ – λ

∫

V
F(x, ξn,ηn) dμ

≤ �V
(
ξp

n + ηq
n
)

– λ

∫

V
F(x, ξn,ηn) dμ, (3.6)

where �V is defined by (3.1).
If BV < +∞, choosing ελ ∈ ( �V

λB , 1), by (3.5), there exists nελ > 0 such that

∫

V
F(x, ξn,ηn) dμ > ελBV

(
ξp

n + ηq
n
)
, ∀n > nελ .

Then, combining with (3.6), we get

	V (un, vn) – λ
V (un, vn) ≤ �V
(
ξp

n + ηq
n
)

– λελBV
(
ξp

n + ηq
n
)

= (�V – λελBV )
(
ξp

n + ηq
n
)
, ∀n > nελ .

Then

lim
n→∞

[
	V (un) – λ
V (vn)

]
= –∞.

If BV = +∞, we consider Mλ > �V
λ

. By (3.5), there exists nMλ
such that

∫

V
F(x, ξn,ηn) dμ > Mλ

(
ξp

n + ηq
n
)
, ∀n > nMλ

.

Then, combining with (3.6), we get

	V (un, vn) – λ
V (un, vn) ≤ �V
(
ξp

n + ηq
n
)

– λMλ

(
ξp

n + ηq
n
)

= (�V – λMλ)
(
ξp

n + ηq
n
)
, ∀n > nMλ

.

Noticing the choice of Mλ, we also have

lim
n→∞

[
	V (un) – λ
V (vn)

]
= –∞.

Thus, we finish the proof of the lemma. �

Lemma 3.3 	V is sequentially weakly lower semi-continuous.
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Proof The proof is easily finished by exploiting the weak lower semi-continuity of the
norm. �

Lemma 3.4 
V is sequentially weakly upper semi-continuous.

Proof Assume that (un, vn) ⇀ (u0, v0) in WV . Note that WV is of finite dimension. Then
(un, vn) → (u0, v0) in WV . By (F0) and the fact that V is a finite set, it is easy to obtain that

lim
n→∞

∫

V
F(x, uk , vk) dμ = lim

n→∞
∑

x∈V

F(x, uk , vk)μ(x)

=
∑

x∈V

F(x, u0, v0)μ(x)

=
∫

V
F(x, u0, v0) dμ.

Hence, 
V is sequentially weakly upper semi-continuous in WV . �

Proof of Theorem 3.1 It is easy to see that 	V : WV → R is coercive. Lemma 3.1–Lem-
ma 3.4 imply that all of conditions in Lemma 2.4 are satisfied. Hence, Lemma 2.4 (a) implies
that for each (λ1,V λ2,V ), the functional Iλ,V has a sequence {(u∗

n, v∗
n)} of critical points that

are solutions of system (1.13) such that limn→∞ 	V (u∗
n, v∗

n) = +∞. �

4 Result and proofs for system (1.14)
In this section, we investigate the generalized poly-Laplacian system (1.14) and obtain the
following result.

Let

K� = max

{
Cp(m1, p,�)

μmin,�
,

Cq(m2, q,�)
μmin,�

}

,

where C(m1, p,�) and C(m2, q,�) are defined in Lemma 2.2.

Theorem 4.1 Assume that G = (V , E) is a locally finite graph and the following conditions
hold:

(H)′ hi(x) > 0 for all x ∈ �, i = 1, 2;
(F0)′ F(x, s, t) is continuously differentiable in (s, t) ∈R

2 for all x ∈ �;
(F1)′

∫
�

F(x, 0, 0) dμ = 0;
(F2)′

0 < A� := lim inf
y→+∞

∫
�

max|s|+|t|≤y F(x, s, t) dμ

yδ
< lim sup

|s|+|t|→∞

∫
�

F(x, s, t) dμ

|s|p + |t|q := B�.

where δ = min{p, q}. Then, for each λ ∈ (λ1,�,λ2,�) with λ1,� = 1
B�

and λ2,� = 1
pK�2p–1A�

,
system (1.14) possesses an unbounded sequence of solutions.

The proofs of Theorem 4.1 are the essentially same as Theorem 3.1 with some slight
modifications. To prove Theorem 4.1, we work in the space W0 := W m1,p

0 (�) × W m2,q
0 (�)
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equipped with the norm ‖(u, v)‖0 = ‖u‖W m1,p
0 (�) + ‖v‖W m2,q

0 (�). Then (W0,‖ · ‖0) is a finite
dimensional Banach space. Consider the functional Iλ,� : W0 →R as

Iλ,�(u, v) =
1
p

∫

�∪∂�

∣
∣∇m1 u

∣
∣p dμ +

1
q

∫

�∪∂�

∣
∣∇m2 v

∣
∣q dμ – λ

∫

�

F(x, u, v) dμ. (4.1)

Then, under the assumptions of Theorem 4.1, Iλ,� ∈ C1(W0,R) and

〈
I ′
λ,�(u, v), (φ1,φ2)

〉
=

∫

�∪∂�

[
(£m1,pu)φ1 – λFu(x, u, v)φ1

]
dμ

+
∫

�∪∂�

[
(£m2,qv)φ2 – λFv(x, u, v)φ2

]
dμ (4.2)

for any (u, v), (φ1,φ2) ∈ W0.
Obviously, (u, v) ∈ W0 is a critical point of Iλ,� iff

∫

�∪∂�

(
£m1,pu – λFu(x, u, v)

)
φ1 dμ = 0

and
∫

�∪∂�

(
£m2,qv – λFv(x, u, v)

)
φ2 dμ = 0

for all (φ1,φ2) ∈ W0. Furthermore, by the arbitrariness of φ1 and φ2, it can be achieved
that system (1.14) holds. Therefore, seeking the solutions for system (1.14) is equivalent
to seeking the critical points of Iλ,V on W0.

To apply Lemma 2.4, we will use the functionals 	� : W0 →R and 
� : W0 →R defined
by

	�(u, v) =
1
p

∫

�∪∂�

∣
∣∇m1 u

∣
∣p dμ +

1
q

∫

�∪∂�

∣
∣∇m2 v

∣
∣q dμ

=
1
p
‖u‖p

W m1,p
0 (�)

+
1
q
‖v‖q

W m2,q
0 (�)

and


�(u, v) =
∫

�

F(x, u, v) dμ.

Then Iλ,�(u, v) = 	� – λ
� and for every r > infW0 	�, define

ϕ�(r) = inf
(u,v)∈	–1

� ([–∞,r])

(sup(u,v)∈	–1
� ([–∞,r]) 
�(u, v)) – 
�(u, v)

r – 	�(u, v)
.

Lemma 4.1 Assume that (F2)′ holds. Then γ� := lim infr→+∞ ϕ�(r) < +∞.

Proof The proof is the same as that of Theorem 3.1 with substituting �, K�, A�, B�,
‖u‖∞,�, and ‖v‖∞,� for V , KV , AV , BV , ‖u‖∞,V , and ‖v‖∞,V , respectively. We omit the
details. �



Pang et al. Boundary Value Problems         (2024) 2024:45 Page 14 of 23

Lemma 4.2 For any fixed λ ∈ (λ1,�,λ2,�), Iλ,�(u, v) = 	�(u, v) – λ
�(u, v) is unbounded
from below.

Proof Suppose that {ξn} and {ηn} are two positive real sequences such that limn→∞ |ξn| +
|ηn| = +∞ and

lim
n→∞

∫
�

F(x, ξn,ηn) dμ

ξ
p
n + η

q
n

= B�. (4.3)

For each n ∈N, we define

un(x) ≡ ξn, vn(x) ≡ ηn, ∀x ∈ �.

It is easy to check that (un, vn) ∈ W0, |∇mi un| = 0 and |∇mi vn| = 0 for all mi ≥ 1, i = 1, 2.
Then

Iλ,�(un, vn) = 	�(un, vn) – λ
�(un, vn)

= –
∫

�

F(x, ξn,ηn) dμ.

If B� < +∞, choosing ελ ∈ (0, 1
λB�

), by (4.3), there exists nελ such that

∫

�

F(x, ξn,ηn) dμ > ελB�

(
ξp

n + ηq
n
)
, ∀n > nελ .

Hence

	�(un, vn) – λ
�(un, vn) ≤ –λελB�

(
ξp

n + ηq
n
)
, ∀n > nελ .

Thus,

lim
n→∞

[
	�(un) – λ
�(vn)

]
= –∞.

If B� = +∞, consider Mλ > 1
λ

. By (4.3), there exists nMλ
such that

∫

�

F(x, ξn,ηn) dμ > Mλ

(
ξp

n + ηq
n
)
, ∀n > nMλ

.

Hence

	�(un, vn) – λ
�(un, vn) ≤ –λMλ

(
ξp

n + ηq
n
)
, ∀n > nMλ

.

By the choice of Mλ, we also have

lim
n→∞

[
	�(un) – λ
�(vn)

]
= –∞.

Thus, we finish the proof of this lemma. �
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Lemma 4.3 	� is sequentially weakly lower semi-continuous.

Proof The proof is easily completed by using the weak lower semi-continuity of the
norm. �

Lemma 4.4 
� is sequentially weakly upper semi-continuous.

Proof The proof is the same as that of Lemma 3.4 with replacing W with W0 and V
with �. �

Proof of Theorem 4.1 It is obvious that 	� : W0 → R is coercive. Lemma 4.1–Lemma 4.4
imply that all of conditions in Lemma 2.4 are satisfied. Hence, Lemma 2.4(a) implies that
for each (λ1,�,λ2,�), Iλ,� has a sequence {(u�

n, v�
n)} of critical points that are solutions of

system (1.14) such that limn→∞ 	�(u�
n, v�

n) = +∞. �

5 Result and proofs for system (1.15)
In this section, we investigate the (p, q)-Laplacian system (1.15). We first make the follow-
ing assumptions:

(M1) There exists μ0 > 0 such that μ(x) ≥ μ0 for all x ∈ V ;
(M2) There exists x0 ∈ V such that M1(x0) ≤ M1(x) and M2(x0) ≤ M2(x) for all x ∈ V ,

where

M1(x) =
(

deg(x)
2μ(x)

) p
2
μ(x) + h1(x)μ(x) +

∑

y∼x

(
wxy

2μ(y)

) p
2
μ(y), x ∈ V ,

M2(x) =
(

deg(x)
2μ(x)

) q
2
μ(x) + h2(x)μ(x) +

∑

y∼x

(
wxy

2μ(y)

) q
2
μ(y), x ∈ V ;

(H1) There exists a constant h0 > 0 such that hi(x) ≥ h0 > 0 for all x ∈ V , i = 1, 2;
Let

� = max

{
M1(x0)

p
,

M2(x0)
q

}

and K = max

{
1

h1/p
0 μ

1/p
0

,
1

h1/q
0 μ

1/q
0

}

. (5.1)

Theorem 5.1 Suppose that G = (V , E) is a locally finite graph, and (M1), (M2), (H1) and
the following conditions hold:

(F̃0) F(x, s, t) is continuously differentiable in (s, t) ∈ R

2 for all x ∈ V , and there exist a
function a ∈ C(R+,R+) and a function b : V → R

+ with b ∈ L1(V ) such that

∣
∣Fs(x, s, t)

∣
∣ ≤ a

(∣
∣(s, t)

∣
∣
)
b(x),

∣
∣Ft(x, s, t)

∣
∣ ≤ a

(∣
∣(s, t)

∣
∣
)
b(x),

∣
∣F(x, s, t)

∣
∣ ≤ a

(∣
∣(s, t)

∣
∣
)
b(x)

for all x ∈ V and all (s, t) ∈R

2;
(F̃1)

∫
V F(x, 0, 0) dμ = 0;

(F̃2)

0 < A := lim inf
y→∞

∫
V max|s|+|t|≤y F(x, s, t) dμ

yδ
< lim sup

|s|+|t|→+∞

∫
V F(x, s, t) dμ

|s|p + |t|q := B,

where δ = min{p, q}.
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Then, for each λ ∈ (�1,�2) with �1 = �

B and �2 = 1
pK2p–1A , system (1.15) possesses an

unbounded sequence of solutions.

We work in the space W := W 1,p
h1

(V ) × W 1,q
h2

(V ) with the norm equipped with ‖(u, v)‖ =
‖u‖W 1,p

h1
(V ) + ‖v‖W 1,q

h2
(V ) and then (W ,‖ · ‖) is a Banach space that is infinite dimensional.

We consider the functional Iλ : W → R as

Iλ(u, v) =
1
p

∫

V

(|∇u|p + h1(x)|u|p)dμ +
1
q

∫

V

(|∇v|q + h2(x)|v|q)dμ

– λ

∫

V
F(x, u, v) dμ. (5.2)

Then, by Appendix A.2 in [22], under the assumptions of Theorem 5.1, Iλ ∈ C1(W ,R), and

〈
I ′
λ(u, v), (φ1,φ2)

〉
=

∫

V

[|∇u|p–2�(u,φ1) + h1(x)|u|p–2uφ1 – λFu(x, u, v)φ1
]

dμ

+
∫

V

[|∇v|q–2�(v,φ2) + h2(x)|v|q–2vφ2 – λFv(x, u, v)φ2
]

dμ (5.3)

for any (u, v), (φ1,φ2) ∈ W .
Obviously, (u, v) ∈ W is a critical point of Iλ iff

∫

V

[|∇u|p–2�(u,φ1) + h1(x)|u|p–2uφ1 – λFu(x, u, v)φ1
]

dμ = 0

and
∫

V

[|∇v|q–2�(v,φ2) + h2(x)|v|q–2vφ2 – λFv(x, u, v)φ2
]

dμ = 0

for all (φ1,φ2) ∈ W . Furthermore, by the arbitrariness of φ1 and φ2, it can be achieved
that system (1.15) holds. Therefore, seeking the solutions for system (1.15) is equivalent
to seeking the critical points of Iλ on W .

Define 	 : W →R and 
 : W →R by

	(u, v) =
1
p

∫

V

(|∇u|p + h1(x)|u|p)dμ +
1
q

∫

V

(|∇v|q + h2(x)|v|q)dμ

=
1
p
‖u‖p

W 1,p
h (V )

+
1
q
‖v‖q

W 1,q
h (V )

and


(u, v) =
∫

V
F(x, u, v) dμ.

Then Iλ(u, v) = 	 – λ
 . For every r > inf	, set

ϕ(r) = inf
(u,v)∈	–1([–∞,r])

(sup(u,v)∈	–1([–∞,r]) 
(u, v)) – 
(u, v)
r – 	(u, v)

.

Lemma 5.1 Assume that (F̃2) holds. Then γ := lim infr→+∞ ϕ(r) < +∞.
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Proof The proof is essentially the same as that of Theorem 3.1 with substituting the locally
finite graph V , K , A, B, ‖u‖∞, and ‖v‖∞ for the finite graph V , KV , AV , BV , ‖u‖∞,V , and
‖v‖∞,V , respectively. We omit the details. �

Lemma 5.2 For any given λ ∈ (�1,�2), the functional Iλ(u, v) = 	(u, v) – λ
(u, v) is un-
bounded from below.

Proof By (F̃2), we can assume that {ξn} and {ηn} are two positive real sequences satisfying
limn→∞ |ξn| + |ηn| = +∞ and

lim
n→∞

∫
V F(x, ξn,ηn) dμ

ξ
p
n + η

q
n

= B. (5.4)

For each n ∈N, define

un(x) =

⎧
⎨

⎩

ξn, x = x0,

0, x �= x0,
vn(x) =

⎧
⎨

⎩

ηn, x = x0,

0, x �= x0,

where x0 is given in assumption (M2). Then a simple calculation implies that

|∇un|(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
deg(x0)
2μ(x0) ξn, x = x0,

√
wx0y
2μ(y)ξn, x = y with y ∼ x0,

0, otherwise,

and

|∇vn|(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
deg(x0)
2μ(x0) ηn, x = x0,

√
wx0y
2μ(y)ηn, x = y with y ∼ x0,

0, otherwise.

Then
∫

V

(|∇un|p + h1(x)|un|p
)

dμ

=
∑

x∈V

(∣
∣∇un(x)

∣
∣p + h1(x)

∣
∣un(x)

∣
∣p)

μ(x)

=
(∣
∣∇un

(
x0|p

)
+ h1(x0)|un(x0)

∣
∣p)

μ(x0) +
∑

y∼x0

(∣
∣∇un(y)

∣
∣p + h1(y)

∣
∣un(y)

∣
∣p)

μ(y)

=
(

deg(x0)
2μ(x0)

) p
2
ξp

n μ(x0) + h1(x0)ξp
n μ(x0) + ξp

n

∑

y∼x0

(
wx0y

2μ(y)

) p
2
μ(y)

= ξp
n M1(x0),

and similarly,

∫

V

(|∇vn|q + h2(x)|vn|q
)

dμ
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=
(

deg(x0)
2μ(x0)

) q
2
ηq

nμ(x0) + h2(x0)ηq
nμ(x0) + ηq

n

∑

y∼x0

(
wx0y

2μ(y)

) q
2
μ(y)

= ηq
nM2(x0),

where M1(x0) and M2(x0) are given in assumption (M2). Then {(un, vn)} ⊂ W and for every
n ∈N, we have

Iλ(un, vn) = 	(un, vn) – λ
(un, vn)

=
ξ

p
n M1(x0)

p
+

η
q
nM2(x0)

q
–

∫

V
F(x, ξn,ηn) dμ

≤ �
(
ξp

n + ηq
n
)

–
∫

V
F(x, ξn,ηn) dμ, (5.5)

where � is given in (5.1).
If B < +∞, choosing ε̃λ ∈ ( �

λB , 1), by (5.4), there exists nε̃λ such that

∫

V
F(x, ξn,ηn) dμ > ε̃λB

(
ξp

n + ηq
n
)
, ∀n > nε̃λ .

Thus, combining with (5.5), we have

	(un, vn) – λ
(un, vn) ≤ �
(
ξp

n + ηq
n
)

– λε̃λB
(
ξp

n + ηq
n
)

= (� – λε̃λB)
(
ξp

n + ηq
n
)
, ∀n > nε̃λ .

Hence

lim
n→∞

[
	(un) – λ
(vn)

]
= –∞.

If B = +∞, let us consider M̃λ > �

λ
. By (5.4), there exists nM̃λ

such that

∫

V
F(x, ξn,ηn) dμ > M̃λ

(
ξp

n + ηq
n
)
, ∀n > nM̃λ

.

Thus

	(un, vn) – λ
(un, vn) ≤ �
(
ξp

n + ηq
n
)

– λM̃λ

(
ξp

n + ηq
n
)

= (� – λM̃λ)
(
ξp

n + ηq
n
)
, ∀n > nM̃λ

.

Combining the choice of M̃λ, in this case, we also have

lim
n→∞

[
	(un) – λ
(vn)

]
= –∞.

Thus we complete the proof of this lemma. �

Lemma 5.3 	 is sequentially weakly lower semi-continuous.
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Proof The proof is easily completed by using the weak lower semi-continuity of the
norm. �

Lemma 5.4 
 is sequentially weakly upper semi-continuous.

Proof Assume that (uk , vk) ⇀ (u0, v0) for some (u0, v0) ∈ W . Then

lim
k→∞

∫

V
ukϕ dμ =

∫

V
u0ϕ dμ, ∀ϕ ∈ Cc(V ),

which implies that

lim
k→∞

uk(x) = u0(x) for any fixed x ∈ V (5.6)

by choosing

ϕ(y) =

⎧
⎨

⎩

1, y = x

0, y �= x.

Similarly, we have

lim
k→∞

vk(x) = v0(x) for any fixed x ∈ V .

By (F̃0) and Lebesgue dominated convergence theorem, it is easy to obtain that

lim
n→∞

∫

V
F(x, uk , vk) dμ =

∫

V
F(x, u0, v0) dμ.

Hence, 
 is sequentially weakly upper semi-continuous in W . �

Proof of Theorem 5.1 Obviously, 	 : W → R is coercive. Lemma 5.1–Lemma 5.4 imply
that all of conditions in Lemma 2.4(a) hold for Iλ. Hence, Lemma 2.4(b) implies that for
each λ ∈ (�1,�2), Iλ has a sequence {(un, vn)} of critical points that are solutions of system
(1.15) such that limn→∞ 	(un, vn) = +∞. �

6 The results for the scalar equations
By using similar arguments as those of Theorem 3.1, we can also obtain similar results for
the following scalar equation on finite graph G = (V , E):

£m,pu + h(x)|u|p–2u = λf (x, u), x ∈ V , (6.1)

where m ≥ 1 is an integer, h : V →R, p > 1, λ > 0, and f : V ×R →R.

Theorem 6.1 Let G = (V , E) be a finite graph and F(x, s) =
∫ s

0 f (x, τ ) dτ for all x ∈ V . As-
sume that the following conditions hold:

(h) h(x) > 0 for all x ∈ V ;
(f0) F(x, s) is continuously differentiable in s ∈R for all x ∈ V ;
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(f1)
∫

V F(x, 0) dμ = 0;
(f2)

0 < ÃV := lim inf
y→∞

∫
V max|s|≤y F(x, s, t) dμ

yp < lim sup
|s|→∞

∫
V F(x, s) dμ

|s|p := B̃V .

Then, for each λ ∈ (λ̃1,V , λ̃2,V ) with λ̃1,V = �̃V
B̃V

and λ̃2,V = 1
pK̃V ÃV

, where K̃V = 1
hminμmin

and
�̃V = 1

p
∫

V h(x) dμ, equation (6.1) possesses an unbounded sequence of solutions.

The proofs of Theorem 6.1 are almost the same as those of Theorem 3.1 and even
simpler because there is no couple term. Here, we just present the proof that γ̃V :=
lim infr→+∞ ϕ̃V (r) < +∞, which is related to the range of the parameter of λ and also show
that the proof for single equation is indeed simpler, where

ϕ̃V (r) = inf
u∈	̃–1

V ([–∞,r])

(sup(u,v)∈	̃–1
V ([–∞,r]) 
̃V (u)) – 
̃V (u)

r – 	̃V (u)
,

	̃V (u) =
1
p

∫

V

(∣
∣∇mu

∣
∣p + h(x)|u|p)dμ =

1
p
‖u‖p

W m,p(V ),


̃V (u) =
∫

V
F(x, u) dμ,

and Ĩλ,V = 	̃V – λ
̃V is the corresponding variational functional of (6.1).
In fact, let {cn} be a real sequence satisfying limn→∞ cn = +∞ and

lim
n→∞

∫
V max|s|≤cn F(x, s) dμ

cδ
n

= ÃV .

Write

rn =
cp

n

pK̃V
for every n ∈N.

By Lemma 2.1, for all (u, v) ∈ W with 	̃V (u) ≤ rn, we get

‖u‖p
∞,V

p
≤ K̃V

‖u‖p
W m,p(V )

p
≤ K̃V rn.

Hence, |u(x)| ≤ cn for all x ∈ V . Therefore, it follows from (f1) that

ϕ̃V (rn)

= inf
1
p ‖u‖p

W m,p(V )≤rn

sup 1
p ‖u‖p

W m1,p(V )≤rn

∫
V F(x, u) dμ –

∫
V F(x, u) dμ

rn – 1
p‖u‖p

W m1,p(V )

≤
sup 1

p ‖u‖p
W m1,p(V )≤rn

∫
V F(x, u) dμ

rn

= pK̃V

sup 1
p ‖u‖p

W m1,p(V )≤rn

∫
V F(x, u) dμ

cδ
n
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≤ pK̃V

∫
V max|s|≤cn F(x, s) dμ

cδ
n

.

Hence, (f2) implies that

γ̃V ≤ lim inf
n→∞ ϕV (rn) ≤ pK̃V ÃV < pK̃V B̃V ≤ +∞.

Thus we finish the proof.
By using similar arguments as those of Theorem 4.1, we can also obtain similar results

for the following scalar equation with Dirichlet boundary value on a locally finite graph
G = (V , E):

⎧
⎨

⎩

£m,pu = λf (x, u), x ∈ �◦,

|∇ ju| = 0, x ∈ ∂�, 0 ≤ j ≤ m – 1,
(6.2)

where p > 1, m ∈ N, λ > 0, and f : V ×R →R and � ⊂ G(V , E) is a bounded domain.

Theorem 6.2 Suppose that G = (V , E) is a locally finite graph, F(x, s) =
∫ s

0 f (x, τ ) dτ for all
x ∈ �, �◦ �= ∅, and the following conditions hold:

(h)′ h(x) > 0 for all x ∈ �;
(f0)′ F(x, s) is continuously differentiable in s ∈R for all x ∈ �;
(f1)′

∫
�

F(x, 0) dμ = 0;
(f2)′

0 < Ã� := lim inf
y→∞

∫
�

max|s|≤y F(x, s, t) dμ

yp < lim sup
|s|→∞

∫
�

F(x, s) dμ

|s|p := B̃�.

Then, for each λ ∈ (λ̃1,�, λ̃2,�) with λ̃1,� = 1
B̃�

and λ̃2,� = 1
pK̃�Ã�

, where K̃� = Cp(m,p,�)
μmin,�

, equa-
tion (6.2) possesses an unbounded sequence of solutions.

By using similar arguments as those of Theorem 5.1, we can also obtain similar results
for the following scalar equation on locally finite graph G = (V , E):

–�pu + h(x)|u|p–2u = λf (x, u), x ∈ V , (6.3)

where h : V →R, p ≥ 2, λ > 0, and f : V ×R →R. We make the following assumptions:
(h) There exists a constant h0 > 0 such that h(x) ≥ h0 > 0 for all x ∈ V ;
(M) There exists x0 ∈ V such that M(x0) ≤ M(x) for all x ∈ V , where

M(x) =
(

deg(x)
2μ(x)

) p
2
μ(x) + h(x)μ(x) +

∑

y∼x0

(
wxy

2μ(y)

) p
2
μ(y), x ∈ V .

Let

�̃ =
M(x0)

p
and K̃ =

1
h1/p

0 μ
1/p
0

.
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Theorem 6.3 Let G = (V , E) be a locally finite graph and F(x, s) =
∫ s

0 f (x, τ ) dτ for all x ∈ V .
Assume that (h), (M) and the following conditions hold:

(f̃0) F(x, s) is continuously differentiable in s ∈ R for all x ∈ V , and there exist a function
a ∈ C(R+,R+) and a function b : V →R

+ with b ∈ L1(V ) such that

∣
∣Fs(x, s)

∣
∣ ≤ a

(|s|)b(x),
∣
∣F(x, s)

∣
∣ ≤ a

(|s|)b(x)

for all x ∈ V and all s ∈R;
(f̃1)

∫
V F(x, 0) dμ = 0;

(f̃2)

0 < Ã := lim inf
y→∞

∫
V max|s|≤y F(x, s) dμ

yp < lim sup
|s|→∞

∫
V F(x, s) dμ

|s|p := B̃.

Then, for each λ ∈ (�̃1, �̃2) with �̃1 = �̃

B̃ and �̃2 = 1
pK̃Ã

, equation (6.3) possesses an un-
bounded sequence of solutions.
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