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1 Introduction
The aim of this paper is to study the multiplicity of solutions to the following mixed bound-
ary value problem with a complete second-order Sturm–Liouville differential equation

⎧
⎨

⎩

–u′′ + γ (x)u′ + δ(x)u = λf (x, u) in ]a, b[,

u(a) = u′(b) = 0,
(Mλ)

where λ is a positive real parameter, f is an L1-Carathéodory function, and γ , δ ∈ L∞([a, b])
are such that

ess inf
x∈[a,b]

δ(x) > –
(

π

2(b – a)

)2

. (1.1)

Sturm–Liouville problems with mixed boundary conditions have been studied by several
authors. In particular, papers [3, 16], and [2] are concerned with the existence of three so-
lutions, [9, 11], and [10] with the existence of one or two solutions, and [7] deals with the
existence of a sequence of distinct solutions. It is worth noting that, in each of the above
references, the coefficients of the differential equation are nonnegative. We also observe
that such problems provide a useful model for describing physical or chemical phenom-
ena, and are used in many applied sciences, such as mechanical engineering. Examples
of application of mixed boundary value problems occur in industrial processes and in-
volve the solidification and melting of a material (see, for instance, [5] and the references
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therein). The main novelty of this paper is that, in contrast to the papers that are available
in the literature, we assume that the coefficients γ and δ can change their sign. For exam-
ple, we can consider the following differential equation, well known as Laguerre equation:

–u′′(x) –
1 – x

x
u′(x) +

1
2x

u(x) = f (x, u), x ∈ ] – 2, –1[. (1.2)

Indeed, (1.2) is a complete Sturm–Liouville differential equation with coefficients

γ (x) = –
1 – x

x
, δ(x) =

1
2x

,

which are negative and satisfy our hypotheses. Let us recall that the Laguerre equation is
one of the equations used in quantum mechanics for the hydrogen atom modeling, and
its solutions are useful for describing the orbitals of this molecular chemical element (see,
for example, [13]).

The main aim of this paper is to investigate the existence of infinitely many solutions
to complete Sturm–Liouville equations, with possibly negative coefficients, under mixed
boundary conditions, assuming a suitable oscillatory behavior of the nonlinearity. It has
been proven that if the nonlinear term is nonnegative, the obtained solutions are positive.
That is because of a strong maximum principle, which is emphasized in the paper (see
Propositions 2.5 and 2.6). Our approach is based on variational methods. Note that the
variational formulation of the corresponding problem is not natural due to the presence
of the term γ (x)u′; indeed, such problems are often referred to as “nonvariational prob-
lems” since there is no simple associated minimization problem. But this paper presents a
specific functional, which is different from the classical energy functional, and shows that
it can be studied by variational methods (see Proposition 2.4).

The paper is organized as follows. In Sect. 2, we give some basic properties, which are
our main tools, along with an infinitely many critical point theorem given in [6], which is
a more precise version of the variational principle of Ricceri [15]. In Sect. 3, we present
our result on the existence of a sequence of pairwise distinct generalized solutions for the
problem (Mλ) and its consequence in the autonomous case, providing an explicit example.

2 Basic properties and preliminaries
In this section we introduce the functional space and we recall some preliminaries and
basic properties in order to study problem (Mλ). Take the Sobolev space

X =
{

u ∈ W 1,2([a, b]
)

: u(a) = 0
}

endowed with the following norm:

‖u‖ =
(∫ b

a

∣
∣u(x)

∣
∣2 dx

) 1
2

+
(∫ b

a

∣
∣u′(x)

∣
∣2 dx

) 1
2

.

Moreover, for all u ∈ X, put

‖u‖0 =
∥
∥u′∥∥

L2 =
(∫ b

a

∣
∣u′(x)

∣
∣2 dx

) 1
2

.

The following proposition holds true.
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Proposition 2.1 The norms ‖ · ‖0 and ‖ · ‖ are equivalent on X.

Proof For all u ∈ X, one has

‖u‖ = ‖u‖L2 +
∥
∥u′∥∥

L2 ≥ ∥
∥u′∥∥

L2 = ‖u‖0.

Further, taking into account that u is absolutely continuous and u′ ∈ L1([a, b]), from the
fundamental theorem of integral calculus, one has

u(x) =
∫ x

a
u′(t) dt,

then

∣
∣u(x)

∣
∣ ≤

∫ x

a

∣
∣u′(t)

∣
∣dt ≤

∫ b

a

∣
∣u′(x)

∣
∣dx.

Applying Hölder’s inequality, we obtain

∣
∣u(x)

∣
∣ ≤ (b – a)

1
2
∥
∥u′∥∥

L2 . (2.1)

By squaring and integrating between a and b, one has

‖u‖L2 ≤ (b – a)
∥
∥u′∥∥

L2 . (2.2)

Therefore, taking (2.2) into account yields

‖u‖ = ‖u‖L2 +
∥
∥u′∥∥

L2 ≤ (
1 + (b – a)

)‖u‖0. (2.3)

Thus, the proof is complete. �

Here, we point out the following result:

Proposition 2.2 (Poincaré inequalities) For all u ∈ X, one has
(j) maxx∈[a,b] |u(x)| ≤ (b – a) 1

2 ‖u‖0,
(jj) ‖u‖L2 ≤ 2(b–a)

π
‖u′‖L2 .

Proof (j) This Poincaré inequality is obtained as in formula (2.1). We observe that (b – a) 1
2

is the best constant k among those for which ‖u‖∞ ≤ k‖u‖0 for all u ∈ X. Indeed, arguing
by a contradiction, assume that there is a positive constant k < (b – a) 1

2 for which ‖u‖∞ ≤
k‖u‖0 for all u ∈ X. In particular, choosing u(x) ∈ X as u(x) = x–a, one has ‖u‖∞ = (b–a) ≤
k‖u‖0, that is, (b – a) ≤ k(b – a) 1

2 and this is absurd, thus our claim is proved.
(jj) From (2.2), one has

‖u‖L2 ≤ (b – a)
∥
∥u′∥∥

L2 .

However, k = (b – a) is not the best constant for Poincaré inequality in X. In order to
obtain the best constant, we reason as done in [4, Lemma 8.1] for Dirichlet problems. We
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consider the following problem:

⎧
⎨

⎩

–u′′ = λu in ]a, b[,

u(a) = u′(b) = 0.
(2.4)

Standard computations show that λ0 = π2

4(b–a)2 is the first eigenvalue of the above problem.
Let A : X → R

+ be defined by

A(u) =
{‖u′‖2

L2

‖u‖2
L2

: ‖u‖L2 	= 0
}

.

We prove that A has a minimizer in X, inf A = λ0 and the value of the best constant in (jj)
is 1√

λ0
. First, we note that by (2.2) A is bounded from below.

Let un be a minimizing sequence, that is, A(un) → inf A, as n → +∞. Note that

zn =
un

‖u′
n‖L2

satisfies ‖z′
n‖L2 = 1. Up to a subsequence, zn → z in L2([a, b]) (the embedding being com-

pact; see, for instance, [8, Theorem IX.16]) and weakly in X.
First, we need to prove that ‖z‖L2 	= 0. Since A is homogeneous of degree 0, zn is a min-

imizing sequence and A(zn) is a bounded sequence, i.e., there exists a positive constant C
such that

1 =
∥
∥z′

n
∥
∥2

L2 ≤ C‖zn‖2
L2 .

From ‖zn‖L2 ≥
√

1
C , taking into account that zn converges strongly to z in L2 and passing

to the limit as n → +∞, we get ‖z‖L2 > 0.
Moreover, we observe that

0 ≤
∫ b

a

(
z′

n(x) – z′(x)
)2 dx =

∫ b

a

(
z′

n(x)
)2 dx +

∫ b

a

(
z′(x)

)2 dx – 2
∫ b

a
z′

n(x)z′(x) dx.

Therefore,

∫ b

a

(
z′

n(x)
)2 dx ≥ 2

∫ b

a
z′

n(x)z′(x) dx –
∫ b

a

(
z′(x)

)2 dx.

If we pass to the limit in the above inequality, we have

lim inf
n→+∞

∫ b

a

(
z′

n(x)
)2 dx ≥

∫ b

a

(
z′(x)

)2 dx.

Since zn is a minimizing sequence, one has

inf A = lim
n→+∞ A(zn) = lim inf

n→+∞

∫ b
a (z′

n(x))2 dx
∫ b

a (zn(x))2 dx
≥

∫ b
a (z′(x))2 dx
∫ b

a z(x)2 dx
= A(z).

Consequently z is a minimizer for A.
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Now, we prove that λ0 = minu∈X,u	=0 A(u). Let u ∈ X be a minimizer for A. It follows that
A′(u) = 0, that is,

2
∫ b

a u′(x)v′(x) dx · ∫ b
a u(x)2 dx – 2

∫ b
a (u′(x))2 dx · ∫ b

a u(x)v(x) dx

(
∫ b

a u(x)2 dx)2
= 0.

Hence,

∫ b

a
u′(x)v′(x) dx =

∫ b
a (u′(x))2 dx
∫ b

a u(x)2 dx
·
∫ b

a
u(x)v(x) dx ∀v ∈ X.

Therefore, if u minimizes A, u is an eigenfunction of (2.4) and
∫ b

a u′(x)2 dx
∫ b

a u(x)2 dx
= A(u) = inf(A) is

the corresponding eigenvalue.
Let us prove that inf A = λ0. Since λ0 is the smallest eigenvalue of (2.4), one has

λ0 ≤ inf A.

We prove the opposite inequality. Let w be the eigenfunction corresponding to λ0.
One has

∫ b

a
w′(x)u′(x) dx = λ0

∫ b

a
w(x)u(x) dx ∀u ∈ X.

Consequently, choosing u = w, we obtain

∫ b

a
w′(x)2 dx = λ0

∫ b

a
w(x)2 dx ∀u ∈ X.

Therefore, one has

inf A = inf

∫ b
a u′(x)2 dx

∫ b
a u(x)2 dx

≤
∫ b

a w′(x)2 dx
∫ b

a w(x)2 dx
= λ0

∫ b
a w(x)2 dx

∫ b
a w(x)2 dx

= λ0. �

Remark 2.1 We observe that the Poincarè inequalities hold true in the Sobolev space
W 1,2

0 ([a, b]), as given in [1], with different constants.

Now, let us introduce another norm in the space X, given by

‖u‖X =
(∫ b

a
e–�(x)∣∣u′(x)

∣
∣2 dx +

∫ b

a
e–�(x)δ(x)

∣
∣u(x)

∣
∣2 dx

) 1
2

,

where

�(x) =
∫ x

a
γ (ξ ) dξ ∀x ∈ [a, b]. (2.5)

Proposition 2.3 Assume (1.1). Then ‖ · ‖X is a norm on the space X and it is equivalent to
‖ · ‖0. In particular, one has

m‖u‖0 ≤ ‖u‖X ≤ M‖u‖0, (2.6)
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for all u ∈ X, where m, M, with M ≥ m > 0, are given by

m =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(minx∈[a,b] e–�(x)) 1
2 ,

if ess infx∈[a,b] δ(x) ≥ 0,

[minx∈[a,b] e–�(x)(1 + ess infx∈[a,b] δ(x)( 2(b–a)
π

)2)] 1
2 ,

if ess infx∈[a,b] δ(x) < 0,

M =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[maxx∈[a,b] e–�(x)(1 + ess supx∈[a,b] δ(x)( 2(b–a)
π

)2)] 1
2 ,

if ess supx∈[a,b] δ(x) ≥ 0,

(maxx∈[a,b] e–�(x)) 1
2 ,

if ess supx∈[a,b] δ(x) < 0.

(2.7)

Proof First, note that condition (1.1) ensures ‖u‖X ≥ 0 and, by standard computations,
can be easily proved that ‖u‖X is a norm on X.

Let us prove (2.6). We recall that ‖u‖0 = ‖u′‖L2 , therefore in the following we use the
notation ‖u′‖L2 . One has

‖u‖2
X =

∫ b

a
e–�(x)∣∣u′(x)

∣
∣2 dx +

∫ b

a
e–�(x)δ(x)

∣
∣u(x)

∣
∣2 dx

≥ min
x∈[a,b]

e–�(x)
(∫ b

a

∣
∣u′(x)

∣
∣2 dx + ess inf

x∈[a,b]
δ

∫ b

a

∣
∣u(x)

∣
∣2 dx

)

.

We have two possibilities: if ess infx∈[a,b] δ(x) ≥ 0, one has

‖u‖2
X ≥ min

x∈[a,b]
e–�(x)

(∫ b

a

∣
∣u′(x)

∣
∣2 dx

)

= min
x∈[a,b]

e–�(x)∥∥u′∥∥2
L2 ,

while if ess infx∈[a,b] δ(x) < 0, taking into account (1.1) and (jj) in Proposition 2.2, one has

‖u‖2
X ≥ min

x∈[a,b]
e–�(x)

(∫ b

a

∣
∣u′(x)

∣
∣2 dx + ess inf

x∈[a,b]
δ

∫ b

a

∣
∣u(x)

∣
∣2 dx

)

≥ min
x∈[a,b]

e–�(x)
(

∥
∥u′∥∥2

L2 + ess inf
x∈[a,b]

δ

(
2(b – a)

π

)2∥
∥u′∥∥2

L2

)

= min
x∈[a,b]

e–�(x)
(

1 + ess inf
x∈[a,b]

δ

(
2(b – a)

π

)2)∥
∥u′∥∥2

L2 ,

with

min
x∈[a,b]

e–�(x)
(

1 + ess inf
x∈[a,b]

δ

(
2(b – a)

π

)2)

> 0.

To prove the other inequality, we observe that

‖u‖2
X ≤ max

x∈[a,b]
e–�(x)

(∫ b

a

∣
∣u′(x)

∣
∣2 dx + ess sup

x∈[a,b]
δ

∫ b

a

∣
∣u(x)

∣
∣2 dx

)

.
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So, if ess supx∈[a,b] δ(x) ≥ 0, taking again (jj) in Proposition 2.2 into account, one has

‖u‖2
X ≤ max

x∈[a,b]
e–�(x)

(
∥
∥u′∥∥2

L2 + ess sup
x∈[a,b]

δ

(
2(b – a)

π

)2∥
∥u′∥∥2

L2

)

= max
x∈[a,b]

e–�(x)
(

1 + ess sup
x∈[a,b]

δ

(
2(b – a)

π

)2)∥
∥u′∥∥2

L2 ,

while if ess supx∈[a,b] δ(x) < 0, one has

‖u‖2
X ≤ max

x∈[a,b]
e–�(x)∥∥u′∥∥2

L2 .

Hence, (2.6) is proved. �

Remark 2.2 We observe that, since ‖u‖0 is equivalent to ‖u‖, as proved in Proposition 2.1,
thanks to the transitivity property, we obtain the equivalence between ‖u‖X and ‖u‖.

Remark 2.3 The space X is a Hilbert space with the dot product

〈u, v〉 =
∫ b

a
e–�(x)u′(x)v′(x) dx +

∫ b

a
e–�(x)δ(x)u(x)v(x) dx,

that clearly induces the norm ‖ · ‖X .

Remark 2.4 Taking into account (2.1) and (2.6), the following inequality holds:

max
x∈[a,b]

∣
∣u(x)

∣
∣ ≤ (b – a) 1

2

m
‖u‖X ∀u ∈ X.

Let f : [a, b] ×R →R be an L1-Carathéodory function, that is,
(i) x → f (x, t) is measurable for all t ∈R;

(ii) t → f (x, t) is continuous for almost every x ∈ [a, b];
(iii) for all ρ > 0, the function sup|t|≤ρ |f (·, t)| belongs to L1([a, b]).

Now we recall the definition of classical and generalized solution for problem (Mλ):
• We say that u : [a, b] →R is a classical solution if u ∈ C2([a, b]), u(a) = u′(b) = 0,

–u′′(x) + γ (x)u′(x) + δ(x)u(x) = λf (x, u(x)) for all x ∈ [a, b].
• We say that u : [a, b] →R is a generalized solution if u ∈ C1([a, b]), u′ ∈ AC([a, b]),

u(a) = u′(b) = 0, –u′′(x) + γ (x)u′(x) + δ(x)u(x) = λf (x, u(x)) for almost every x ∈ [a, b].
Classical and generalized solutions coincide when f ,γ , δ are continuous functions.

Now, put

F(x, t) =
∫ t

0
f (x, ξ ) dξ ∀(x, t) ∈ [a, b] ×R (2.8)

and introduce two functions 	 ,
 : X →R defined by

	(u) =
∫ b

a
e–�(x)F

(
x, u(x)

)
dx,


(u) =
1
2
‖u‖2

X ,
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for all u ∈ X. It is well known (see, for instance, [1]) that 	 is well defined, 	 and 
 are
Gâteaux differentiable, and one has

	 ′(u)(v) =
∫ b

a
e–�(x)f

(
x, u(x)

)
v(x) dx,


′(u)(v) =
∫ b

a
e–�(x)u′(x)v′(x) dx +

∫ b

a
e–�(x)δ(x)u(x)v(x) dx,

for all u, v ∈ X. Moreover, 
,	 are C1-functions.
Finally, put

Iλ(u) = 
(u) – λ	(u) ∀u ∈ X.

Now we point out the following result.

Proposition 2.4 Function u is a generalized solution of (Mλ) ⇐⇒ u is a critical point of
Iλ.

Proof Assume that u is a generalized solution of (Mλ). In particular, one has –u′′(x) +
γ (x)u′(x) + δ(x)u(x) = λf (x, u(x)) for a.a. x ∈ [a, b]. Fixing v ∈ X and multiplying by e–�v,
which again belongs to X, integrating and then integrating by parts the first term, it follows

∫ b

a
–u′′(x)e–�(x)v(x) dx +

∫ b

a
γ (x)u′(x)e–�(x)v(x) dx +

∫ b

a
δ(x)u(x)e–�(x)v(x) dx

= λ

∫ b

a
f
(
x, u(x)

)
e–�(x)v(x) dx;

[
u′(b)e–�(b)v(b) – u′(a)e–�(a)v(a)

]
–

∫ b

a
γ (x)u′(x)e–�(x)v(x) dx

+
∫ b

a
γ (x)u′(x)e–�(x)v(x) dx +

∫ b

a
u′(x)e–�(x)v′(x) dx +

∫ b

a
δ(x)u(x)e–�(x)v(x) dx

= λ

∫ b

a
f
(
x, u(x)

)
e–�(x)v(x) dx.

Taking into account that u′(b) = 0, since u is a solution of (Mλ), and v(a) = 0, since v ∈ X,
one has

∫ b

a
u′(x)e–�(x)v′(x) dx +

∫ b

a
δ(x)u(x)e–�(x)v(x) dx

= λ

∫ b

a
f
(
x, u(x)

)
e–�(x)v(x) dx

(2.9)

that is, u is a critical point of Iλ.
Now assume that u is critical point of Iλ. Fix w ∈ X. Clearly, v = e�w ∈ X. So, I ′

λ(u)(v) = 0,
that is,

∫ b

a
e–�(x)u′(x)v′(x) dx +

∫ b

a
e–�(x)δ(x)u(x)v(x) dx = λ

∫ b

a
e–�(x)f

(
x, u(x)

)
v(x) dx.
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Therefore, taking into account that e–�(x)v′(x) = (e–�(x)v(x))′ + γ (x)e–�(x)v(x), one has

∫ b

a
u′(x)

(
e–�(x)v(x)

)′ dx +
∫ b

a
u′(x)γ (x)e–�(x)v(x) dx +

∫ b

a
e–�(x)δ(x)u(x)v(x) dx

= λ

∫ b

a
e–�(x)f

(
x, u(x)

)
v(x) dx,

that is,

∫ b

a
u′(x)w′(x) dx +

∫ b

a
γ (x)u′(x)w(x) dx +

∫ b

a
δ(x)u(x)w(x) dx

= λ

∫ b

a
f
(
x, u(x)

)
w(x) dx.

Hence, u′ admits a weak derivative, namely γ u′ + δu – λf (·, u(·)), which is an L1-function,
and so, by standard arguments, the conclusion is achieved. �

From the 1-dimensional strong maximum principle (see [14, Theorem 3]), we obtain
here the following result for mixed boundary problems, which guarantees that if the op-
erator is nonnegative then the solution is either zero or strictly positive.

Proposition 2.5 Fix u ∈ W 1,2(�) such that u(x) ≥ 0 for all x ∈ [a, b] and

⎧
⎨

⎩

–u′′ + γ (x)u′ + δ(x)u ≥ 0 in ]a, b[,

u(a) = u′(b) = 0.

Then, one has either u(x) ≡ 0 or u(x) > 0 for all x ∈]a, b].

Proof First, assume δ(x) ≥ 0 for a.a. x ∈ [a, b]. Assume also that u 	≡ 0 and fix x̄ ∈ [a, b]
such that u(x̄) = min[a,b] u. We claim that x̄ /∈]a, b]. Indeed, if x̄ = b, one has u′(b) < 0 (see
[14, Theorem 4]) and this is absurd. If x̄ ∈]a, b[, one has u ≡ const (see Theorem 3 of [14])
and, so, taking into account that u(a) = 0, one has u ≡ 0 and this is absurd. Hence, our
claim is proved, and one has u(x) > u(a) = 0 for all x ∈]a, b].

Now assume δ < 0 in a nonzero measure subset of [a, b] and put δ̃(x) = δ(x) if δ(x) ≥ 0
and δ̃(x) = 0 if δ(x) < 0. Taking into account that u(x) ≥ 0 for all x ∈ [a, b], one has

–u′′ + γ (x)u′ + δ̃(x)u ≥ –u′′ + γ (x)u′ + δ(x)u ≥ 0

and, based on the above, the conclusion follows. �

Now, put

f +(x, t) =

⎧
⎨

⎩

f (x, 0) if t ≤ 0,

f (x, t) if t > 0,
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and consider the following problem:

⎧
⎨

⎩

–u′′ + γ (x)u′ + δ(x)u = λf +(x, u) in ]a, b[,

u(a) = u′(b) = 0.
(M+

λ )

We have the following result which, owing to the previous formulation of the 1-
dimensional strong maximum principle, guarantees the positivity of the solutions when
the nonlinear term is nonnegative.

Proposition 2.6 Assume (1.1) and

f (x, 0) ≥ 0 a.e. in [a, b].

Then, any generalized solution of problem (M+
λ ) is nonnegative and it is also a generalized

solution of (Mλ).
Further, if in addition we assume

f (x, t) ≥ 0 a.e. in [a, b],∀t ≥ 0,

then, any generalized solution of problem (M+
λ ) is positive in ]a, b] and it is also a generalized

solution of (Mλ).

Proof Let u be a generalized solution of (M+
λ ). So, from (2.9), one has

∫ b

a
e–�(x)[u′(x)v′(x) + δ(x)u(x)v(x)

]
dx = λ

∫ b

a
e–�(x)f +(

x, u(x)
)
v(x) dx

for all v ∈ X. Now, put u– = min{u, 0} and A = {x ∈ [a, b] : u(x) < 0}. Clearly, u– ∈ X (see,
for instance, [12, Lemma 7.6]) and, by choosing v = u– in the previous equality, one has

0 ≤ ∥
∥u–∥

∥2
X =

∫ b

a
e–�(x)[(u–)′(x)

(
u–)′(x) + δ(x)u–(x)u–(x)

]
dx

=
∫

A
e–�(x)[(u–)′(x)

(
u–)′(x) + δ(x)u–(x)u–(x)

]
dx

=
∫

A
e–�(x)[(u)′(x)

(
u–)′(x) + δ(x)u(x)u–(x)

]
dx

=
∫ b

a
e–�(x)[(u)′(x)

(
u–)′(x) + δ(x)u(x)u–(x)

]
dx

= λ

∫ b

a
e–�(x)f +(

x, u(x)
)
u–(x) dx

= λ

∫

A
e–�(x)f +(

x, u(x)
)
u–(x) dx = λ

∫

A
e–�(x)f (x, 0)u–(x) dx ≤ 0.

Hence, one has ‖u–‖X = 0, that is, u–(x) = 0 for all x ∈ [a, b], for which u(x) ≥ 0 for all
x ∈ [a, b]. At this point, it is easy to verify that it is also a solution of (Mλ) since f +(x, u(x)) =
f (x, u(x)), and so the first conclusion is achieved.
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Now we prove the second claim. Since u(x) ≥ 0, from our additional assumption, one
has f (x, u(x)) ≥ 0 for which –u′′ + γ (x)u′ + δ(x)u ≥ 0 in [a, b]. Therefore, Proposition 2.5
ensures that u is positive in ]a, b] and the proof is complete. �

In order to be able to prove the existence and multiplicity of solutions to problem (Mλ),
we use a critical point theorem, that we recall in the following.

Let X be a nonempty set and let 
,	 : X → R be two functionals. For all r > infX 
, we
put

ϕ(r) = inf
u∈
–1((–∞,r))

(supv∈(
–1(–∞,r)) 	(v)) – 	(u)
r – 
(u)

, (2.10)

and

α := lim inf
r→+∞ ϕ(r), β := lim inf

r→(infX 
)+
ϕ(r). (2.11)

Theorem 2.5 (See [6]) Let X be a reflexive real Banach space, 
 : X → R a coercive, se-
quentially weakly lower semicontinuous and Gâteaux differentiable functional, and 	 :
X →R a sequentially weakly upper semicontinuous and Gâteaux differentiable functional.
Then one has

(a) For every r > infX 
 and every λ ∈]0, 1
ϕ(r) [, the restriction of the functional 
 – λ	 to


–1((–∞, r)) admits a global minimum, which is a critical point (local minimum) of

 – λ	 in X .

(b) If α < +∞ then, for each λ ∈]0, 1
α

[, the following alternative holds:
either
(b1) 
 – λ	 possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of 
 – λ	 such that

limn→+∞ 
(un) = +∞.
(c) If β < +∞ then, for each λ ∈]0, 1

β
[, the following alternative holds:

either
(c1) there is a global minimum of 
 which is a local minimum of 
 – λ	 , or
(c2) there is a sequence of pairwise distinct critical points (local minima) of 
–λ	 ,

with limn→+∞ 
(un) = infX 
, which weakly converges to a global minimum of

.

3 Existence of infinitely many solutions
In this section we study the existence of infinitely many solutions for problem (Mλ). In
particular, by requiring an appropriate oscillation of the primitive of the nonlinear term,
we obtain a sequence of pairwise distinct solutions.

Put

K =
1
2

m2

M2
minx∈[a,b] e–�(x)

maxx∈[a,b] e–�(x) ,

where � is defined in (2.5) and m, M are given in (2.7).
Furthermore, taking into account the definition of F given in (2.8), put

A = lim inf
ξ→+∞

∫ b
a max|t|≤ξ F(x, t) dx

ξ 2 , B = lim sup
ξ→+∞

∫ b
a+b

2
F(x, ξ ) dx

ξ 2 ,
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and, if 0 < A, B < +∞,

λ1 =
M2

B(b – a) minx∈[a,b] e–�(x) , λ2 =
m2

2A(b – a) maxx∈[a,b] e–�(x) . (3.1)

Note that A = +∞ is not possible (see the next hypothesis (j2)). Moreover, if A = 0 and
B = +∞, we read λ1 = 0 and λ2 = +∞.

Now we can give our main result.

Theorem 3.1 Let f : [a, b] ×R →R be an L1-Carathéodory function. Assume that
(j1) F(x, t) ≥ 0 for a.a. x ∈ [a, a+b

2 ] and for all t ∈ [0, +∞[;

(j2) lim infξ→+∞
∫ b

a max|t|≤ξ F(x,t) dx
ξ2 < K lim supξ→+∞

∫ b
a+b

2
F(x,ξ ) dx

ξ2 .
Then, for each λ ∈]λ1,λ2[, problem (Mλ) admits a sequence of pairwise distinct generalized
solutions.

Proof Our goal is to apply Theorem 2.5. Take (X,‖ · ‖X), and 
, 	 : X →R as defined in
Sect. 2. Thanks to this choice, 
 and 	 satisfy the hypotheses requested in Theorem 2.5.
Moreover, as we have seen in Sect. 2, the critical points in X of the functional Iλ = 
 – λ	

are exactly the generalized solutions of the considered problem (Mλ).

We provide the proof in two steps.

Claim 1 α < +∞, where α is given in (2.11).

First, we observe that hypothesis (j2) ensures that λ1 < λ2. Fix λ ∈]λ1,λ2[. Let {cn} be a real
sequence such that, due to limn→+∞ cn = +∞,

A = lim
n→+∞

∫ b
a max|t|≤cn F(x, t) dx

c2
n

.

Put rn = m2

2(b–a) c2
n for all n ∈ N. Taking Remark 2.4 into account, for each u ∈ X such that


(u) = 1
2‖u‖2

X < rn, one has

∣
∣u(x)

∣
∣ ≤ (b – a) 1

2

m
‖u‖X ≤ (b – a) 1

2

m
(2rn)

1
2 =

(
2(b – a)

m2 rn

) 1
2

= cn,

for all x ∈ [a, b] and n ∈N. Therefore, from (2.10) and since 	(0) = 0, one has

ϕ(rn) = inf

(u)<rn

(sup
(v)<rn 	(v)) – 	(u)

rn – ‖u‖2
X

2

≤
sup‖v‖2

X <2rn 	(v)

rn

=
sup‖v‖2

X <2rn

∫ b
a e–�(x)F(x, v(x)) dx

m2
2(b–a) c2

n

.

Taking into account that maxx∈[a,b] |v(x)| ≤ cn for all v ∈ X such that ‖v‖2
X < 2rn, hence, for

all n ∈N,

ϕ(rn) ≤ 2(b – a)
m2 max

x∈[a,b]
e–�(x)

∫ b
a max|t|≤cn F(x, t) dx

c2
n

.
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Then, from (2.11) one has

α = lim inf
n→+∞ ϕ(rn) ≤ 2(b – a)

m2 max
x∈[a,b]

e–�(x)A < +∞. (3.2)

Claim 2 The functional Iλ = 
 – λ	 is unbounded from below.

Let {dn} be a real sequence such that, due to limn→+∞ dn = +∞,

B = lim
n→+∞

∫ b
a+b

2
F(x, dn) dx

d2
n

. (3.3)

Now, for each n ∈N, consider the function

wn(x) =

⎧
⎨

⎩

2dn
b–a (x – a) if x ∈ [a, a+b

2 [,

dn if x ∈ [ a+b
2 , b].

Clearly, wn ∈ X and one has

‖wn‖2
0 =

∫ b

a

∣
∣w′

n(x)
∣
∣2 dx =

∫ a+b
2

a

(
2dn

b – a

)2

dx =
2d2

n
b – a

.

Hence, taking Proposition 2.3 into account, one has


(wn) =
1
2
‖wn‖2

X ≤ 1
2

M2‖wn‖2
0 =

M2d2
n

b – a
.

Moreover, from (j1), one has

	(wn) =
∫ b

a
e–�(x)F

(
x, wn(x)

)
dx ≥ min

x∈[a,b]
e–�(x)

∫ b

a+b
2

F(x, dn) dx.

Therefore,

Iλ(wn) = 
(wn) – λ	(wn) ≤ M2d2
n

b – a
– λ min

x∈[a,b]
e–�(x)

∫ b

a+b
2

F(x, dn) dx.

Now, two possibilities arise:
1. B < +∞,
2. B = +∞.

If B < +∞, let ε ∈]0, B – M2

λ(b–a) minx∈[a,b] e–�(x) [.
We observe that, from hypothesis (j2), this interval is not empty.
From (3.3), there exists νε such that

∫ b

a+b
2

F(x, dn) dx > (B – ε)d2
n ∀n > νε .

Hence, one has

Iλ(wn) ≤ M2d2
n

b – a
– λ min

x∈[a,b]
e–�(x)(B – ε)d2

n = d2
n

(
M2

b – a
– λ min

x∈[a,b]
e–�(x)(B – ε)

)

.
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From the choice of ε, one has

lim
n→+∞ Iλ(wn) = –∞.

Besides, if B = +∞, we fix N > M2

λ(b–a) minx∈[a,b] e–�(x) ; from (3.3) there exists νN such that

∫ b

a+b
2

F(x, dn) dx > Nd2
n ∀n > νN .

Hence

Iλ(wn) ≤ M2d2
n

b – a
– λ min

x∈[a,b]
e–�(x)Nd2

n = d2
n

(
M2

b – a
– λ min

x∈[a,b]
e–�(x)N

)

.

Taking the choice of N into account, also in this case one has

lim
n→+∞ Iλ(wn) = –∞.

Finally, we observe that

]λ1,λ2[⊆
]

0,
1
α

[

.

Indeed, 0 ≤ λ1 < λ2 = m2

2A(b–a) maxx∈[a,b] e–�(x) ≤ 1
α

, from (3.2).
Then, from (b) of Theorem 2.5, for each λ ∈]λ1,λ2[, the functional Iλ = 
 – λ	 admits

a sequence {un} of critical points such that limn→+∞ 
(un) = +∞, which are generalized
solutions of problem (Mλ). �

Now, we deal with the autonomous case. To this end, let g : R → R be a continuous
nonnegative function and consider the autonomous problem

⎧
⎨

⎩

–u′′ + γ (x)u′ + δ(x)u = λg(u) in ]a, b[,

u(a) = u′(b) = 0.
(AMλ)

Hence, put

G(x) =
∫ x

0
g(ξ ) dξ ∀x ∈R,

and

	(u) =
∫ b

a
e–�(x)G

(
u(x)

)
dx.

Moreover, put

λ̄1 =
2M2

(b – a)2 minx∈[a,b] e–�(x) lim supξ→+∞
G(ξ )
ξ2

,
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λ̄2 =
m2

2(b – a)2 maxx∈[a,b] e–�(x) lim infξ→+∞ G(ξ )
ξ2

.

Here we point out a consequence of Theorem 3.1, also assuming in addition that γ and δ

are continuous functions.

Corollary 3.1 Assume that

lim inf
ξ→+∞

G(ξ )
ξ 2 <

1
2

K lim sup
ξ→+∞

G(ξ )
ξ 2 .

Then, for each λ ∈]λ̄1, λ̄2[, problem (AMλ) admits a sequence of pairwise distinct positive
classical solutions.

Proof Put

g+(t) =

⎧
⎨

⎩

g(0) if t ≤ 0,

g(t) if t > 0.

Theorem 3.1 ensures that problem
⎧
⎨

⎩

–u′′ + γ (x)u′ + δ(x)u = λg+(u) in ]a, b[,

u(a) = u′(b) = 0

admits a sequence of pairwise distinct solutions for all λ ∈]λ̄1, λ̄2[, which are classical since
γ and δ are continuous. Moreover, Proposition 2.6 guarantees that such solutions are all
(except at most one) strictly positive and they are also solutions of problem (AMλ), hence
the conclusion. �

We provide an explicit example.

Example 3.2 Consider the autonomous problem (AMλ) in [0, 1], with

γ (x) = –1, δ(x) = –
1
2

.

Put

an :=
2n!(n + 2)! – 1

4(n + 1)!
, bn :=

2n!(n + 2)! + 1
4(n + 1)!

∀n ∈N

and let g : R →R the nonnegative continuous function defined by

g(ξ ) =

⎧
⎨

⎩

32(n+1)!2[(n+1)!2–n!2]
π

√
1

16(n+1)!2 – (ξ – n!(n+2)
2 )2 if ξ ∈ ⋃

n∈N[an, bn]

0 otherwise.

By simple calculations, one has that

lim inf
ξ→+∞

G(ξ )
ξ 2 = 0, lim sup

ξ→+∞
G(ξ )
ξ 2 = 4,
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min
x∈[0,1]

e–�(x) = 1, max
x∈[0,1]

e–�(x) = e,

m =
√

1 –
8
π2 , M =

√
e,

K =
1 – 8

π2

2e2 .

Hence, from Corollary 3.1, for each λ > e
2 the given problem admits a sequence of pairwise

distinct classical positive solutions.
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