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Abstract
In this paper, we study the existence and uniqueness of positive solutions for a class
of a fractional differential equation system of Riemann–Liouville type on infinite
intervals with infinite-point boundary conditions. First, the higher-order equation is
reduced to the lower-order equation, and then it is transformed into the equivalent
integral equation. Secondly, we obtain the existence and uniqueness of positive
solutions for each fixed parameter λ > 0 by using the mixed monotone operators
fixed-point theorem. The results obtained in this paper show that the unique positive
solution has good properties: continuity, monotonicity, iteration, and approximation.
Finally, an example is given to demonstrate the application of our main results.
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1 Introduction
In recent years, fractional differential equations have developed rapidly in application and
theory. They are widely used in a variety of fields, including fluid flow, signal and image
processing, aerodynamics, and modeling of physical phenomena exhibiting anomalous
diffusion. Some excellent research outcomes have also been obtained [1–14]. Solving the
existence and uniqueness of positive solutions to boundary value problems of fractional
differential equations has become an important research area.

In [15], employing a fixed-point theory in cones, the authors investigated the existence
and multiplicity of positive solutions for multipoint boundary value problems of fractional
differential equations on infinite intervals:

⎧
⎨

⎩

Dα
0+ u(t) + a(t)f (t, u(t)) = 0, t ∈ (0, +∞),

u(0) = u′(0) = 0, Dα–1
0+ u(+∞) =

∑m–2
i=1 βiu(ξi),

(1)
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where 2 < α ≤ 3, 0 < ξ1 < ξ2 < · · · < ξm–2 < +∞, βi ≥ 0, i = 1, 2, . . . , m – 2 with 0 <
∑m–2

i=1 βiξ
α–1
i < �(α), and Dα

0+ denotes the Riemann–Liouville derivative.
In [16], by making use of the fixed-point theorem for generalized concave operators, the

authors studied the existence and uniqueness of positive solutions for fractional differen-
tial equations with integral boundary conditions as follows:

⎧
⎨

⎩

Dα
0+ u(t) + λf (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u(1) = β
∫ 1

0 u(s) ds,
(2)

where 2 < α ≤ 3, 0 < β < α, λ > 0 is a parameter and Dα
0+ is the Riemann–Liouville frac-

tional derivative.
In [17], by using the fixed-point theorem of mixed monotone operators, the authors

discussed the existence and uniqueness of positive solutions for the following fractional
differential equation system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα
t x(t) = f (t, x(t), Dβ

t x(t), y(t)),

–Dγ
t y(t) = g(t, x(t)), 0 < t < 1,

Dβ
t x(0) = 0, Dμ

t x(1) =
∑p–2

j=1 ajDμ
t x(ξj),

y(0) = 0, Dv
t y(1) =

∑p–2
j=1 bjDv

t y(ξj),

(3)

where 1 < γ < α ≤ 2, 1 < α – β < γ , 0 < β ≤ μ < 1, 0 < v < 1, 0 < ξ1 < ξ2 < · · · < ξp–2 <
1, aj, bj ∈ [0, +∞), and

∑p–2
j=1 ajξ

α–μ–1
j < 1,

∑p–2
j=1 bjξ

γ –1
j < 1, Dt is the Riemann–Liouville

fractional derivative.
The boundary value problems of fractional differential equations on infinite intervals

are significant for the study of the unsteady flow of gases in semiinfinite porous media,
the theory of drainage flow, and so on [15, 18–21]. In addition to having a larger practical
application background, multipoint boundary value problems can more properly repre-
sent many significant physical phenomena, such as soil–water and wet-soil differentials,
nonuniform electromagnetic field theory [15, 17, 20–25].

Through consulting the relevant literature, the existence and uniqueness of positive so-
lutions to multipoint boundary value problems of fractional differential equations on in-
finite intervals have not been thoroughly investigated [20, 21, 26], most of these studies
use fixed-point theorems on cones, but few papers use fixed-point theorems of mixed
monotone operators, and there is even less literature on fractional differential equation
systems.

Motivated by the studies above, in this work, we extend the multipoint boundary value
problem to infinite point, and use the mixed monotone operators fixed-point theorem
to investigate the existence and uniqueness of positive solutions to the boundary value
problem of fractional differential equation system on infinite intervals as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ x(t) + λp(t)f (t, x(t), Dγ

0+ x(t), y(t), Dγ

0+ y(t)) + λq(t)m(t, Dγ

0+ x(t)) = 0,

Dβ

0+ y(t) + r(t)g(t, x(t)) = 0, t ∈ [0, +∞),

Dγ

0+ x(0) = 0, Dα–1
0+ x(+∞) =

∑∞
i=1 aiDγ

0+ x(ξi),

I2–β

0+ y(0) = 0, Dβ–1
0+ y(+∞) =

∑∞
i=1 biIσ–γ

0+ y(ηi),

(4)
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where 2 < α < 3, 1 < β < 2, 0 < γ < 1, 1 < α –γ < β , β –γ – 1 > 0, σ > γ , λ > 0 is a parameter,
ai, bi ≥ 0, 0 < ξ1 < ξ2 < · · · < ξi < · · · < +∞, 0 < η1 < η2 < · · · < ηi < · · · < +∞, i = 1, 2, . . . , Dμ

0+

is the Riemann–Liouville fractional derivative of order μ, μ ∈ {α,β ,γ ,α – 1,β – 1}, f :
[0, +∞)5 → [0, +∞), p, q, r : [0, +∞) → [0, +∞) and m, g : [0, +∞) × [0, +∞) → [0, +∞)
are continuous.

In this paper, we study the existence and uniqueness of positive solutions to the bound-
ary value problem (4), improving and generalizing the literature [17]. The main new fea-
tures presented in this paper are as follows. First, we generalize the boundary conditions
and intervals to give a more general form and more accurate results for the boundary
value problem. Secondly, by using the fixed-point theorem of mixed monotone operators,
the existence and uniqueness of positive solutions are obtained for every fixed parameter
λ > 0. We also give some properties of positive solutions that depend on the parameter.
In addition, the boundary value problem studied in this paper is a system, which is an
extension of general fractional differential equations.

The rest of the paper is organized as follows. In Sect. 2, we introduce and derive several
key definitions, lemmas, and properties. In Sect. 3, we obtain the existence and uniqueness
of positive solutions for problem (4) and the unique positive solution has good properties
such as continuity, monotonicity, iteration, and approximation. In Sect. 4, an example is
presented to demonstrate the application of our main results. Finally, Sect. 5 presents a
brief conclusion.

2 Preliminaries
In this section, we first present some definitions and lemmas to be used in the proof of our
main results. They can also be found in the literature [16, 21, 26, 27].

Definition 1 ([26]) The Riemann–Liouville fractional integral of order α > 0 of a function
y : (0, +∞) →R

1 is given by

Iα
0+ y(t) =

1
�(α)

∫ t

0
(t – s)α–1y(s) ds,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2 ([26]) The Riemann–Liouville fractional derivative of order α > 0 of a con-
tinuous function y : (0, +∞) →R

1 is given by

Dα
0+ y(t) =

1
�(n – α)

(
d
dt

)n ∫ t

0

y(s)
(t – s)α–n+1 ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-
hand side is pointwise defined on (0, ∞).

Lemma 1 ([26]) Assume that u ∈ C(0, 1) ∩ L1(0, 1) with a fractional derivative of order
α > 0 that belongs to C(0, 1) ∩ L1(0, 1). Then,

Iα
0+ Dα

0+ u(t) = u(t) + C1tα–1 + C2tα–2 + · · · + CN tα–N ,

for some Ci ∈R
1 (i = 1, 2, . . . , N ), where N = [α] + 1.
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Lemma 2 ([21]) Let α,β > 0, f ∈ L1[a, b]. Then, Iα
0+ Iβ

0+ f (t) = Iα+β

0+ f (t) = Iβ

0+ Iα
0+ f (t) and

Dα
0+ Iα

0+ f (t) = f (t), for all t ∈ [a, b].

Lemma 3 ([21]) Let α,β > 0 and n = [α] + 1, then the following relations hold:

Dα
0+ tβ–1 =

�(β)
�(β – α)

tβ–α–1, β > n,

Dα
0+ tk = 0, k = 0, 1, 2, . . . , n – 1.

To prove the main result of this paper we need the following lemmas.

Lemma 4 Let x(t) = Iγ

0+ u(t), y(t) = Iγ

0+ v(t) and u(t), v(t) ∈ C[0, +∞), then the problem (4)
can turn into the following modified problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα–γ

0+ u(t) + λp(t)f (t, Iγ

0+ u(t), u(t), Iγ

0+ v(t), v(t)) + λq(t)m(t, u(t)) = 0,

Dβ–γ

0+ v(t) + r(t)g(t, Iγ

0+ u(t)) = 0, t ∈ [0, +∞),

u(0) = 0, Dα–γ –1
0+ u(+∞) =

∑∞
i=1 aiu(ξi),

I2–β+γ

0+ v(0) = 0, Dβ–γ –1
0+ v(+∞) =

∑∞
i=1 biIσ

0+ v(ηi).

(5)

Moreover, if (u, v) ∈ C[0, +∞) × C[0, +∞) is a positive solution of the problem (5), then
(Iγ

0+ u, Iγ

0+ v) is a positive solution of the problem (4).

Proof The proof is similar to that for Lemma (2.5) in [17], hence, we omit it here. �

Lemma 5 Let π1,π2 ∈ L1[0, +∞). If �1 = �(α – γ ) –
∑∞

i=1 aiξ
α–γ –1
i > 0, �2 = �(β + σ –

γ )–
∑∞

i=1 biη
β+σ–γ –1
i > 0, then the following fractional differential equation boundary value

problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα–γ

0+ u(t) + π1(t) = 0,

Dβ–γ

0+ v(t) + π2(t) = 0, t ∈ [0, +∞),

u(0) = 0, Dα–γ –1
0+ u(+∞) =

∑∞
i=1 aiu(ξi),

I2–β+γ

0+ v(0) = 0, Dβ–γ –1
0+ v(+∞) =

∑∞
i=1 biIσ

0+ v(ηi)

(6)

has a unique solution

u(t) =
∫ +∞

0
G(t, s)π1(s) ds, v(t) =

∫ +∞

0
K(t, s)π2(s) ds, (7)

where

G(t, s) = G1(t, s) +
1

�1

∞∑

i=1

aitα–γ –1G1(ξi, s) (8)

and

G1(t, s) =
1

�(α – γ )

⎧
⎨

⎩

tα–γ –1 – (t – s)α–γ –1, 0 ≤ s ≤ t < +∞,

tα–γ –1, 0 ≤ t ≤ s < +∞,
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K(t, s) =
1

�(β – γ )

⎧
⎨

⎩

χ (s)
χ (0) tβ–γ –1 – (t – s)β–γ –1, 0 ≤ s ≤ t < +∞,
χ (s)
χ (0) tβ–γ –1, 0 ≤ t ≤ s < +∞,

(9)

χ (s) = �(β + σ – γ ) –
∑

s≤ηi

bi(ηi – s)β+σ–γ –1. (10)

Proof In view of Lemma 1, we know that the general solution of (6) can be written as

u(t) = –Iα–γ

0+ π1(t) + c1tα–γ –1 + c2tα–γ –2, (11)

v(t) = –Iβ–γ

0+ π2(t) + d1tβ–γ –1 + d2tβ–γ –2, (12)

for some ci, di ∈ R (i = 1, 2). By using the boundary conditions u(0) = 0 and I2–β+γ

0+ v(0) = 0,
we know that c2 = 0, d2 = 0. Therefore, by Lemma 3, we conclude

Dα–γ –1
0+ u(t) = –

∫ t

0
π1(s) ds + c1�(α – γ ),

Dβ–γ –1
0+ v(t) = –

∫ t

0
π2(s) ds + d1�(β – γ ),

Iσ
0+ v(t) = –Iβ+σ–γ

0+ π2(t) + d1
�(β – γ )

�(β + σ – γ )
tβ+σ–γ –1.

By the boundary condition Dα–γ –1
0+ u(+∞) =

∑∞
i=1 aiu(ξi), we obtain

c1 =
1

�1

∫ +∞

0
π1(s) ds –

∞∑

i=1

ai

�1�(α – γ )

∫ ξi

0
(ξi – s)α–γ –1π1(s) ds. (13)

By the boundary condition Dβ–γ –1
0+ v(+∞) =

∑∞
i=1 biIσ

0+ v(ηi), we have

d1 =
�(β + σ – γ )
�2�(β – γ )

∫ +∞

0
π2(s) ds –

∞∑

i=1

bi

�2�(β – γ )

∫ ηi

0
(ηi – s)β+σ–γ –1π2(s) ds. (14)

Therefore, substituting (13) into (11), we have

u(t) = –
1

�(α – γ )

∫ t

0
(t – s)α–γ –1π1(s) ds +

tα–γ –1

�1

∫ +∞

0
π1(s) ds

–
∞∑

i=1

aitα–γ –1

�1�(α – γ )

∫ ξi

0
(ξi – s)α–γ –1π1(s) ds

=
1

�(α – γ )

(

–
∫ t

0
(t – s)α–γ –1π1(s) ds +

∫ +∞

0
tα–γ –1π1(s) ds

)

+
∞∑

i=1

aitα–γ –1

�1�(α – γ )

(∫ +∞

0
ξ

α–γ –1
i π1(s) ds –

∫ ξi

0
(ξi – s)α–γ –1π1(s) ds

)

=
∫ +∞

0

(

G1(t, s) +
1

�1

∞∑

i=1

aitα–γ –1G1(ξi, s)

)

π1(s) ds

=
∫ +∞

0
G(t, s)π1(s) ds.
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In a similar manner, substituting (14) into (12), we obtain

v(t) = –
1

�(β – γ )

∫ t

0
(t – s)β–γ –1π2(s) ds +

�(β + σ – γ )
�2�(β – γ )

∫ +∞

0
tβ–γ –1π2(s) ds

–
∞∑

i=1

bitβ–γ –1

�2�(β – γ )

∫ ηi

0
(ηi – s)β+σ–γ –1π2(s) ds

= –
1

�(β – γ )

∫ t

0
(t – s)β–γ –1π2(s) ds +

1
�(β – γ )

∫ +∞

0

χ (s)
χ (0)

tβ–γ –1π2(s) ds

=
∫ +∞

0
K(t, s)π2(s) ds.

Therefore, we obtain the expression (7) for the solution of problem (6). The proof is com-
pleted. �

Lemma 6 Suppose that χ (0) > 0 holds. Then, χ (s) > 0, χ (s)
χ (0) ≥ 1, for all s ∈ [0, +∞).

Proof By (10), we have χ ′(s) = (β + σ – γ – 1)
∑

s≤ηi
bi(ηi – s)β+σ–γ –2 > 0. Then, χ (s) is a

monotonically increasing function in [0, +∞). By χ (0) > 0, for all s ∈ [0, +∞), we obtain
χ (s) ≥ χ (0) > 0 and χ (s)

χ (0) ≥ 1. The proof is completed. �

The following properties of the Green functions play an important role in this paper.

Lemma 7 The Green functions G(t, s), K(t, s) defined by (8) and (9) have the following
properties:

(i) G(t, s), K(t, s) are continuous functions and G(t, s), K(t, s) ≥ 0,

∀(t, s) ∈ [0, +∞) × [0, +∞).

(ii)
G(t, s)

1 + tα–γ –1 ≤ 1
�1

, ∀(t, s) ∈ [0, +∞) × [0, +∞).

(iii) G(t, s) ≥ 1
�1

∞∑

i=1

aitα–γ –1G1(ξi, s), ∀(t, s) ∈ [0, +∞) × [0, +∞),

G(t, s) ≤ tα–γ –1

�1
, ∀(t, s) ∈ [0, +∞) × [0, +∞).

(iv) K(t, s) ≤ �(β + σ – γ )tβ–γ –1

�(β – γ )χ (0)
, ∀(t, s) ∈ [0, +∞) × [0, +∞),

K(t, s) ≥ tβ–γ –1

�(β – γ )
(1 – (1 – s)β–γ –1), 0 ≤ s, t ≤ 1,

where �1 = �(α – γ ) –
∑∞

i=1 aiξ
α–γ –1
i > 0, χ (0) = �(β + σ – γ ) –

∑∞
i=1 biη

β+σ–γ –1
i > 0.

Proof (i) According to the definition of G(t, s), K(t, s), it is clear that G(t, s), K(t, s) are
continuous functions and G(t, s), K(t, s) ≥ 0, for all (t, s) ∈ [0, +∞) × [0, +∞).
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(ii) For all (t, s) ∈ [0, +∞) × [0, +∞), we obtain

G(t, s)
1 + tα–γ –1 ≤ 1

�(α – γ )
+

∞∑

i=1

aiG1(ξi, s)
�1

≤ 1
�(α – γ )

+
∞∑

i=1

aiξ
α–γ –1
i

�l�(α – γ )

=
1

�1
.

(iii) For all (t, s) ∈ [0, +∞) × [0, +∞), it is obvious from (8) that G(t, s) ≥
1

�1

∑∞
i=1 aitα–γ –1G1(ξi, s) and

G(t, s) = G1(t, s) +
1

�1

∞∑

i=1

aitα–γ –1G1(ξi, s)

≤
(

1
�(α – γ )

+
∞∑

i=1

aiξ
α–γ –1
i

�1�(α – γ )

)

tα–γ –1

=
tα–γ –1

�1
.

(iv) For all (t, s) ∈ [0, +∞) × [0, +∞), by (9) and (10), we can obtain

K(t, s) ≤ χ (s)tβ–γ –1

�(β – γ )χ (0)
≤ �(β + σ – γ )

�(β – γ )χ (0)
tβ–γ –1.

If 0 ≤ s ≤ t ≤ +∞, then

K(t, s) =
1

�(β – γ )

(
χ (s)
χ (0)

tβ–γ –1 – (t – s)β–γ –1
)

≥ 1
�(β – γ )

(
tβ–γ –1 – (t – s)β–γ –1)

=
tβ–γ –1

�(β – γ )

(

1 –
(

1 –
s
t

)β–γ –1)

.

If 0 ≤ t ≤ s ≤ +∞, then

K(t, s) =
χ (s)tβ–γ –1

�(β – γ )χ (0)
≥ tβ–γ –1

�(β – γ )
.

In summary, for 0 ≤ s, t ≤ 1, we have

K(t, s) ≥ tβ–γ –1

�(β – γ )
(
1 – (1 – s)β–γ –1).

The proof is completed. �

Suppose that (E,‖ · ‖) is a Banach space and θ is the zero element of E. A nonempty,
closed, and convex set P ⊂ E is a cone if it satisfies (1)x ∈ P, λ ≥ 0 ⇒ λx ∈ P; (2)x ∈ P,
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–x ∈ P ⇒ x = θ . Moreover, P is called normal if there exists a constant N > 0 such that,
for all x, y ∈ E, θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, where the smallest N is called the normality
constant of P. For x, y ∈ E, x ∼ y means that there exist λ > 0 and μ > 0 such that λx ≤ y ≤
μx. Clearly, ∼ is an equivalence relation. Given h > θ (h ≥ θ and h �= θ ), if we define a set
Ph = {u ∈ E | u ∼ h}, it is easy to see that Ph ⊂ P.

Definition 3 ([16]) An operator T : E → E is said to be increasing if u ≤ v implies Tu ≤ Tv.

Definition 4 ([26]) A : P × P → P is said to be a mixed monotone operator if A(x, y) is
increasing in x and decreasing in y, i.e., ui, vi (i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥ v2 imply A(u1, v1) ≤
A(u2, v2).

Lemma 8 ([27]) Let P be a normal cone, A : Ph → Ph be an increasing operator and B :
Ph × Ph → Ph be a mixed monotone operator. Assume that:

(1) for any x ∈ Ph, t ∈ (0, 1), there exists ϕ1(t) ∈ (t, 1) such that

A(tx) ≥ ϕ1(t)Ax;

(2) for any x, y ∈ Ph, t ∈ (0, 1), there exists ϕ2(t) ∈ (t, 1) such that

B
(
tx, t–1y

) ≥ ϕ2(t)B(x, y).

Then:
(i) there exist u0, v0 ∈ Ph and r ∈ (0, 1), such that

rv0 ≤ u0 < v0, u0 ≤ Au0 + B(u0, v0) ≤ Av0 + B(v0, u0) ≤ v0;

(ii) the operator equation Ax + B(x, x) = x has a unique solution x∗ in Ph;
(iii) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = Axn–1 + B(xn–1, yn–1), yn = Ayn–1 + B(yn–1, xn–1), n = 1, 2, . . . ,

we have xn → x∗, yn → x∗ as n → ∞.

Lemma 9 ([27]) Assume that all the conditions of Lemma 8 hold. Let xλ(λ > 0) denote the
unique solution of the operator equation Ax + B(x, x) = λx. Then, we have the following
conclusions:

(1) if ϕi(t) > t 1
2 (i = 1, 2) for t ∈ (0, 1), then xλ is strictly decreasing in λ, that is,

0 < λ1 < λ2 implies xλ1 > xλ2 ;
(2) if there exists β ∈ (0, 1), such that ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1) then xλ is

continuous in λ, that is, λ → λ0(λ0 > 0) implies ‖xλ – xλ0‖ → 0;
(3) if there exists β ∈ (0, 1

2 ), such that ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1), then
limλ→+∞ ‖xλ‖ = 0, limλ→0+ ‖xλ‖ = ∞.

3 Main results
We are next concerned with problem (4) in the following space E defined by

E =
{

u ∈ C[0, +∞) : sup
t∈[0,+∞)

|u(t)|
1 + tα–γ –1 < +∞

}

.



Yu and Ge Boundary Value Problems         (2024) 2024:41 Page 9 of 20

From [17], we know that E is a Banach space with the norm

‖u‖ = sup
t∈[0,+∞)

|u(t)|
1 + tα–γ –1 , u ∈ E.

We define a cone P ⊂ E by

P =
{

u ∈ E : u(t) ≥ 0, t ∈ [0, +∞)
}

.

For u, v ∈ P with u ≤ v, we have 0 ≤ u(t) ≤ v(t), t ∈ [0, +∞), and thus

sup
t∈[0,+∞)

u(t)
1 + tα–γ –1 ≤ sup

t∈[0,+∞)

v(t)
1 + tα–γ –1 .

Hence, ‖u‖ ≤ ‖v‖. Hence, P is a normal cone. Let h(t) = tα–γ –1 and ‖h‖ = 1.
Also, define a component of P by

Ph =
{

x ∈ P :
1
M

h(t) ≤ x(t) ≤ Mh(t), t ∈ [0, +∞)
}

,

where M is a constant and M ≥ 1.

Lemma 10 The vector (u, v) is a solution of system (5) if and only if (u, v) ∈ C[0, +∞) ×
C[0, +∞) is a solution of the following nonlinear integral equation system:

⎧
⎨

⎩

u(t) = λ
∫ +∞

0 G(t, s)(p(s)f (s, Iγ

0+ u(s), u(s), Iγ

0+ v(s), v(s)) + q(s)m(s, u(s))) ds,

v(t) =
∫ +∞

0 K(t, s)r(s)g(s, Iγ

0+ u(s)) ds.
(15)

Obviously, system (15) is equivalent to the following integral equation

u(t) = λ

∫ +∞

0
G(t, s)p(s)

× f
(

s, Iγ

0+ u(s), u(s), Iγ

0+

∫ +∞

0
K(s, τ )r(τ )g

(
τ , Iγ

0+ u(τ )
)

dτ ,

∫ +∞

0
K(s, τ )r(τ )g

(
τ , Iγ

0+ u(τ )
)

dτ

)

ds

+ λ

∫ +∞

0
G(t, s)q(s)m

(
s, u(s)

)
ds.

(16)

To establish the existence and uniqueness of a solution to the boundary value problem
(4), we need to make the following assumptions.

(H1) f (t, x1, x2, x3, x4) = φ(t, x1, x2, x3, x4) + ϕ(t, x1, x2, x3, x4), where φ,ϕ : [0, +∞)5 →
[0, +∞) are continuous, for any fixed t ∈ [0, +∞), φ(t, x1, x2, x3, x4) is increasing and
ϕ(t, x1, x2, x3, x4) is decreasing in xi ≥ 0 (i = 1, 2, 3, 4), respectively.

(H2) g(t, x) ∈ C([0, +∞) × [0, +∞) → [0, +∞)) is increasing in x, g(t, 0) �= 0, and
limx→+∞ g(x, xα–1) = Tg ∈ R. Moreover, there exists ω ∈ (0, 1), for all t, x ∈ [0, +∞),
such that

g(t, lx) ≥ lωg(t, x), l ∈ (0, 1).
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(H3) If xi ≥ 0 (i = 1, 2, 3, 4) are bounded, then for all t ∈ [0, +∞), φ(t, (1 + tα–1)x1, (1 +
tα–1)x2, (1 + tα–1)x3, (1 + tα–1)x4) and ϕ(t, (1 + tα–1)x1, (1 + tα–1)x2, (1 + tα–1)x3, (1 +
tα–1)x4) are bounded.

(H4) m(t, x) ∈ C([0, +∞) × [0, +∞) → [0, +∞)) is increasing in x, m(t, 0) �= 0 and
limx→+∞ m(x, xα–γ –1) = Tm ∈ R. Moreover, there exists δ ∈ (0, 1), for all t, x ∈
[0, +∞), such that

m(t, lx) ≥ lδm(t, x), l ∈ (0, 1).

(H5) For any l ∈ (0, 1) and t, xi (i = 1, 2, 3, 4) ∈ [0, +∞), there exists v ∈ (0, 1), such that

φ(t, lx1, lx2, lx3, lx4) ≥ lvφ(t, x1, x2, x3, x4),

ϕ
(
t, l–1x1, l–1x2, l–1x3, l–1x4

) ≥ lvϕ(t, x1, x2, x3, x4).

(H6) The functions p, q, and r satisfy

0 <
∫ +∞

0
p(s) ds < +∞, 0 <

∫ +∞

0
q(s) ds < +∞, 0 <

∫ +∞

0
r(s) ds < +∞.

Remark 1 According to (H2), (H4), and (H5), for all t, x, xi (i = 1, 2, 3, 4) ∈ [0, +∞), ω, δ,ν ∈
(0, 1) and l > 1, we have

g(t, lx) ≤ lωg(t, x), m(t, lx) ≤ lδm(t, x),

φ(t, lx1, lx2, lx3, lx4) ≤ lvφ(t, x1, x2, x3, x4),

ϕ
(
t, l–1x1, l–1x2, l–1x3, l–1x4

) ≤ lvϕ(t, x1, x2, x3, x4).

We define two operators A : P × P → P and B : P → P by

A(u, v)(t) =
∫ +∞

0

[
G(t, s)p(s)φ

(
s, Iγ

0+ u(s), u(s), Iγ

0+ Cu(s), Cu(s)
)

+ G(t, s)p(s)ϕ
(
s, Iγ

0+ v(s), v(s), Iγ

0+ Cv(s), Cv(s)
)]

ds,

Bu(t) =
∫ +∞

0
G(t, s)q(s)m

(
s, u(s)

)
ds,

where Cu(t) =
∫ +∞

0 K(t, s)r(s)g(s, Iγ

0+ u(s)) ds,∀u, v ∈ P, t ∈ [0, +∞).G(t, s), K(t, s) are given
in (8) and (9).

Theorem 1 Suppose that (H1)–(H6) hold. Then:
(a) For any given λ > 0, problem (4) has a unique solution (x∗

λ, y∗
λ) in Ph, where

h(t) = tα–γ –1, t ∈ [0, +∞). Moreover, for any initial value x0, y0 ∈ Ph, defining the
sequences

xn(t) = Iγ

0+

[∫ +∞

0
λG(t, s)p(s)f

(
s, xn–1(s), Dγ

0+ xn–1(s), yn–1(s), Dγ

0+ yn–1(s)
)

ds

+
∫ +∞

0
λG(t, s)q(s)m

(
s, Dγ

0+ xn–1(s)
)

ds
]

,
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yn(t) = Iγ

0+

[∫ +∞

0
K(t, s)r(s)g

(
s, xn–1(s)

)
ds

]

, n = 1, 2, . . . ,

we have xn(t) → x∗
λ(t), yn(t) → y∗

λ(t) as n → ∞, where G(t, s), K(t, s) are given as in
Lemma 5.

(b) If ψi(l) > l 1
2 (i = 1, 2) for l ∈ (0, 1), then x∗

λ, y∗
λ is strictly increasing in λ, that is,

0 < λ1 < λ2 can ensure x∗
λ1

< x∗
λ2

, y∗
λ1

< y∗
λ2

. If there exists κ ∈ (0, 1), such that ψi(l) > lκ

(i = 1, 2), l ∈ (0, 1), then x∗
λ, y∗

λ is continuous in λ, that is, λ → λ0(λ0 > 0) ensures
‖x∗

λ – x∗
λ0

‖ → 0, ‖y∗
λ – y∗

λ0
‖ → 0. If there exists κ ∈ (0, 1

2 ), such that ψi(l) > lκ (i = 1, 2),
l ∈ (0, 1), then limλ→+∞ ‖x∗

λ‖ = ∞, limλ→+∞ ‖y∗
λ‖ = ∞, and limλ→0+ ‖x∗

λ‖ = 0,
limλ→0+ ‖y∗

λ‖ = 0.

Proof We first consider the existence of a positive solution to problem (16). The proof
process is divided into four steps as follows.

First, we show that A : Ph ×Ph → P, B : Ph → P are well defined. For u ∈ Ph, the constant
M ≥ 1, t ∈ [0, +∞), we have

1
M

tα–γ –1 ≤ u(t) ≤ Mtα–γ –1. (17)

Then,

�(α – γ )
M�(α)

tα–1 ≤ Iγ

0+ u(t) ≤ M�(α – γ )
�(α)

tα–1. (18)

By (18) and (H2), for all t ∈ [0, +∞), ω ∈ (0, 1), we have

g
(
t, Iγ

0+ u(t)
) ≤ g

(

t,
M�(α – γ )

�(α)
tα–1

)

≤
(

M�(α – γ )
�(α)

+ 1
)ω

g
(
t, tα–1)

≤
(

M�(α – γ )
�(α)

+ 1
)ω

Tg

(19)

and

g
(
t, Iγ

0+ u(t)
) ≥ g

(

t,
�(α – γ )
M�(α)

tα–1
)

≥
(

�(α – γ )
M�(α)

)ω

g
(
t, tα–1)

≥
(

�(α – γ )
M�(α)

)ω

g(t, 0).

(20)

Thus, from (19), (20), and (iv) in Lemma 7, we have

Cu(t) =
∫ +∞

0
K(t, s)r(s)g

(
s, Iγ

0+ u(s)
)

ds

≤
(

M�(α – γ )
�(α)

+ 1
)ω

�(β + σ – γ )tβ–γ –1Tg

�(β – γ )χ (0)

∫ +∞

0
r(s) ds,

(21)
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for any 0 < ζ ≤ 1, t ∈ [0, +∞), we have

Cu(t) ≥
(

�(α – γ )
M�(α)

)ω tβ–γ –1

�(β – γ )

∫ ζ

0

(
1 – (1 – s)β–γ –1)r(s)g(s, 0) ds. (22)

Hence, by (21) and (22), we obtain

Iγ

0+ Cu(t) ≤ 1
�(γ )

∫ t

0
(t – s)γ –1

×
[(

M�(α – γ )
�(α)

+ 1
)ω sβ–γ –1Tg�(β + σ – γ )

�(β – γ )χ (0)

∫ +∞

0
r(τ ) dτ

]

ds,

Iγ

0+ Cu(t) ≥ 1
�(γ )

∫ t

0
(t – s)γ –1

×
[(

�(α – γ )
M�(α)

)ω sβ–γ –1

�(β – γ )

∫ ζ

0

(
1 – (1 – τ )β–γ –1)r(τ )g(τ , 0) dτ

]

ds.

(23)

At the same time, for any t ∈ [0, +∞), we also obtain

0 ≤ M�(α – γ )tα–1

�(α)(1 + tα–1)
< +∞, 0 ≤ Mtα–γ –1

1 + tα–1 < +∞,

0 ≤ 1
�(γ )(1 + tα–1)

∫ t

0
(t – s)γ –1

×
[(

M�(α – γ )
�(α)

+ 1
)ω sβ–γ –1Tg�(β + σ – γ )

�(β – γ )χ (0)

∫ ∞

0
r(τ ) dτ

]

ds

=
(

M�(α – γ )
�(α)

+ 1
)ω Tg�(β + σ – γ )tβ–1 ∫ +∞

0 r(τ ) dτ

χ (0)�(β)(1 + tα–1)
< +∞,

0 ≤
(

M�(α – γ )
�(α)

+ 1
)ω tβ–γ –1Tg�(β + σ – γ )

(1 + tα–1)�(β – γ )χ (0)

∫ +∞

0
r(s) ds < +∞.

Therefore, by (17), (18), (19), (21), (23), and (H1), (H3), there exists a positive constant Qφ

such that

φ
(
s, Iγ

0+ u(s), u(s), Iγ

0+ Cu(s), Cu(s)
)

≤ φ

(

s,
M�(α – γ )

�(α)
sα–1, Msα–γ –1,

1
�(γ )

∫ s

0
(s – t)γ –1

×
[(

M�(α – γ )
�(α)

+ 1
)ω tβ–γ –1Tg�(β + σ – γ )

�(β – γ )χ (0)

∫ +∞

0
r(τ ) dτ

]

dt,

(
M�(α – γ )

�(α)
+ 1

)ω sβ–γ –1Tg�(β + σ – γ )
�(β – γ )χ (0)

∫ +∞

0
r(τ ) dτ

)

≤ Qφ .

(24)
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In a similar manner, there exists a positive constant Qϕ such that

ϕ
(
s, Iγ

0+ v(s), v(s), Iγ

0+ Cv(s), Cv(s)
)

≤ ϕ

(

s,
�(α – γ )
M�(α)

sα–1,
1
M

sα–γ –1,

1
�(γ )

∫ s

0
(s – t)γ –1

×
[(

�(α – γ )
M�(α)

)ω tβ–γ –1

�(β – γ )

∫ ζ

0

(
1 – (1 – τ )β–γ –1)r(τ )g(τ , 0) dτ

]

dt,

(
�(α – γ )
M�(α)

)ω sβ–γ –1

�(β – γ )

∫ ζ

0

(
1 – (1 – τ )β–γ –1)r(τ )g(τ , 0) dτ

)

≤ Qϕ .

(25)

By (24), (25), and (ii) in Lemma 7, we have

|A(u, v)(t)|
1 + tα–γ –1 =

∫ +∞

0

G(t, s)
1 + tα–γ –1 p(s)

[
φ
(
s, Iγ

0+ u(s), u(s), Iγ

0+ Cu(s), Cu(s)
)

+ ϕ
(
s, Iγ

0+ v(s), v(s), Iγ

0+ Cv(s), Cv(s)
)]

ds

≤ (Qφ + Qϕ)
�1

∫ +∞

0
p(s) ds < +∞.

For the operator Bu(t) =
∫ +∞

0 G(t, s)q(s)m(s, u(s)) ds, by (H4), we obtain that

m
(
t, u(t)

) ≤ m
(
t, Mtα–γ –1) ≤ Mδm

(
t, tα–γ –1) ≤ MδTm,

m
(
t, u(t)

) ≥ m
(

t,
1
M

tα–γ –1
)

≥ 1
Mδ

m
(
t, tα–γ –1) ≥ 1

Mδ
m(t, 0),

(26)

where M ≥ 1, δ ∈ (0, 1), t ∈ [0, +∞). Thus, by (26) and (ii) in Lemma 7, we obtain

|Bu(t)|
1 + tα–γ –1 =

∫ +∞

0

G(t, s)
1 + tα–γ –1 q(s)m

(
s, u(s)

)
ds ≤ MδTm

�1

∫ +∞

0
q(s) ds < +∞.

Hence, we see that A : Ph × Ph → P and B : Ph → P are well defined.
Secondly, we prove that A : Ph × Ph → Ph and B : Ph → Ph. Similar to the proof in the

first step, by (H1) and (H3), for s ∈ [0, +∞), there exists a positive constant Nφ that satisfies
0 < Nφ < Qφ , such that

φ
(
s, Iγ

0+ u(s), u(s), Iγ

0+ Cu(s), Cu(s)
)

≥ φ

(

s,
�(α – γ )
M�(α)

sα–1,
1
M

sα–γ –1,

1
�(γ )

∫ s

0
(s – t)γ –1

×
[(

�(α – γ )
M�(α)

)ω tβ–γ –1

�(β – γ )

∫ ζ

0

(
1 – (1 – τ )β–γ –1)r(τ )g(τ , 0) dτ

]

dt,

(
�(α – γ )
M�(α)

)ω sβ–γ –1

�(β – γ )

∫ ζ

0

(
1 – (1 – τ )β–γ –1)r(τ )g(τ , 0) dτ

)

≥ Nφ .

(27)
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In a similar way, there exists a positive constant Nϕ that satisfies 0 < Nϕ < Qϕ , such that

ϕ
(
s, Iγ

0+ v(s), v(s), Iγ

0+ Cv(s), Cv(s)
)

≥ ϕ

(

s,
M�(α – γ )

�(α)
sα–1, Msα–γ –1,

1
�(γ )

∫ s

0
(s – t)γ –1

×
[(

M�(α – γ )
�(α)

+ 1
)ω tβ–γ –1Tg�(β + σ – γ )

�(β – γ )χ (0)

∫ ∞

0
r(τ ) dτ

]

dt,

(
M�(α – γ )

�(α)
+ 1

)ω sβ–γ –1Tg�(β + σ – γ )
�(β – γ )χ (0)

∫ +∞

0
r(τ ) dτ

)

≥ Nϕ .

(28)

Let

l1 =
1

�1

∞∑

i=1

ai(Nφ + Nϕ)
∫ ζ

0
p(s)G1(ξi, s) ds, l2 =

1
�1

(Qφ + Qϕ)
∫ +∞

0
p(s) ds,

where �1 = �(α – γ ) –
∑∞

i=1 aiξ
α–γ –1
i > 0 and 0 < ζ ≤ 1.

In view of G1(ξi, s) ≤ ξ
α–γ –1
i

�(α–γ ) , �(α – γ ) >
∑∞

i=1 aiξ
α–γ –1
i > 0 and 0 < Nϕ < Qϕ , 0 < Nφ < Qφ ,

we obtain that

0 < l1 =
1

�1

∞∑

i=1

ai(Nφ + Nϕ)
∫ ζ

0
p(s)G1(ξi, s) ds

≤ 1
�1�(α – γ )

∞∑

i=1

aiξ
α–γ –1
i (Nφ + Nϕ)

∫ ζ

0
p(s) ds

≤ �(α – γ )(Qφ + Qϕ)
�1�(α – γ )

∫ +∞

0
p(s) ds

=
(Qφ + Qϕ)

�1

∫ +∞

0
p(s) ds = l2.

It follows that 0 < l1 ≤ l2. From (27), (28), and (iii) in Lemma 7, we have

A(u, v)(t) ≤ tα–γ –1

�1
(Qφ + Qϕ)

∫ +∞

0
p(s) ds

= l2tα–γ –1 = l2h(t)

and

A(u, v)(t) ≥ tα–γ –1

�1

∞∑

i=1

ai(Nφ + Nϕ)
∫ ζ

0
p(s)G1(ξi, s) ds

= l1tα–γ –1 = l1h(t).

Hence, l1h(t) ≤ A(u, v)(t) ≤ l2h(t), ∀t ∈ [0, +∞). Therefore, A : Ph × Ph → Ph.
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For the operator Bu(t) =
∫ +∞

0 G(t, s)q(s)m(s, u(s)) ds, let

l3 =
1

Mδ�1

∞∑

i=1

ai

∫ ζ

0
G1(ξi, s)q(s)m(s, 0) ds, l4 =

MδTm

�1

∫ +∞

0
q(s) ds,

where �1 = �(α – γ ) –
∑∞

i=1 aiξ
α–γ –1
i > 0, M ≥ 1, 0 < ζ ≤ 1, δ ∈ (0, 1) and in a similar way

as before, we can obtain 0 < l3 ≤ l4.
By (26) and (iii) in Lemma 7, we have

Bu(t) ≤ MδTmtα–γ –1

�1

∫ +∞

0
q(s) ds

= l4tα–γ –1 = l4h(t)

and

Bu(t) ≥ 1
Mδ�1

∞∑

i=1

aitα–γ –1
∫ ζ

0
G1(ξi, s)q(s)m(s, 0) ds

= l3tα–γ –1 = l3h(t).

Hence, l3h(t) ≤ Bu(t) ≤ l4h(t), ∀t ∈ [0, +∞). Therefore, A : Ph × Ph → Ph and B : Ph → Ph.
Next, we prove that A : Ph ×Ph → Ph is a mixed monotone operator and B : Ph → Ph is an

increasing operator. For any ui, vi ∈ Ph (i = 1, 2) and u1 ≤ u2, v1 ≥ v2, we have u1(t) ≤ u2(t),
v1(t) ≥ v2(t) for all t ∈ [0, +∞).

By the monotonicity of Iγ

0+ , g , h, φ, ϕ, we conclude

A(u1, v1)(t) =
∫ +∞

0
G(t, s)p(s)

[
φ
(
s, Iγ

0+ u1(s), u1(s), Iγ

0+ Cu1(s), Cu1(s)
)

+ ϕ
(
s, Iγ

0+ v1(s), v1(s), Iγ

0+ Cv1(s), Cv1(s)
)]

ds

≤
∫ +∞

0
G(t, s)p(s)

[
φ
(
s, Iγ

0+ u2(s), u2(s), Iγ

0+ Cu2(s), Cu2(s)
)

+ ϕ
(
s, Iγ

0+ v2(s), v2(s), Iγ

0+ Cv2(s), Cv2(s)
)]

ds

= A(u2, v2)(t)

and

Bu1(t) =
∫ +∞

0
G(t, s)q(s)m

(
s, u1(s)

)
ds

≤
∫ +∞

0
G(t, s)q(s)m

(
s, u2(s)

)
ds = Bu2(t).

Hence, A : Ph × Ph → Ph is a mixed monotone operator and B : Ph → Ph is an increasing
operator.

Finally, we prove that A(lu, l–1v) ≥ ψ1(l)A(u, v) and B(lu) ≥ ψ2(l)Bu, for any u, v ∈ Ph,
l ∈ (0, 1). By (H1) and (H5), for all γ , l,ω ∈ (0, 1), s ∈ [0, +∞) and u, v ∈ Ph, we have

φ
(
s, Iγ

0+ lu(s), lu(s), Iγ

0+ Clu(s), Clu(s)
)

≥ φ
(
s, lIγ

0+ u(s), lu(s), lωIγ

0+ Cu(s), lωCu(s)
)

(29)



Yu and Ge Boundary Value Problems         (2024) 2024:41 Page 16 of 20

≥ φ
(
s, lIγ

0+ u(s), lu(s), lIγ

0+ Cu(s), lCu(s)
)

≥ lvφ
(
s, Iγ

0+ u(s), u(s), Iγ

0+ Cu(s), Cu(s)
)

and

ϕ
(
s, Iγ

0+ l–1v(s), l–1v(s), Iγ

0+ Cl–1v(s), Cl–1v(s)
)

≥ ϕ
(
s, l–1Iγ

0+ v(s), l–1v(s), l–ωIγ

0+ Cv(s), l–ωCv(s)
)

≥ ϕ
(
s, l–1Iγ

0+ v(s), l–1v(s), l–1Iγ

0+ Cv(s), l–1Cv(s)
)

≥ lvϕ
(
s, Iγ

0+ v(s), v(s), Iγ

0+ Cv(s), Cv(s)
)
.

(30)

Let

ψ1(l) = lv ∈ (l, 1), ψ2(l) = lδ ∈ (l, 1),

where l,ν, δ ∈ (0, 1). By (29), (30), and (H1), we can obtain

A
(
lu, l–1v

)
(t) =

∫ +∞

0
G(t, s)p(s)

[
φ
(
s, Iγ

0+ lu(s), lu(s), Iγ

0+ Clu(s), Clu(s)
)

+ ϕ
(
s, l–1Iγ

0+ v(s), l–1v(s), Iγ

0+ Cl–1v(s), Cl–1v(s)
)]

ds

≥
∫ +∞

0
G(t, s)p(s)lν

[
φ
(
s, Iγ

0+ u(s), u(s), Iγ

0+ Cu(s), Cu(s)
)

+ ϕ
(
s, Iγ

0+ v(s), v(s), Iγ

0+ Cv(s), Cv(s)
)]

ds

= lνA(u, v)(t) = ψ1(l)A(u, v)(t)

and by (H4), we have

B(lu)(t) =
∫ +∞

0
G(t, s)q(s)m

(
s, lu(s)

)
ds

≥
∫ +∞

0
G(t, s)q(s)lδm

(
s, u(s)

)
ds

= lδBu(t) = ψ2(l)Bu(t).

Hence, for any u, v ∈ Ph, l ∈ (0, 1), there exist ψ1(l),ψ2(l) ∈ (l, 1) such that A(lu, l–1v) ≥
ψ1(l)A(u, v) and B(lu) ≥ ψ2(l)Bu.

Therefore, two operators A and B satisfy the conditions of Lemma 8. Hence, there exists
a unique positive solution of integral equation (16) in Ph. By Lemma 10, there exists a
unique positive solution (u∗

λ, v∗
λ) of (5) in Ph.

Let x∗
λ = Iγ

0+ u∗
λ, y∗

λ = Iγ

0+ v∗
λ. By Lemma 4, the monotonicity and continuity of Iγ

0+ , for λ >
0, there exists a unique z∗

λ = (x∗
λ, y∗

λ) ∈ Ph such that A(z∗
λ, z∗

λ) + Bz∗
λ = 1

λ
z∗
λ. It follows that

λ(A(z∗
λ, z∗

λ) + Bz∗
λ) = z∗

λ, and

x∗
λ(t) = Iγ

0+

[∫ +∞

0
λG(t, s)p(s)f

(
s, x(s), Dγ

0+ x(s), y(s), Dγ

0+ y(s)
)

ds

+
∫ +∞

0
λG(t, s)q(s)m

(
s, Dγ

0+ x(s)
)

ds
]

,
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y∗
λ(t) = Iγ

0+

[∫ +∞

0
K(t, s)r(s)g

(
s, x(s)

)
ds

]

, n = 1, 2, . . . .

Consequently, for given λ > 0, (x∗
λ, y∗

λ) is a unique positive solution of problem (4) in Ph.
For any initial value x0, y0 ∈ Ph, constructing successively the sequences

xn(t) = Iγ

0+

[∫ +∞

0
λG(t, s)p(s)f

(
s, xn–1(s), Dγ

0+ xn–1(s), yn–1(s), Dγ

0+ yn–1(s)
)

ds

+
∫ +∞

0
λG(t, s)q(s)m

(
s, Dγ

0+ xn–1(s)
)

ds
]

,

yn(t) = Iγ

0+

[∫ +∞

0
K(t, s)r(s)g

(
s, xn–1(s)

)
ds

]

, n = 1, 2, . . . .

By Lemma 8, we have xn(t) → x∗
λ(t), yn(t) → y∗

λ(t) as n → ∞, where G(t, s), K(t, s) are given
as in Lemma 5.

Further, for all l ∈ (0, 1), by Lemma 9, if ψi(l) > l 1
2 (i = 1, 2), then Lemma 9 (1) ensures

that x∗
λ, y∗

λ are strictly increasing in λ, that is 0 < λ1 < λ2 can guarantee x∗
λ1

< x∗
λ2

, y∗
λ1

< y∗
λ2

.
If there exists κ ∈ (0, 1), such that ψi(l) > lκ (i = 1, 2), then Lemma 9 (2) tells us that x∗

λ,
y∗
λ are continuous in λ, that is, λ → λ0(λ0 > 0) can ensure ‖x∗

λ – x∗
λ0

‖ → 0, ‖y∗
λ – y∗

λ0
‖ →

0. If there exists κ ∈ (0, 1
2 ), such that ψi(l) > lκ (i = 1, 2), then Lemma 9 (3) tells us that

limλ→+∞ ‖x∗
λ‖ = ∞, limλ→+∞ ‖y∗

λ‖ = ∞, and limλ→0+ ‖x∗
λ‖ = 0, limλ→0+ ‖y∗

λ‖ = 0.
Therefore, the proof of Theorem 1 is completed. �

4 Example
In this section, we present a simple example to explain the main results.

Example 1 We consider the following fractional differential equation boundary value
problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D2.25
0+ x(t) + λe–t f (t, x(t), D0.5

0+ x(t), y(t), D0.5
0+ y(t)) + λe–2tm(t, D0.5

0+ x(t)) = 0,

D1.8
0+ y(t) + e–3tg(t, x(t)) = 0, t ∈ [0, +∞),

D0.5
0+ x(0) = 0, D1.25

0+ x(+∞) =
∑∞

i=1 aiD0.5
0+ x(ξi),

I0.2
0+ y(0) = 0, D0.8

0+ y(+∞) =
∑∞

i=1 biI0.1
0+ y(ηi),

(31)

where α = 2.25, β = 1.8, γ = 0.5, σ = 0.6, ai = 1
4i , bi = 1

5i , ξi = 1– 1
2i+2 , ηi = 1– 1

2i+3 , i = 1, 2, . . . ,
and

p(t) = e–t , q(t) = e–2t , r(t) = e–3t ,

f (t, x1, x2, x3, x4) = φ(t, x1, x2, x3, x4) + ϕ(t, x1, x2, x3, x4),

φ(t, x1, x2, x3, x4) =
x0.11

1 + x0.125
2 + x0.056

3 + x0.04
4

1 + t1.25 ,

ϕ(t, x1, x2, x3, x4) =
x–0.066

1 + x–0.11
2 + x–0.125

3 + x–0.083
4

1 + t1.25 ,

g(t, x) =
15x0.076

1 + x0.076 + 10, m(t, x) =
23x0.22

1 + x0.22 + 1.
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Then, we have

�1 = �(α – γ ) –
∞∑

i=1

aiξ
α–γ –1
i

≥ �(1.75) –
(

1
4

+
1
42 + · · · +

1
4i + · · ·

)

≈ 0.5857 > 0

and

�2 = �(β + σ – γ ) –
∞∑

i=1

biη
β+σ–γ –1
i

≥ �(1.9) –
(

1
5

+
1
52 + · · · +

1
5i + · · ·

)

≈ 0.7118 > 0.

Let us check that all the required conditions of Theorem 1 are satisfied.
(1) It is obvious that φ,ϕ : [0, +∞) × [0, +∞)4 → [0, +∞) are continuous. For any fixed

t ∈ [0, +∞), φ(t, x1, x2, x3, x4) is increasing and ϕ(t, x1, x2, x3, x4) is decreasing in
xi ≥ 0 (i = 1, 2, 3, 4).

(2) Clearly, the function g(t, x) ∈ C([0, +∞) × [0, +∞) → [0, +∞)) is increasing in x,
g(t, 0) �= 0 and limx→+∞ g(x, x1.25) = 25. Moreover, there exists ω = 0.076 ∈ (0, 1), for
all t, x ∈ [0, +∞), we have g(t, lx) ≥ l0.076g(t, x), l ∈ (0, 1).

(3) We observe easily that if xi ≥ 0 (i = 1, 2, 3, 4) are bounded, then for all t ∈ [0, +∞),
φ(t, (1 + t1.25)x1, (1 + t1.25)x2, (1 + t1.25)x3, (1 + t1.25)x4) and
ϕ(t, (1 + t1.25)x1, (1 + t1.25)x2, (1 + t1.25)x3, (1 + t1.25)x4) are bounded.

(4) Clearly, the function m(t, x) ∈ C([0, +∞) × [0, +∞) → [0, +∞)) is increasing in x,
m(t, 0) �= 0 and limx→+∞ m(x, x0.75) = 24. Moreover, there exists δ = 0.22 ∈ (0, 1), for
all t, x ∈ [0, +∞), we have m(t, lx) ≥ l0.22m(t, x), l ∈ (0, 1).

(5) For any l ∈ (0, 1) and t, xi (i = 1, 2, 3, 4) ∈ [0, +∞), taking v = 0.125 ∈ (0, 1), such that

φ(t, lx1, lx2, lx3, lx4) ≥ l0.125φ(t, x1, x2, x3, x4),

ϕ
(
t, l–1x1, l–1x2, l–1x3, l–1x4

) ≥ l0.125ϕ(t, x1, x2, x3, x4).

(6) The functions p, q, and r satisfy

0 <
∫ +∞

0
e–s ds = 1 < +∞, 0 <

∫ +∞

0
e–2s ds =

1
2

< +∞,

0 <
∫ +∞

0
e–3s ds =

1
3

< +∞.

Hence, all the conditions of Theorem 1 are satisfied. Hence, we can claim that for λ > 0,
there exists a unique positive solution (x∗

λ, y∗
λ) of problem (31) in Ph, and for any initial

value x0, y0 ∈ Ph, constructing successively the sequences

xn(t) = I0.5
0+

[∫ +∞

0
λG(t, s)e–sf

(
s, xn–1(s), D0.5

0+ xn–1(s), yn–1(s), D0.5
0+ yn–1(s)

)
ds

+
∫ +∞

0
λG(t, s)e–2sm

(
s, D0.5

0+ xn–1(s)
)

ds
]

,
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yn(t) = I0.5
0+

[∫ +∞

0
K(t, s)e–3sg

(
s, xn–1(s)

)
ds

]

, n = 1, 2, . . . ,

by Theorem 1, we have xn(t) → x∗
λ(t), yn(t) → y∗

λ(t) as n → ∞.
Furthermore, since ψ1(l) = l0.125 > l 1

2 , ψ2(l) = l0.22 > l 1
2 , l ∈ (0, 1). We find from Theo-

rem 1 that x∗
λ, y∗

λ are strictly increasing in λ, that is 0 < λ1 < λ2 ensures x∗
λ1

< x∗
λ2

, y∗
λ1

< y∗
λ2

.
Taking κ ∈ (0.23, 1), and ψi(l) > lκ (i = 1, 2), l ∈ (0, 1). Using Theorem 1, we know that x∗

λ,
y∗
λ are continuous in λ, that is, λ → λ0(λ0 > 0) ensures ‖x∗

λ – x∗
λ0

‖ → 0, ‖y∗
λ – y∗

λ0
‖ → 0.

Taking κ ∈ (0.23, 0.5) and ψi(l) > lκ (i = 1, 2), l ∈ (0, 1), we find from Theorem 1 that
limλ→+∞ ‖x∗

λ‖ = ∞, limλ→+∞ ‖y∗
λ‖ = ∞ and limλ→0+ ‖x∗

λ‖ = 0, limλ→0+ ‖y∗
λ‖ = 0.

5 Conclusion
In this paper, by using the fixed-point theorem of mixed monotone operators, we study
the existence and uniqueness of positive solutions to the boundary value problem of the
fractional differential equation system on infinite intervals with infinite-point boundary
conditions. The results obtained in this paper show that the unique positive solution has
good properties: continuity, monotonicity, iteration, and approximation. It is worth point-
ing out that this paper generalizes the boundary conditions and intervals. Compared with
the existing literature, this paper has a more general form and more accurate results and
can be widely used in physics, chemistry, electrical networks, economics, rheology, and
other fields.
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