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Abstract

The current paper concentrates on discovering the exact solutions of the
time-fractional regular and singular coupled Burger’s equations by involving a new
technique known as the double Sumudu-generalized Laplace and Adomian
decomposition method. Furthermore, some theorems of the double
Sumudu-generalized Laplace properties are proved. Further, the offered method is a
powerful tool for solving an enormous number of problems. The precision of the
technique is evaluated with the aid of some examples, this method offers a solution
precisely and successfully in a series form with smoothly calculated coefficients. The
relation between both the approximate and exact solution is represented by a graph
to display the high speed of this method'’s convergence.

Keywords: Double Sumudu-generalized Laplace; Double Sumudu transform;
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1 Introduction

Burger’s equation is one of the fundamental and essential nonlinear partial differential
equations (PDE) containing diffusive properties and nonlinear expansion effects. Burger’s
equation was improved as a model of disorderly fluid movement. The fractional Burger’s
equation has received much interest and the solution to this problem becomes essential
for mathematicians and physical phenomena. This problem has been found to demon-
strate various types of events, for instance, a mathematical model of turbulence and an
approximate theorem of flow through a trauma wave traveling in a viscous liquid [1, 2].
The authors in [3] introduced a semianalytical method that is called the local fractional
Laplace homotopy analysis method to solve wave equations with local fractional deriva-
tives and the authors used the same method to solve differential equations involving local
fractional derivatives based on the local fractional calculus [4]. The Shehu transform and
a semianalytical method have been used to solve multidimensional fractional diffusion
equations [5]. The numerical solution of three-dimensional coupled Burger’s Equations
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has been studied by the Laplace decomposition method in [6, 7]. In recent years, substan-
tial confirmation was offered on the Laplace decomposition method and its changes for
discussing mathematical problems [8, 9]. In a previous study, the authors recommended
various kinds of approximation and exact technique to solve fractional Burger’s equation
methods [10-12]. The researchers in [13] suggested the variational iteration method to
gain Burger’s equation. In [14], the Laplace decomposition method (LDM) was applied
to determine the solution of two-dimensional nonlinear Burger’s equations. The authors
in [15] proposed a modification of the double Laplace decomposition method to obtain
an analytical approximation solution of a coupled system of Burger’s equation. There are
many approaches where one can obtain a series of solutions, such as the Modified Laplace
variational iteration method [16], and the He—Laplace method [17]. The approximate so-
lution of wave problems in multidimensional orders was studied by applying the Aboodh
homotopy integral transform method (AHITM), see [18]. The authors in [19] used the
Yang Transform to obtain the approximation solution of nonlinear time-fractional Klein—
Gordon equations. The authors in [20] employed the Fountain theorem and the symmet-
ric Mountain-Pass theorem to study the novel trinonlocal Kirchhoff problem. The main
aim of this paper is to offer a new hybrid of a double Sumudu-Generalized Laplace Trans-
form to determine the exact solutions of the time-fractional regular and singular coupled
Burger’s equations. Finally, examples are given to clarify the proposed technique. Defini-
tions will be recalled; the double Sumudu transform and the Generalized Laplace Trans-
form that are useful in this article.

The Double Sumudu transform of the function ¥ (x, o) is determined by W(u1, it2) in
the following definition.

Definition 1 [21] let ¥ (x, o) be a function we define as the double Sumudu Transform
of function ¥ (x,0), o, x € R* is given by

el | L.0o
W, 2) = o[ (0, 0)] = /o /0 By, 0) dy do.

The generalized Laplace transform of the function ¥ (¢) is given by G, in the following

definition.

Definition 2 If y/(¢) is an integrable function defined for all ¢ > 0, its generalized Laplace
transform G, is the integral of v (¢) times s%e™s from ¢ = 0 to oco. It is a function of s, say
W(s), and is denoted by G, (v); thus

W(s) = Go() = 5° /0 v dt,

where, s € C and « € Z, for more details see [22].

Definition 3 [23-25]. The Caputo time-fractional derivative operator of order 8 > 0 is
presented by

1 ¢ —p-13"¥ (x,7)
Wfo(t—f)m B #d‘f,

ar’"m

3"y (x.t) _
BT for m = ﬁ eN

Dl (x.0) = m—-1<p<m.
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2 Main results of double Sumudu-generalized Laplace transform

The definitions and existence condition of the double Sumudu-generalized Laplace trans-
form are presented in this section. Here, we work with the double Sumudu-generalized
Laplace transform, which is defined by

SXSaGt(f(X)G) t)) = F(Ml’ IU/Z,S)

Sot o] 00 [e%e] (X - z)
K12 Jo 0 0

and we note that the double Sumudu-generalized Laplace transform is a hybrid between

the double Sumudu transform and the generalized Laplace transform. From the definition
of the double Sumudu-generalized Laplace transform, we conclude the following:
l.ifweputa =0and s = % we obtain the double Sumudu-Laplace transform

SySoLe(f(x,0,8)) = F(u1, 112, 5)

1 Bl R (LT st)
:MM / / / f(x,o,t)e ‘M 2" dtdo dy; (2)
2 Jo Jo Jo

2. if we put « = 0 and replacing s by @ we obtain the double Sumudu-Yang Transform

S)(Sa Y(f()(,(f, t)) = F(:ley M2, w)

1 R R (Lo Ly
S / / f SO o,0)e 2w dtdo dy; 3)
M2 Jo Jo Jo

3. At @ = -1 and replacing s by u3 we obtain the triple Sumudu Transform

SXSaSt(f(X7O'7 t)) = F(er M2, H«B)

1 R Y (L4 L)
= i / / / f(x,o,t)e ‘M 2 13 dtdo dy; (4)
a3 Jo Jo  Jo

4. At @ = 1 we obtain the double Sumudu-Elzaki transform

SxSaEt(f(Xx o, t)) = F(er /‘LZ’S)

N R Y (L Lyt
= o / f / f(x,0,0)e M1 27 dtdo dy; (5)
2 Jo Jo Jo

5.Ata=-1and % = % we obtain the double Sumudu—Aboodh transform

SxSaEt(f(Xr g, t)) = F(/’Ll! M2, V)

1 R Rl e —(X+-Z 1vr)
:M MZV/ / / flx,o,t)e ‘M 2"V dtdo dy. (6)
1 o Jo Jo

From the analysis above concerning the double Sumudu-generalized Laplace transform,
we note that the hybrid of the double Sumudu-generalized Laplace transform is more
generic than the above transforms. Hence, the double Sumudu-generalized Laplace de-
composition method is considered the most generic amongst other related methods.

Page 3 of 27
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2.1 Existence condition for the double Sumudu-generalized Laplace transform
In this section, the existence conditions and definitions of the double Sumudu-generalized
Laplace transform are addressed as follows:

Iff(x,0,t) is an exponential order a;, a3, and b as x — 00,0 — 00,¢ — oo, and if IR > 0
thenceVy > x,Vo >0 and Vi > T

lf(X; o, t)| < RealXletHbt, .
for some x, o and T, we can write f(x,o,t) as follows:

flx,0,t) = O(e“lxmz‘”l”) as o — 00,0 — 00,1 —> 00,

equally,
1 1.1 (L _ 1 1_
lim e #% 177 f (x,0,8)| = R lim e 7 % =@t _ g (8)
X—>00 X—>00
o—>00 o—>00
t—00 t—00

whenever Al

R(x,o,t)e‘”x*“z“*bt as x — 00,0 — 00, t — 00.

> a, l >c and = > b. The function f(x,0,t) does not expand quicker than

Theorem 1 The function f(x,o,t) is defined on (0, x), (0,0), and (0, T) and of exponential
order (x,0,t), then the double Sumudu-generalized Laplace transform of f(x,0,t) exists
forallRe— > H Ret > %,Re% > %

Proof By utilizing Eq. (1) and Eq. (7), we obtain

[o¢] [o¢]
(KLl
e M S f(y,0,t)dy do dt
H1p2

1
< R‘ / f / W_l_“ (75 ~Do~(-or dy do dt‘
K12
oz+1

|F(i1, 2, 8)| = ’

)
T - am)(l —cpua)(1 - bs)’
On using the condition Re > ,Re L > Re >1i ol and Eq. (8), we obtain
XILHC}JF(wh ¥, V)| =0 or XILHOIOF(‘(#I’ Wz:V) =0.
o —>00 o—>00 D

t—00 t—00

The inverse double Sumudu-generalized Laplace transform SASMG 1S, S, Ge(¥ (%,

0,t))] =¥ (x,0,¢t) is denoted by the following formula

VY(x,0,t)

T—ic0  p8—ico —ico 4 1 1
/ f / eﬁx*ﬂ‘”?tSXSUGt[w(X,o,t)] dsduyduy.
2m — s ;

Theorem 2 Ifthe double Sumudu-generalized Laplace transform of the function f(x, 0, t)
is presented by S,SoG.(f(x,0,t)) = F(i1, 1o,S), then the double Sumudu-generalized
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Laplace transform of the functions

xof(x,0,t),

is determined by

2

10y

$xSsGe[xof (x,0,8)] = mapa (H1p2F (s 112, 5)).

Proof By applying partial derivatives according to 1, for Eq. (10), we yield

OF(i1, tea,s) 0 [ [ [ % (L, lgl
% ) ﬁ/ / / Y G T 0f (0, 1) dy do dt,
1 1 12
S

0o 1
X (f —e “lex o, t)dx)dodt
o O

by handling the partial derivative inside the brackets, we obtain

© 5 1 A 1
/ W f (0, B dx = / ( —X - )e A f(x,0,8) dy
0 0 M

pr 251 1

<1 1,
- [ xe o0
0o M3
© 1 _1
—/ —e m f(x,o,t)dy,
0 M7

substituting Eq. (12) into Eq. (11), one can obtain the following equation

oF (11, o, “(Lg © 1 _1
(/le M2, 5) / / g0ty t)(/ — xe ull Xf(XyUyt)dX) do dt
0o M3
——<7+ t) © 1 - Ly
I} —e M f(x,0,t)dy |dodt
I/L2 0 M
and by taking derivatives according to u, for Eq. (13), we achieve
BZF(MI!/’LLS) / / Xe ﬁx-*-}t
o0y
X (/ e_l‘z(f( )f(x o, t)) dyx do dt
S
x(/ e/iz ( )/(xat)dxdodt
0

After the arrangement, Eq. (14), becomes

O F(pr, pars) 1 1
= S, SeGe|xof(x,0,t)| - ——S§,5,G (x,0,¢t)
dpuidps  pimy e ] uina " s ]

(10)

(11)

(12)

(13)

(14)

Page 5 of 27
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1
——=S8,S:Gilof(x,0,0)|+
pn3 g ]

[fG0.0)], (15)

by arranging the above equation, we obtain

0 F(Ml) MZ:S) aF(Ml: /’LZ’S)
5,8 G t Ey VS L 2y ——2 2
t[XU(X o, )] 10D 911010 12 EYR

OF (w1, 12, 5)
+ MIM%T + o F (11, 2, 8),
2

thence,

2

10Uy

SxSsGe[xof (x,0,8)] = mapa (H1paF (1, 1h2,5)).-

The proof is completed. O

The double Sumudu-generalized Laplace transform of the function ¥ (x,o,¢) is deter-
mined by S, S, Gt[w( X,0,t)] = W(u1, 1o, s) then, the double Sumudu-generalized Laplace

transform of gf, ‘; L 28 Dﬁxp is presented as

) ) \D 0! )
5,5,G. [ ] (11, 2, 8) = W (0, pa S)’ (16)
231
) 7 OY b OY b
SXSJGt<—1/f) Wy éuz s) _ Y ( l;z s) _ V:(0, o S)’ (17)
] 1251 M1
a ) ) \Ij ,01
SXSUG[ ] (11, o, 8) — W (1 S),
n2
Wy, o,s)  W(ui,0, ,0,
S.S G( ) (1, p2,8) (M12 ) ¥i(p1,0,5) (18)
Mz s "2
and
W1, (2, s _
S, S, G[Dly] = (’”“Siﬂ’“) — TP (g, a9, 0). (19)

The next theorem offers the double Sumudu-generalized Laplace transform of the par-
tial derivatives XDf Y and JDf v.

Theorem 3 The double Sumudu-generalized Laplace transform of the fractional partial
derivatives )(Dt'S ¥ and UDE Y is achieved by

pipn 9%

SxSaGXDI V] = == o (¥ ( 12.9)) (20)
2
_ a—pB+1 7} , ,O
H1f4aS YT (m1m2W (i1, 12, 0))
and
8 My 0
$:SeGi[oDi v ] = s—ﬂa—m(ﬂz‘y(m,ﬂz,s))
0
—HzSu_ﬂ“—(/«Ll‘l’(Mth,O))‘ (21)

O o
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Proof By employing partial derivatives according to u; for Eq. (1), we obtain

a
= (545.G[D]v])
H1
/ / / e AT X O ”Dﬂt/fdxdadt
3#1 15772
o0 s —(Lo+lp * 9 1 X B
= —e 277 ——e o D;ydy |dodt (22)
0o Jo M2 o du1m

and the partial derivative within the brackets can be calculated as follows:

© 5 1 _1 © /1 1
/ — —e MDY dx =/ < —X- )e “lxDﬂlﬁdx
0 0

dpr 231 Ml
© q
=/ —xe ul"Dﬁwdx (23)
0 lh

© 1 _1

‘/ —e M Dl dy,
0 MI

by putting Eq. (23) into Eq. (22), we obtain

9 (S S, G[Dlv])

(Ll * 1 _1
L[ oo
0 1
Sy [F1 1
/ / 27 t)(/ Pe Nllfol//dx>det, (24)
0 1

therefore, Eq. (24) becomes

d
W(SXSaGt[wa])

( / / / AT RO txDﬂdedadt>

Ml 12502%)

__(S ///e‘(m*é"*iﬁpflpdxdadt), (25)
M1 \ 12 Jo  Jo Jo

hence,

ad 1 1
5= (8,85 Gi[DV]) = 5,8, Gi[ D} ¥] - —5,5,G.[ D] v ] (26)
M1 25 1

and by arranging the above equation, we will obtain the proof of Eq. (20) as follows

0

SXSUGt[Xwa] = % N

(2% (111, 12,5))
_ “-ﬂ*li N7, 0
p1s ™ (1 W (11, 2, 0)).

Similarly, we can prove Eq. (21). d

Page 7 of 27
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The double Sumudu-generalized Laplace transform of the partial derivatives is pre-

sented in the upcoming theorem:

Theorem 4 The double Sumudu-generalized Laplace transform of the fractional partial
derivatives Xan Y is determined by

2
g, 1 MMz D
SySeGi[xoD; ¥] = & i (1 p2W (i1, fh2,5)) (27)
2
— ppas® P (11p2V (11, 12, 0)).

10U

Proof By taking partial derivatives according to u; for Eq. (1), we have

0
a—m(SXSUG'f[DfI//])
/ / / ATz O3 ”Dﬁwdxdodt
3M1 Ml,uz
:/ / S_e‘(ulz‘”it)(‘/ iie #1XD’31/fdx)det (28)
o Jo M2 0o du1

and we calculate the partial derivative inside brackets as follows:

® 3 1 * /71 1
[ Loty [ (L L)ooty
0 0

dur pa 231 :le
|
=/ —xe “m Dy dy (29)
0 M1

i B
- —26 1 D[ '(ﬂdX
0 M1
Putting Eq. (29) into Eq. (28), we obtain

(S S, G[Dlv])

/ / —(;70+%f) (/ 1 Xe i XDﬁI/fd)()dG dr
Mz 0 M1
Sy [F1 1
/ / 2 ”(/ —e “llfol//dX> do dt, (30)
0o M7

the partial derivative with respect to u, for Eq. (30) is calculated as the following:

ou

82
3#13M2

L[ ([ oo
3#2 0 Ml
(o+t *© 1 _1
MU/ QMPMWMW@’ 2
1

(5,8, G:[D{v])

Page 8 of 27
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therefore, Eq. (31) becomes

82
dp10 o

1 s¢ C (LysLlasly 8
g A ot o
172

1 o0 o0 o0
+ < / / / e RATLAE t)Dﬂl/de dodt)
M1z \ K142 Jo 0 0

(5,8, G:[D{v])

1 o0 [ee] [e¢]
( / f / ¢ i Xz *St)anwdxdadt)
Mll’vz K12 Jo 0 0

1 o0 po0 pOO i Lol
5 ( / / / e ‘nt o txDﬁwdxdadt>, (32)
M2 \ 12 Jo 0 0
thence
e (5,8, G.[D}v])
dpurdma
——55,S:G[xoDly] + [Dly]
123V
8,8, Gio D] - —— 5,5, Gi[x Dl ] (33)
piu3 winy

and one can rearrange Eq. (33), to prove Eq. (27)

mipy 9%
sP dpu1d g

SXSUGt[XUwa] = (MIMZ\D(er/'LZyS))

2
a—pB+1

- W (i1, 1o, 0)).
amam(uluz (11, 12, 0)) 0

— K1M2S

3 Double Sumudu-generalized Laplace decomposition method and
two-dimensional time-fractional coupled Burger's equation

This section aims to make use of the double Sumudu-generalized Laplace decomposition

method (DSGLTDM) to solve the two-dimensional time-fractional coupled Burger’s equa-

tion. In the upcoming analysis, we deem the two-dimensional fractional coupled Burger’s

equation to be:

s _ 1
DtW"’WWx + PYs m(W}(X + Voo)

1
Df(ﬁ + wd)x + ¢¢U = ﬁ((bxx + ¢UU) (34-)

n-1<p<mn
with the following conditions

w(XrUrO) :fl(XrU): ¢(X:0»0)=g1()(»0): (35)

where Df = % stands for the fractional Caputo derivative, 9 is the Reynolds number,
and the velocity components are determined by ¥/ (x,o,t) and ¢(x,0,t) in the x and o

Page 9 of 27
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directions, respectively. The two-dimensional coupled Burger’s equations are the same as
the incompressible Navier—Stokes equations with the pressure-gradient terms removed.
With the purpose to gain the solution of Eq. (34), first, operating the double Sumudu-
generalized Laplace for Eq. (34) and using the double Sumudu transform for Eq. (35) we
gain
1
S8, Gi[Df¥] = SXSUG%W“ + wm)}

_SXSUGt[wI/IX +¢w0] (36)

and

1
SxSoGt[Dtﬂ({b] = SXSaGt[%(({bxx +¢<r(r):|

_SXSJGt[I/f¢X +¢¢a]) (37)

by putting Eq. (19) into Eq. (36) and Eq. (37), we obtain

v ’ )8 oa—f+
% = s* P (11, o)
S
1
+SXSUGt|:‘)_{(v/XX +I/fmr)i|
=Sy SeGel¥ Yy + V5] (38)
and
D1, o8 -
% =s" ﬂ+1G1(,U«1,M2)

1
+SXSaGt|:§(¢xx +¢00):|

- S)(Sa Gt[‘/"bx + ¢¢J]’ (39)
therefore, by rearranging Eq. (38) and Eq. (39) we obtain
W (a1, o, 8) = 8 Fy (s o)
8 1
+S SXSaGt ()_,t(l//xx + Voo)

—SﬁSXSth[l/fle +¢Vf<r]’ (40)

and

(1, h2,8) = s Gy, a)
1
+ SﬁSXSoGt[%(({bxx + ¢(w):|

—S’SSXSUG:[I/f% +¢¢0] (41)
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and by employing the inverse double Sumudu-generalized Laplace for Eq. (38) and
Eq. (39), we yield

Vv (x,0,t) = filx,0)
+S281G! [sﬁsxsa Gt[%(w“ + I/fm,):|:|

- S 1S G 7S, Sy GilAy + Byl] (42)

n12ua s

and

‘f’(X:U,t):gl(X,G)
1ol 1
+SM}SM;GSI[SﬁSXSUGt[§(¢XX + ¢Ua)i|i|

- S 181G 5SSy Gi[Cp + Dy, (43)

u12pa s

where some terms of the Adomian polynomials A, B,, C,, and D, are determined by

Ao =Yooy,  Ar=VoVny + Y1y

Ag = Yoty + Y11y + Yooy,

Az = Yoy + V1Vay + Yoty + Ystoy, (44)
By =dovoo,  Bi=¢oVis + P1V00,

By = oo + P1¥16 + P20,

Bs = ¢o¥3o + 9120 + P26 + P3%00s (45)
Co=vodoy,  Ci=Yobiy + Y1y

Cy = Yoday + Y1P1y + Y2doy,

Cs = Yodsy + 1oy + Vadry + Yoy - (46)
Do = ¢othoo Dy = ¢od1o + P1000,

Dy = o0 + P1916 + P2tboo

D5 = g3 + P12 + 9215 + P3¢00 (47)

and S;1S'G;! denotes the inverse double Sumudu-generalized Laplace. The double

Sumudu-generalized Laplace decomposition method (DSGLTDM) defines the solutions
¥ (x,0,t) and ¥ (x,0,t) and is represented by the following infinite series.

V(0,8 =Y Yulx,0,0) (48)
n=0

$(x,0,8) = D $ulx,0,1). (49)
n=0

Page 11 of 27
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Moreover, the nonlinear terms ¥, %, W % and ¢>% are presented by:
[e¢] o0 o0 oo
oy d¢ d¢
V=) Aw b= By Vo= Cu =) Dp  (50)
n=0 o n=0 BX n=0 do n=0
By substituting Eq. (48) and Eq. (49) into Eq. (42) and Eq. (43), we obtain

> Uulxo0.8) = filx,0) + S1 S, G [sﬂsxsaG{% (Z(wm + w)m

n=0 n=0

[o¢]
-Sts Gt |:sﬂSXSU G; |:Z(An + B,,)j|i| (51)

n=0
and

00 1 00
Zd’n(Xrart) = gl(X:U) + S;is;;G;l |:SﬂSxSaGt|:ﬁ (;(d’nxx + ¢noa))j|:|

n=0

-SistG! [sﬂsxsg G, {Z(cn + D,,)j|:|. (52)

n=0

By comparing both sides of Eq. (51) and Eq. (52), we obtain

Yo(x,0,1) :fl(X’G);
¢o(x,0,t) :gl(Xr0)~ (53)

Generally, the remnant terms are presented by

1
Wnn(X»G» t) = S/_liSl_L; Gs_l I:SﬁSXSG Gt[% ((wnxx + wnoa))j”

- S1S L G [sPS,Se G (An + B))]] (54)

n12ua s

and

1
¢n+1(Xrar t) = S;iS;;Gs_l I:SﬂSXSUGtI:%((q)"XX + ¢mr<r))i|j|

=818 G 578, S G [(C + D], (55)
where the inverse double Sumudu-generalized Laplace transform is determined by
S;18;,) G;'. We assume that the inverse exists for Eqs. (54) and (55). For the goal of illus-
trating the advantages and the reliability of the (DSGLTDM) we solve the two-dimensional

fractional coupled Burger’s equations.

Example 1 [13, 26, 27] Consider the singular two-dimensional time-fractional coupled
Burger’s equations to be determined by

D?w+wl/fx+¢w0=1/fxx+wddt X;O—;t>01
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D?¢+w¢x+¢¢a:¢xx + ooy X,0,t>0,

n-l<a<n, (56)
with the following conditions
Y(x,0,0)=x+0,  ¢(x,0,0)=x-o0. (57)
Utilizing the previous steps one can obtain
_ ~1¢-1 -1 B 1
Y(x,0,t)=x+0 +Sulsust |:s SXSGG[|:§(1/fXX + 1//00):|:|
~ S8 G 578, S GilAw + B,
(0,0 =x 0 + 551G [sﬁSXSUGt[%w” + %)H
-8.181G, ! [s7S, S G:[Cy + D] (58)

The zeroth components ¥ and ¢, are proposed by the Adomian method; combining the

initial conditions and the sources terms as follows:

Yo(x,0,t)=x +o
¢0(X’O"t) =X—-0. (59)

The remainder components v¥,,,1, ¢,.1, # > 0 are determined by utilizing the relation

wn-v-l(Xrar t) = S_IS_IG_I[SﬂSXSoGt[(WnXX + wmﬂr)]]

w12ua s

- S1S G [s7S,Se G (An + B))]] (60)

n12ma s

and
¢VI+1(X’ o, t) = S;'}Sl_é Gs_l [SﬂSxSU Gt[(¢nx}( + ¢naa)]]
- S8 G 7S, Se G[(Cu + DW)]], (61)

w1ma s

forn=0,1,2,...,s0,atn =0

V1(x,0,8) =S, S G 7S, Se G [ (Woyx + Yooa))]]

u1pg s

~ S 1S G575, S5 G[(Ao + Bo)]]

n1S 2 s
=-S'8 G [s"S,S-G.[(2x)]]
]

n1pg s
-1¢-1~-1 1
=-S18 G 25 P

—2)(tﬂ
Mo +1)

WI(X!G!t) =

and

01(x,0,8) = S,' S LG [57S, S0 G ((Boyy + boos))]]

H1TH2 TS
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- 518 G 575,85 Gi[(Co + Do)]]

MH1TH2 TS

=-S!S1G 7S, S, G [(2x)]]

wn1ua s

— _S—ls—l G—l [2Sa+ﬂ+1ﬂ2]

w1 s
—20tf

d1(x,0,t) = m,

likely, at n = 1, we have

Yo = —S;&S;;Gs’l (sﬂSXSgGg((I/folﬂlx + wleX + PoVis + ¢11ﬁ0a)))
+ 808G (PSS Ge(Wigy + Vi0w))),

g —t?
=-S5 G, (sﬂSXSUGt(m(ALX + 4o)>)

= 515, G (g + 4pu)s )

_Ax +o)t?#
C TQa+1)

and

¢r =-S5 G} (5" S, Sy G:(D1 + Ey))

n1 u2 s

+ 811G (578, S0 Guliyy + 100))

w1°pa s
_tP

ol 1 B
=S..5.,G; <S SxSaGt(m(—‘LX +40)))

=SS0 G ((—4pn + dpan)s™ )
_4(x - o)t*f
C TQRe+1)’

at n =2, we produce

Y3 = =S8,180 G (57 S, Se Ge(Woy W + Yy Y1 + V2o + GoVior + $1¥e1 + $2¥o0))
+ 818 G (5P S, S0 G (W2 + Voo2)))s

MH1TH2 TS

_gle-l1f B 4XF(2ﬁ+1)) - )>
= =SS G (S S"S"Gt«m“ (M(g+1)? Jr2p+1)

4T (28 + 1)M1sa+3ﬂ+1)
(T +1)?

_S—ls—l G—l (16M1Sa+3ﬂ+l +

w1ua s

_(_16 4T (2B + 1)y 3P
) <_ ANESE )F(3ﬁ+1)’

similar to

¢3 =-S5 G (7S, Sy Gi(D> + Ey))

wn1Pua s

+ S8 G (578, S0 Ge((ayy + P200)))

Page 14 of 27
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_ _o-lo-1p-1f B8 4JF(2,3+1)> 2P ))
=-5'8'G (s SXSUG,:<<160+ TB+07 ) Tas D

n1°ua s
(16 40T (28 +1) 3f
) <’ TNV ESHE )r<3ﬂ+1)'

Thus, the solution of Eq. (56) is

w(XrUrt):Zun:wo+¢1+1/f2+1p3+...

n=0
( . 2xtP 4(x + o)t*P 4xT (28 +1) 3p
O A ST YOy _( o (r(ﬂ+1>)2)r(3ﬁ+1)+”'
and
¢(X»U»t)=ZVn=¢0+¢1+¢2+¢3+"'
n=0

i 20t 4y + o)
P06 D =X =0~ F St Taa 1)

16 40T (28 +1) 3
_( o (F(ﬂ+1))2>r(3a+1)+”"

at B = 1 the solution of the above equation becomes

V(x,0,t)=x +0 —2xt+2(x +0)t2 —4xt> +4(x + o)t - 8x¢°
+8(x +0)t® —16xt" +16(x +0)ed---
=x(1+22 +4t* + 85+ )t o(L+22 +4* + 85+ )
—2xt(1+26% +4t* + 85+ --+)

(x +0 —2xt)

,O0,t) =
¥ (x,0,0) Y

and

20t A(y — o)t
- +
IMNae+1) T'QRa+1)

16 46T (20 + 1) 3
+(_ 7" (r(a+1))2>r(3a+1)+"'

¢(X’U’t)=X -0

=(x-0)-20t+2(x —0)t®> —40ot> +4(x — o)t* — 8ct® + 8(x — 0)t°

~160t" +16(x —o)t®- -
=X(1+2t2+4t4+8t6+---)—o(1+2t2+4t4+8t6+...)
—2O’t(1+2t2+4~t4+8t6+---)

(x =0 —20t)

» ;t =
¢(x,0,t) T op

We achieved the same results that were presented in [13, 26, 27].
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Table 1 Comparison between the exact and approximation solutions for ¥ (x,o,t)

(2024) 20

24:48

Exact The method Error The method Error
B=1 B =095 B =099

0 0 0 0 0
0.8000 0.8777 0.0777 0.8148 0.0148
1.6000 1.7554 0.1554 1.6295 0.0295
24000 26331 0.2331 24443 0.0443
3.2000 3.5108 03108 3.2591 0.0591
4.0000 4.3886 0.3886 4.0739 0.0739
4.8000 52663 0.4663 4.8886 0.0886
5.6000 6.1440 0.5440 5.7034 0.1034
6.4000 7.0217 0.6217 6.5182 0.1182
7.2000 7.8994 0.6994 7.3330 0.1330
8.0000 8.7771 0.7771 8.1477 0.1477
Table 2 Comparison between the exact and approximation solutions for ¢(x, o, t)

Exact The method Error The method Error
B=1 B =095 B =099

0 0 0 0 0
-0.6000 -0.6777 0.0777 -0.6148 0.0148
—-1.2000 —-1.3554 0.1554 -1.2295 0.0295
-1.8000 -2.0331 0.2331 -1.8443 0.0443
—-2.4000 -2.7108 0.3108 —24591 0.0591
-3.0000 -3.3886 0.3886 -3.0739 0.0739
-3.6000 -4.0663 0.4663 —3.6886 0.0886
-4.2000 -4.7440 0.5440 -4.3034 0.1034
-4.8000 -54217 0.6217 -4.9182 0.1182
-5.4000 -6.0994 0.6994 -5.5330 0.1330
-6.0000 -6.7771 0.7771 -6.1477 0.1477

2 F

-3F

St

-7

exact (beta =1)
beta=0
beta=0

95
.99

0.2 0.3 0.4 0.5 0.6 0.7

Figure 1 The comparison between the exact and numerical solutions for ¥ (x, o, t)

Table 1 and Table 2 above show the comparison between exact and approximate solu-

tions of Example 1.

Page 16 of 27
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0
exact (beta =1)
beta = 0.95
AT beta = 0.99
2F
-3 F
4t
St
Py
0 014 02 03 04 05 06 07 08 09 1
segma
Figure 2 The comparison between the exact and numerical solutions for ¢(x, o, t)

0 o

Figure 3 The surface shows the function ¥ (x, o, 1)

The comparison between the exact and numerical solutions for the Eq. (56) is shown in
Figs. 1 and 2. We obtain the exact solution at g = 1 and the different values of B such as
(B =0.95, B = 0.99) shows the approximate solution. The surfaces in Figs. 3 and 4 show
the exact solution of the functions ¥ (x,o,t) and ¢(x,0,t) at x =0, respectively.

4 Double Sumudu-generalized Laplace decomposition method and singular
two-dimensional time-fractional coupled Burger’s equation
The objective of this section is to interpret the utilization of the double Sumudu-

generalized Laplace decomposition method for solving the singular two-dimensional
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1
08
06
04
02
0
. 02
04
0.6
08
-1
Figure 4 The surface shows the function ¢(x,o, 1)
time-fractional coupled Burger’s equations in the following form
N 1 1 1 1
Dt 1// + —lbl/fx + _¢¢a - _(Xw)()x - _(Uwo)a =f(X,O‘,t),
X o X o
L1 1 1 1
Dt¢ + _wd)x + —Pd, - _(X¢x)x - _(O'¢U)zr =g(X:G; £),
X o X o
X,0,t>0, (62)
with the initial condition
1p(XIO-IO) :ﬁ(Xra): ¢(X,G»0)=g1()(;0), (63)
where DY = % is the fractional Caputo derivative and i(x Yy )y %(mﬁa)(,, %(X‘px)x’

%(od)a)g are the so-called Bessel operators, ¥ (x,0,t) and ¢(x, o, t) are the velocity com-
ponents to be presented, f (x,0,t),g(x,0,t), fi(x,0),and g1(x, o) are given functions. For
the purpose of obtaining the solution of Eq. (62), we apply the next steps:

Step 1: Multiply both sides of Eq. (62) by xo to yield

XOD{Y + oYy + x W —o (xVy)y — x(0Vs)s = xof(x,0,0),

XoD{p + oYy + xPps —0(xPx)x — x(0bs)s = X0g(X,0,1),

X,0,t>0. (64)

Step 2: Taking the double Sumudu-generalized Laplace transform for either side of
Eq. (64) we gain

92 92
(m1p2 ¥ (1, 1ha,5)) = s**

F ’
T S0 (1p2Fy (11, 12))
sﬂ

+

L1/ SXSaGt(O-(XVIX)X + X(Uwo)c)



Eltayeb Boundary Value Problems (2024) 2024:48

B
_ S—SXSaGt(m/flﬁx + XPYs)
H1fh2

B

(xof(x,0,1)) (65)
M1M2

and

32 2

1o ®(ig, fh2,8)) = s
( ) 10y

G )
T (112G (11, 12))

+ meSGGt(G(X@bx)X + X(G¢a)o)

B
_ S_gxg(,Gt(mquX + XPPs)
125825

SXSUGZ(Xog(X,a,t)). (66)
M1z

Step 3: By taking the double integral for both sides of Eq. (65) and Eq. (66) from O to ji;
and O to u according to w1 and us, respectively, we obtain

Mluz/ / ( 3M3 (/‘1H2F1(M1,M2))>duldﬂz

it o)o) |dp1d
Mle/o /0 (Mw 58 G0 (x¥ry)y + x (0 ¥5) )) w1 dpa

/‘Ml /‘M2
Ml,U«2 0 0

)
Mlﬂz/o /0 Uit o (ng(X’G’t)))dﬂldﬂz (67)

W (1, tU2,8) =

S S Gtk”/”/’x + X¢1/fa)) duy dus
125729

and

H“1 n2
(1, oy 8) = / / < (mm&(wm))) dpuy dpy
125y 75 amam

1 moppz s g8
+ / / ( SXSUGt(G(X¢x)X +X(U¢a)a)) dpyduy
M1z Jo 0 M1p2

1 moopu /o oB
- / f ( SXSU Gt(aw(bx + X¢¢a)) dpydps
K12 Jo 0 M2

1 1 fH2 B
+ f / (S¢SoGi(xog(x,0,t))) dur dp. (68)
M1t Jo 0 MiM2

Step 4: On using the inverse double Sumudu-generalized Laplace decomposition
method for Egs. (67) and (68), we obtain

238 n2
1
Y(X,0,0) =S, G; [mm/ / ( au 5 (MIMZFl(/leMZ)))dﬂldMZ}
+S181GH

w1Pua s

M1 rH2 Sﬁ
X|:M1M2/o /0 (MIMZSXS"Gf(U(Xl/’x)x+X(01/fa)a)>du1du2i|

Page 19 of 27
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-1 ¢-1~-1
_SIHSH«ZGS
r 1 M1 L2 sP
X / / ( SxSaGt(o'wwx + X¢%)) dpy dﬂ2:|
LM142 Jo 0 K12
-1 o-1~-1
+SMSM2GS
r 1 mooppu2 o B
x / f (SXSUGt(xof(x,a,t)))dmduz] (69)
LMH142 Jo 0 MiM2
and
o 1 1 25 1) L 32 din d
,0,t) =8-S -G, o G s
¢(x,0,t) =S,,S,,G; [M1M2/o /0 (S 3#13M2(M1M2 1(p1 Mz))) M1 Mz}
-1 o-1~-1
+SMSMGS
1 M1 LR sP
X [ f / ( SXSaGt(O—(X(px)X + X(U¢U)a)) du dﬂ2i|
K12 Jo 0 K12
Lol 1 1 H1 o U2 sP
-sisiG; [ I ( SXSth(aw¢X+x¢¢a)) dmduz]
M1 Jo 0 M1t
-1 -1 1
+SMISI’-2GS
1 mo pu2 o B
x [ f / (SxSoGi(xog(x,0,1))) dus dﬂz}- (70)
K12 Jo 0 MiM2

Step 5: Substituting Eqs. (48), (50), and Eq. (49) into Egs. (69) and (70), we have

> Unlx0t)
n=0
S—ls—lG—l 1 /Ml fMZ o+1 82 ( F ( )) du-d
= S ,
n1 e s wips Jo 0 3#13M2 M1\ L1 L2 M1 ap
1 1) sP o0
+§1s1G! / / $,8,Glolx) v
e |:M1M2 o Jo \pap ; * .

) o]

_ 571571 G71

n12ua s

1 M1 H2
x f /
MHi1M2 Jo 0
_ 1|: 1 R
+S8.S.Go / f
s s Joo Jo

Sﬂ o0 o0
S, S:Gi | o A, +x B, |duidn
] O SIED 3LN | AT

n=0

B
g (SXSUGt(XGf(X!U!t))) dM1 d/,inI
M1lh2

and
Z ¢n(X »0, t)
n=0

:5‘15‘16‘1[ ! /m/M(sa” - (112G (1 Mz)))dmduz]
s L mpa Joo Jo o102
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Lo 1 1 251 w2
+8,S8,.G; / /
M w g Jo 0
+ X (G Zd’na) )) i dM2j|
n=0 o

-stslgt

n12ua s

1 "1 w2
Lo
M1tz Jo 0

1
M1

sP >
§,8:G:l ol x )
papy t( ( ; nx)x

}3 o0 o0
s $4S5Gy aZC,,+xZD,, duyduy
M1 1m0 1m0

1o pH2 Sﬂ
/ / —(SXSUGf(Xag(anx t))) dM1 szjI
0 0 MiM2

H17H2 TS

+ S-ls-lG-l[

Step 6: On utilizing the double Sumudu-generalized Laplace decomposition method, we

present the recursive relations to obtain:

wO(X:G:t)

n5aG MIM / lfm Mla i (“ maFr (e, )) Hiap
s F , duqd
i s 2 Jo  Jo 102 Rtk e e

+S—ls—lG—l|: 1 /#1 /‘H2
PR g Jo 0

B
: (SXSaGt(xaf(x,U,t)))dmduz] (71)
M2

and

¢0(X707 t)

_Sflsflel 1 /Ml fHZ Sa+1 82 ( G ( )) d d
T 9u1°ua s ez Jo A e Hip2G1{f1, L2 Hiafts

1 1 n2 Sﬂ
+S‘1S‘1G‘1[ / f S, S5Gi(xog(x,o,t)))duid ] 72
R vl A A Mle( «SoGe(x0g(x,0,1))) dur dps (72)

The remainder components v,,,; and ¢,.1, # > 0 are determined by

Wn+1(X,U, t)

1 M1 L2 sP
=S‘IS‘1G‘1[ / f ( $,S: G0 (XVuy)y + X (O Vno)s )d d }
19y s s Jo ) 11 X t( (Xlﬁ x)x x( Y ) ) M1 ap

el 1 n1 o U2 sB
=8,.5.,Gs S$4SeGi(o A, + xBy) | dur duy (73)
Mi1M2 Jo 0 123775

and

¢n+1(Xrart)

G L1 Ao /0 1/ ( S SUGt(O( ¢ ) + (0¢ (;')(1)) d/l d“ \
n 2
n1 2 s X X xX7x X 1 2

el 1 H1 o LR sP
-8,,5,G;s ——8,S:G(0Cyy + xDy) | dpr dpy (74)
Mi1M2 Jo 0 M1
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and S, S, G; is the double Sumudu-generalized Laplace transform with respect to x, o, ¢
and the inverse double Sumudu-generalized Laplace transform is denoted by S;iS;; G;!
according to (1, 2, s. We assumed that the inverse double Sumudu-generalized Laplace
transform with respect to w1, iy, and s exists for Egs. (71), (72), (73), and (74). In the fol-
lowing example, we use the double Sumudu-generalized Laplace transform Adomain de-
composition method to solve singular two-dimensional time-fractional coupled Burger’s

equations.

Example 2 [26] Consider that the singular two-dimensional time-fractional coupled

Burger’s equations are presented by

1 1 1 1
D?‘[/ + ;‘ﬁl/fx + g¢‘//a - ;(wa))( - ;(Uwa)n = (X2 _Uz)et’

1 1 1 1
D?¢ + —1/f¢x + = VP, — _(Xd’x)x - _(O—‘pa)a = (X2 —Uz)et;
X o X o
X,0,t>0, (75)
with the initial condition

llf(XyG,O):XZ—OZ, ¢(X!0!0):X2_02-

By using our method above, we successfully obtain

B B+1 B2
%(X"”t)zxz“72+(XZ—"Q)(F(/%1) T2 T(E+3) +)

8 tB+1 P+2
¢o(x,o,t):x2—02+(x2—02)<r(ﬁ+1) "T(E+2) 'T(B+3) +>

and the remainder components .1 and ¢,,1, #n > 0 are given by

wn-t—l(Xrart)

G L1 A2 /0 1/ ( S SUGt(O( 'l/f ) + (Ow (7)(7)) d“ d“
n n
n1 2 s X X X/ X X 1 2

et 1 n1opu2 sP
=8,,8.,Gs ——8,S:Gi(0A, + xB,) | durdus (76)
K12 Jo 0 Mo

and

¢n+1(Xrart)

G L1 Ao /0 1/ ( S SUGt(O( ¢ ) + (0¢ (;')(1)) d/l d“ \
n 2
n1 2 s X X xX7x X 1 2

el 1 H1 o LR sP
=8,,5.,G; ——8,S:G(0Cyy + xDy) | dprduy ). (77)
Mi1M2 Jo 0 M1
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By substituting # = 0, into Egs. (76) and (77) we have

1/f1(X,G,t)

S 231 2/ 1/“ (/l]/LZS S G( ( I/f ) ( w ) ))d d |
o logyies
M1 s i X t\o\X 0x/x X0 Yo M1 aly

el 1 H1 o LH2 sP
_SMISMZGS —SXSth(UA0+XBo) dﬂldﬂz ’
M1z Jo 0 M2

1/f1(X,U,t) =0

and

¢1(X707 t)

et 1 ) sP
:SIJ«ISHZGS s Jo ) M1M2SXSUGt(U(X¢OX)X +X(G¢Oo)0) dMIdMZ

el 1 K1 H2 sP
_SMISMZGS —SXSaGt(O’Co-FXDo) duldug ,
K12 Jo 0 H1fh2

¢1(X’U’t) =0.

In a similar way, at # = 1, we have

wz(X,G,t):O, d)z(X,O',t):O.

The solution of Eq. (75) is determined by

W(XyU,t)=l//0+1p1+1p2+...’
¢(X:U;t)=¢0+¢l+¢2+...+'

Thence, the exact solution is denoted by

B A th+2
Ip‘(XrC’yt):xz_o'z (X2_02)<F(IB+1) + F(ﬂ+2) + F(ﬂ+3) +...),

P Pl (P2
¢(x,0,t)=x*~o? (XZ_GZ)(F(ﬁ+1) TSR +)

when we put « = 1, we obtain the exact solution of Eq. (75) as follows:
2 2 AR 22\t
v(x,0,t)=(x*-07) 1+t+5+§+5'” =(x*-0?)¢,
28

¢(x,a,t)=(x2—02)<1+t+2—!+§+4—!~~~) =(x*-0o?%)e".

Table 3 and Table 4 below shows the comparison between exact and approximate solutions

of Example 2.
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Table 3 Comparison between the exact and approximation solutions for ¥ (x,o,t)

Exact The method Error The method Error
B=1 B =095 B =099

-1.0000 -1.0000 0 -1.0000 0
-1.0941 -1.1094 0.0153 -1.0970 0.0029
-1.1725 -1.1956 0.0231 -1.1769 0.0045
-1.2280 -1.2560 0.0280 —-1.2335 0.0054
-1.2522 -1.2826 0.0304 -1.2581 0.0060
-1.2344 -1.2650 0.0306 -1.2404 0.0060
-1.1622 -1.1909 0.0286 -1.1679 0.0057
-1.0211 -1.0456 0.0245 -1.0260 0.0049
-0.7939 -0.8122 0.0183 -0.7976 0.0036
-04610 -04711 0.0101 -0.4630 0.0020
0 0 0 0 0

Table 4 Comparison between the exact and approximation solutions for ¢(x, o, t)

Exact The method Error The method Error
B=1 B =095 B =099
-1.0000 -1.0000 0 -1.0000 0
—-1.0941 -1.1094 0.0153 -1.0970 0.0029
-1.1725 -1.1956 0.0231 -1.1769 0.0045
-1.2280 -1.2560 0.0280 -1.2335 0.0054
-1.2522 -1.2826 0.0304 —1.2581 0.0060
-1.2344 -1.2650 0.0306 -1.2404 0.0060
-1.1622 -1.1909 0.0286 -1.1679 0.0057
-1.0211 -1.0456 0.0245 -1.0260 0.0049
-0.7939 -0.8122 0.0183 -0.7976 0.0036
-04610 -04711 0.0101 -0.4630 0.0020
0 0 0 0 0
0r
exact (beta =1)
beta =0.95
0.2 beta = 0.99

Figure 5 The comparison between the exact and numerical solutions for ¥ (x, o, t)

The comparison between the exact and numerical solutions for the Eq. (75) is shown in
Figs. 5 and 6. We obtain the exact solution at g = 1 and the different values of B such as
(B =0.95, B =0.99) shows the approximate solution. The surfaces in Figs. 7 and 8 show
the exact solution of the functions ¥ (x,o,t) and ¢(x,0,t) at x = 0, respectively.



Eltayeb Boundary Value Problems (2024) 2024:48 Page 25 of 27

0
f exact (beta =1) /

beta = 0.95
beta =0.99

Figure 6 The comparison between the exact and numerical solutions for ¢(x, o, t)

0 o

Figure 7 The surface shows the function ¥ (x, o, 1)

5 Conclusions

In this research paper, double Sumudu-generalized Laplace transforms and Adomian de-
composition have been profitably joined to obtain a new potent method called the double
Sumudu-generalized Laplace Adomian decomposition method (DSGLTDM). This tech-
nique has been employed to solve regular and singular two-dimensional time-fractional
coupled Burger’s equations. By involving this approach in some examples we have ob-
tained new effective relations to solve our problems. Our method shows that the series
solution can converge very quickly to the solutions. In this study, the technique utilized to
obtain exact and approximation solutions can also be expanded to solve other nonlinear
partial differential equations of physical interest. We see that the results of Examples 1 and
2 are the same as those of applying the Laplace—Adomian decomposition method, vari-
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Figure 8 The surface shows the function ¢(x, o, 1)

ational iteration method (VIM), and Triple Laplace—Adomian Decomposition Method,
[13, 26, 27]. The advantage of DSGLTDM is that it generates other methods, such as
the double Sumudu-Laplace transform decomposition method, see Eq. (2), the double
Sumudu-Yang Transform decomposition method, see Eq. (3), the triple Sumudu Trans-
form decomposition method, see Eq. (4), the double Sumudu—-Elzaki transform decom-
position method, see Eq. (5), and double Sumudu—Aboodh transform, see Eq. (6).
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