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Abstract
In mathematics and the applied sciences, as a very useful tool, fractional calculus is
a basic concept. Furthermore, in many areas of mathematics, it is better to use a new
hybrid fractional operator, which combines the proportional and Caputo operators.
So we concentrate on the proportional Caputo-hybrid operator because of its
numerous applications. In this research, we introduce a novel extension of the
Hermite–Hadamard-type inequalities for proportional Caputo-hybrid operator and
establish an identity. Then, taking into account this novel generalized identity, we
develop some integral inequalities associated with the left-side of
Hermite–Hadamard-type inequalities for proportional Caputo-hybrid operator.
Moreover, to illustrate the newly established inequalities, we give some examples
with the help of graphs.
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1 Introduction
Convex analysis is a field of study that has found its application in various domains of
optimization theory, energy systems, engineering applications, and physics. This analysis
holds a significant position in these areas of mathematics, in particular, in the study of
inequalities. The most well-known inequality in convex theory is the Hermite–Hadamard
inequality. This inequality provided by Hermite and Hadamard [11, 16] is expressed as
follows:

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
, (1)

where f : I → R is a convex function on the interval I of real numbers, and a, b ∈ I with
a < b. If f is concave, then both inequalities in the statement hold in the reverse direction.
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Upper and lower bounds for the average value of a convex function on a compact inter-
val are provided by the Hermite–Hadamard inequality. Numerous disciplines, including
integral calculus, probability theory, statistics, optimization, and number theory, use this
inequality. It is a valuable tool for tackling physical problems that demand the computa-
tion of function averages. With the emergence of new problems, its applications continue
to expand, making it as an effective tool for solving a wide range of mathematical prob-
lems. Moreover, the Hermite–Hadamard inequality is characterized by the trapezoidal
and midpoint inequalities on its right and left parts. Researchers’ studies have concen-
trated on these kinds of inequality. Trapezoid-type inequalities for the case of convex func-
tions were first presented by Dragomir and Agarwal [10], whereas midpoint-type inequal-
ities for the case of convex functions were first established by Kırmacı [22]. Following the
establishment of these inequalities, there has been considerable research activity in this
field [2, 7, 18].

Fractional calculus has a strong historical basis. The beginnings can be traced back to
the correspondence between Leibniz and L’Hôpital. With the aid of this calculus, we can
more precisely characterize the behavior of complex systems, particularly those display-
ing noninteger-order dynamics. It extends the notions of standard calculus due to the
presence of fractional orders. In recent times, fractional calculus is a developing branch
of mathematics, which plays a significant role in capturing the dynamics of intricate sys-
tems across diverse science because of the new fractional integral and derivative such as
Caputo–Fabrizio [8], Atangana–Baleanu [4], tempered [27], etc.

A fundamental class of fractional integral operators is the Riemann–Liouville integral
operators [21].

Definition 1 For f ∈ L1[a, b], the Riemann–Liouville integrals of order α > 0 are given by

Jα
a+f (x) =

1
�(α)

∫ x

a
(x – t)α–1f (t) dt, x > a,

and

Jα
b–f (x) =

1
�(α)

∫ b

x
(t – x)α–1f (t) dt, x < b,

where � is the gamma function, and J0
a+f (x) = J0

b–f (x) = f (x). Obviously, the Riemann–
Liouville integrals will be equal to classical integrals for α = 1.

Sarıkaya et al. [30] and Iqbal et al. [19] obtained many fractional midpoint- and
trapezoid-type inequalities for convex functions, respectively. Next, Sarıkaya and Yıldırım
[31] derived a distinct expression of the Hermite–Hadamard inequality with the help of
fractional integrals in the following form.

Theorem 1 Let f ∈ L1[a, b] be a convex function on [a, b]. Then we have the following
inequalities for fractional integrals:

f
(

a + b
2

)
≤ �(α + 1)

2(b – a)α
[
Jα

( a+b
2 )+

f (b) + Jα

( a+b
2 )–

f (a)
] ≤ f (a) + f (b)

2

for α > 0.
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For other results on fractional integral inequalities, see [6, 12, 14, 24, 25, 33] and refer-
ences therein.

Another important definition in fractional analysis is the following [28]:

Definition 2 Let α > 0 and α /∈ {1, 2, . . .}, n = [α] + 1, and let f ∈ ACn[a, b] denote the space
of functions having n absolutely continuous derivatives. The left-sided and right-sided
Caputo fractional derivatives of order α are defined as follows:

CDα
a+ f (x) =

1
�(n – α)

∫ x

a
(x – t)n–α–1f (n)(t) dt, x > a,

and

CDα
b– f (x) =

1
�(n – α)

∫ b

x
(t – x)n–α–1f (n)(t) dt, x < b.

If α = n ∈ {1, 2, 3, . . .} and the usual nth-order derivative f (n)(x) exists, then the Caputo
fractional derivative CDα

a+ f (x) coincides with f (n)(x), whereas CDα
b– f (x) coincides with the

latter up to a constant multiplier (–1)n. For n = 1 and α = 0, we have CDα
a+ f (x) = CDα

b– f (x) =
f (x).

The Caputo derivative is defined as the application of a fractional integral to the standard
derivative of a function, whereas the Riemann–Liouville fractional derivative is obtained
by differentiating the fractional integral of a function concerning its independent variable
of order n. The Caputo fractional derivative necessitates more suitable initial conditions
in contrast to the conventional Riemann–Liouville fractional derivative considering frac-
tional differential equations [9]. Besides, the operator of a proportional derivative denoted
as PDαf (t) is given by [3]

PDαf (t) = K1(α, t)f (t) + K0(α, t)f ′(t).

Under certain assumptions, K1 and K0 are functions of α ∈ [0, 1] and t ∈R; also, the func-
tion f is differentiable with respect to t ∈ R. It is related to the wide and expanding area of
conformable derivatives. Additionally, in the realm of control theory, the utilization of this
operator is common. Thus, studying the Caputo and proportional derivatives has become
much more important in recent years [1, 13, 15, 17, 20, 23, 26, 32].

The definition provided by Baleanu et al. [5] combines the notions of proportional
and Caputo derivatives in a novel way to create a hybrid fractional operator that can be
expressed as a linear combination of Riemann–Liouville and Caputo fractional deriva-
tives.

Definition 3 Let f : I ⊂ R
+ → R be a differentiable function on I◦, and let f , f ′ be locally

in L1(I). Then the proportional Caputo-hybrid operator may be defined as follows:

PC
0 Dα

t f (t) =
1

�(1 – α)

∫ t

0

[
K1(α, τ )f (τ ) + K0(α, τ )f ′(τ )

]
(t – τ )–α dτ ,
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where α ∈ [0, 1], and K1 and K0 are functions satisfying the following conditions:

lim
α→0+

K0(α, τ ) = 0; lim
α→1

K0(α, τ ) = 1; K0(α, τ ) �= 0,α ∈ (0, 1];

lim
α→0

K1(α, τ ) = 0; lim
α→1–

K1(α, τ ) = 1; K1(α, τ ) �= 0,α ∈ [0, 1).

Sarıkaya [29] suggested a novel concept based on Definition 3 via different functions K1

and K0. They also provided the Hermite–Hadamard inequality using the following:

Definition 4 Let f : I ⊂ R
+ → R be a differentiable function on I◦ such that f , f ′ ∈ L1(I).

The left- and right-sided proportional Caputo-hybrid operators of order α are defined,
respectively, as follows:

PC
a+ Dα

b f (b) =
1

�(1 – α)

∫ b

a

[
K1(α, b – τ )f (τ ) + K0(α, b – τ )f ′(τ )

]
(b – τ )–α dτ

and

PC
b– Dα

a f (a) =
1

�(1 – α)

∫ b

a

[
K1(α, τ – a)f (τ ) + K0(α, τ – a)f ′(τ )

]
(τ – a)–α dτ ,

where α ∈ [0, 1], and K0(α, τ ) = (1 – α)2τ 1–α and K1(α, τ ) = α2τα .

Theorem 2 Let f : I ⊂R
+ → R be a differentiable function on I◦, the interior of the interval

I , where a, b ∈ I◦ with a < b, and let f and f ′ be convex functions on I . Then we have the
following inequalities:

α2(b – a)αf
(

a + b
2

)
+

1
2

(1 – α)(b – a)1–αf ′
(

a + b
2

)

≤ �(1 – α)
2(b – a)1–α

[PC
a+ Dα

b f (b) + PC
b– Dα

a f (a)
]

≤ α2(b – a)α
[

f (a) + f (b)
2

]
+ (1 – α)(b – a)1–α

[
f ′(a) + f ′(b)

4

]
.

This work aims to analyze analogs of the Hermite–Hadamard-type inequalities concern-
ing Riemann integrals for the proportional Caputo-hybrid operator. For this, we first give
a Hermite–Hadamard inequality in different presentation using the proportional Caputo-
hybrid operator as defined by Sarıkaya [29]. Moreover, we present an identity for the first
part of this inequality, called the midpoint side. To establish different midpoint-type in-
equalities, this identity is required. Furthermore, we provide several examples supported
to demonstrate the established inequalities by graphical representations. Under appropri-
ate assumptions on α, these conclusions expand and generalize the inequalities discovered
in earlier works.

2 Main results
In this section, firstly, differently from the literature, we obtain a Hermite–Hadamard in-
equality for the proportional Caputo-hybrid operator as follows.
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Theorem 3 Let f : I ⊂ R
+ → R be a differentiable function on Io, where a, b ∈ Io satisfy

a < b, and let f and f ′ be convex functions on I . Then we have the following inequalities:

α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

)
(2)

≤ �(1 – α)
2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]

≤ α2(b – a)α2–α

(
f (a) + f (b)

2

)
+ (1 – α)(b – a)1–α2α–2

(
f ′(a) + f ′(b)

2

)
.

Proof Since f and f ′ are convex functions on [a, b], we have

f
(

a + b
2

)
≤ 1

2

[
f
(

t
2

a +
2 – t

2
b
)

+ f
(

2 – t
2

a +
t
2

b
)]

and

f ′
(

a + b
2

)
≤ 1

2

[
f ′

(
t
2

a +
2 – t

2
b
)

+ f ′
(

2 – t
2

a +
t
2

b
)]

.

Then, multiplying these expressions by α2(b – a)α2–α and (1 – α)2(b – a)1–α2α–1t1–2α , re-
spectively, we obtain

α2(b – a)α2–αf
(

a + b
2

)

≤ 1
2

[
α2(b – a)α2–αf

(
t
2

a +
2 – t

2
b
)

+ α2(b – a)α2–αf
(

2 – t
2

a +
t
2

b
)]

and

(1 – α)2(b – a)1–α2α–1t1–2αf ′
(

a + b
2

)

≤ 1
2

[
(1 – α)2(b – a)1–α2α–1t1–2αf ′

(
t
2

a +
2 – t

2
b
)

+ (1 – α)2(b – a)1–α2α–1t1–2αf ′
(

2 – t
2

a +
t
2

b
)]

.

Placing these two statements side by side and summing them up yield

α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)2(b – a)1–α2α–1t1–2αf ′

(
a + b

2

)

≤ 1
2

[
α2(b – a)α2–αtαf

(
t
2

a +
2 – t

2
b
)

+ (1 – α)2(b – a)1–α2α–1t1–αf ′
(

t
2

a +
2 – t

2
b
)]

t–α

+
1
2

[
α2(b – a)α2–αtαf

(
2 – t

2
a +

t
2

b
)

+ (1 – α)2(b – a)1–α2α–1t1–αf ′
(

2 – t
2

a +
t
2

b
)]

t–α .
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Integrating both sides of the inequality with respect to t ∈ [0, 1], we deduce that

α2(b – a)α2–αf
(

a + b
2

)
+

1
2

(1 – α)(b – a)1–α2α–1f ′
(

a + b
2

)

≤ 1
2

∫ 1

0

[
α2(b – a)α2–αtαf

(
t
2

a +
2 – t

2
b
)

+ (1 – α)2(b – a)1–α2α–1t1–αf ′
(

t
2

a +
2 – t

2
b
)]

t–α dt

+
1
2

∫ 1

0

[
α2(b – a)α2–αtαf

(
2 – t

2
a +

t
2

b
)

+ (1 – α)2(b – a)1–α2α–1t1–αf ′
(

2 – t
2

a +
t
2

b
)]

t–α dt.

Using a variable substitution, we arrive at

α2(b – a)α2–αf
(

a + b
2

)
+

1
2

(1 – α)(b – a)1–α2α–1f ′
(

a + b
2

)

≤ 2–α

(b – a)–α+1

∫ b

a+b
2

[
α2(b – τ )αf (τ ) + (1 – α)2(b – τ )1–αf ′(τ )

]
(b – τ )–α dτ

+
2–α

(b – a)–α+1

∫ a+b
2

a

[
α2(τ – a)αf (τ ) + (1 – α)2(τ – a)1–αf ′(τ )

]
(τ – a)–α dτ

=
2–α

(b – a)–α+1

∫ b

a+b
2

[
K1(α, b – τ )f (τ ) + K0(α, b – τ )f ′(τ )

]
(b – τ )–α dτ

+
2–α

(b – a)–α+1

∫ a+b
2

a

[
K1(α, τ – a)f (τ ) + K0(α, τ – a)f ′(τ )

]
(τ – a)–α dτ

=
�(1 – α)

2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]
.

Therefore the left side of inequality (2) is demonstrated. To verify the second side of (2),
by the convexity of f and f ′ on [a, b], we have

f
(

t
2

a +
2 – t

2
b
)

+ f
(

2 – t
2

a +
t
2

b
)

≤ f (a) + f (b)

and

f ′
(

t
2

a +
2 – t

2
b
)

+ f ′
(

2 – t
2

a +
t
2

b
)

≤ f ′(a) + f ′(b).

Multiplying these two expressions by α2(b – a)α2–α and (1 – α)2(b – a)1–α2α–1t1–2α , we
obtain

α2(b – a)α2–αf
(

t
2

a +
2 – t

2
b
)

+ α2(b – a)α2–αf
(

2 – t
2

a +
t
2

b
)

≤ α2(b – a)α2–α
[
f (a) + f (b)

]
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and

(1 – α)2(b – a)1–α2α–1t1–2αf ′
(

t
2

a +
2 – t

2
b
)

+ (1 – α)2(b – a)1–α2α–1t1–2αf ′
(

2 – t
2

a +
t
2

b
)

≤ (1 – α)2(b – a)1–α2α–1t1–2α
[
f ′(a) + f ′(b)

]
.

Adding these two inequalities, we get

1
2

[
α2(b – a)α2–αtαf

(
t
2

a +
2 – t

2
b
)

+ (1 – α)2(b – a)1–α2α–1t1–αf ′
(

t
2

a +
2 – t

2
b
)]

t–α

+
1
2

[
α2(b – a)α2–αtαf

(
2 – t

2
a +

t
2

b
)

+ (1 – α)2(b – a)1–α2α–1t1–αf ′
(

2 – t
2

a +
t
2

b
)]

t–α

≤ α2(b – a)α2–α

[
f (a) + f (b)

2

]
+ (1 – α)2(b – a)1–α2α–1t1–2α

[
f ′(a) + f ′(b)

2

]
.

Integrating both sides of the inequality over t ∈ [0, 1], we get

1
2

∫ 1

0

[
α2(b – a)α2–αtαf

(
t
2

a +
2 – t

2
b
)

+ (1 – α)2(b – a)1–α2α–1t1–αf ′
(

t
2

a +
2 – t

2
b
)]

t–α dt

+
1
2

∫ 1

0

[
α2(b – a)α2–αtαf

(
2 – t

2
a +

t
2

b
)

+ (1 – α)2(b – a)1–α2α–1t1–αf ′
(

2 – t
2

a +
t
2

b
)]

t–α dt

≤ α2(b – a)α2–α

[
f (a) + f (b)

2

]
+ (1 – α)(b – a)1–α2α–2

[
f ′(a) + f ′(b)

2

]
.

Now a change of variable leads us to

�(1 – α)
2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]

≤ α2(b – a)α2–α

[
f (a) + f (b)

2

]
+ (1 – α)(b – a)1–α2α–2

[
f ′(a) + f ′(b)

2

]
.

Consequently, we achieve the required second side of inequality (2). �

Remark 1 In the particular case where α tends to 1 in Theorem 3, we get inequality (1).
Therefore we see that inequality (2) is an extension of classical Hermite–Hadamard in-
equality.
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Now we present an example illustrating our theorem.

Example 1 Let us consider the function f : [1, 2] → R given by f (x) = x3. Then the left-
and right-hand sides of (2) are

α22–α–327 + (1 – α)2α–427 := �1 and α22–α–19 + (1 – α)2α–315 := �2.

Furthermore, from the equalities

∫ 3
2

1

[
α2(τ – 1)ατ 3 + (1 – α)2(τ – 1)1–α3τ 2](τ – 1)–α dτ

= α2
∫ 3

2

1
τ 3 dτ + 3(1 – α)2

∫ 3
2

1
(τ – 1)1–2ατ 2 dτ

=
65
64

α2 +
(
1 – α2)(3

22α–5

2 – α
+ 6

22α–3

3 – 2α
+ 3

22α–3

1 – α

)

and

∫ 2

3
2

[
α2(2 – τ )ατ 3 + (1 – α)2(2 – τ )1–α3τ 2](2 – τ )–α dτ

= α2
∫ 2

3
2

τ 3 dτ + 3(1 – α)2
∫ 2

3
2

(2 – τ )1–2ατ 2 dτ

=
175
64

α2 +
(
1 – α2)(3

22α–5

2 – α
– 12

22α–3

3 – 2α
+ 12

22α–3

1 – α

)

it follows that

�(1 – α)
2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]

=
15
4

α2

2α
+ (1 – α)2

(
6

2α–5

2 – α
– 6

2α–3

3 – 2α
+ 15

2α–3

1 – α

)
:= �3.

Thus, in view of (2), we obtain the inequality

α22–α–19 + (1 – α)2α–315 ≤ 15
4

α2

2α
+ (1 – α)2

(
6

2α–5

2 – α
– 6

2α–3

3 – 2α
+ 15

2α–3

1 – α

)
(3)

≤ α22–α–327 + (1 – α)2α–427.

Inequality (3) is illustrated in Fig. 1.

The following lemma is essential for demonstrating other our main results.

Lemma 1 Let f : I ⊂R
+ →R be a twice differentiable function on Io, where a, b ∈ Io satisfy

a < b, and let f , f ′, f ′′ ∈ L1[a, b]. Then we have the following identity:

α2(b – a)α+12–α–2
∫ 1

0
t
[

f ′
(

t
2

a +
2 – t

2
b
)

– f ′
(

2 – t
2

a +
t
2

b
)]

dt
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Figure 1 The graph of three parts of inequality (3) in Example 1, which is computed and drawn by MATLAB
program, depending on α ∈ (0, 1)

+ (1 – α)(b – a)2–α2α–4
∫ 1

0
t2–2α

[
f ′′

(
t
2

a +
2 – t

2
b
)

– f ′′
(

2 – t
2

a +
t
2

b
)]

dt

=
�(1 – α)

2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]

–
(

α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

))
.

Proof Integrating by parts, we get

∫ 1

0
tf ′

(
2 – t

2
a +

t
2

b
)

dt =
2

b – a
f
(

a + b
2

)
–

2
b – a

∫ 1

0
f
(

2 – t
2

a +
t
2

b
)

dt

and
∫ 1

0
t2–2αf ′′

(
2 – t

2
a +

t
2

b
)

dt

=
2

b – a
f ′

(
a + b

2

)
–

2
b – a

∫ 1

0
t1–2αf ′

(
2 – t

2
a +

t
2

b
)

dt.

Using a variable change, multiplying the results by α2(b – a)α+12–α–1 and (1 – α)(b –
a)2–α2α–3, and summing side by side, we arrive at the following result:

α2(b – a)α+12–α–1
∫ 1

0
tf ′

(
2 – t

2
a +

t
2

b
)

dt (4)

+ (1 – α)(b – a)2–α2α–3
∫ 1

0
t2–2αf ′′

(
2 – t

2
a +

t
2

b
)

dt

= α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

)

–
21–α

(b – a)1–α

∫ a+b
2

a

[
α2(τ – a)αf (τ ) + (1 – α)2(τ – a)1–αf ′(τ )

]
(τ – a)–α dτ .
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Following similar steps, we obtain

α2(b – a)α+12–α–1
∫ 1

0
tf ′

(
t
2

a +
2 – t

2
b
)

dt (5)

+ (1 – α)(b – a)2–α2α–3
∫ 1

0
t2–2αf ′′

(
t
2

a +
2 – t

2
b
)

dt

= –α2(b – a)α2–αf
(

a + b
2

)
– (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

)

+
21–α

(b – a)1–α

∫ b

a+b
2

[
α2(b – τ )αf (τ ) + (1 – α)2(b – τ )1–αf ′(τ )

]
(b – τ )–α dτ .

Subtracting (4) from (5), we have

α2(b – a)α+12–α–2
∫ 1

0
t
[

f ′
(

t
2

a +
2 – t

2
b
)

– f ′
(

2 – t
2

a +
t
2

b
)]

dt

+ (1 – α)(b – a)2–α2α–4
∫ 1

0
t2–2α

[
f ′′

(
t
2

a +
2 – t

2
b
)

– f ′′
(

2 – t
2

a +
t
2

b
)]

dt

=
�(1 – α)

2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]

–
(

α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

))
,

which completes the proof. �

Theorem 4 Let f : I ⊂ R
+ → R be a twice differentiable function on Io, where a, b ∈ Io

satisfy a < b, and let f , f ′, f ′′ ∈ L1[a, b]. If |f ′|q and |f ′′|q are convex on [a, b] for q ≥ 1, then
we have the following inequality:

∣∣∣∣ �(1 – α)
2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]

(6)

–
(

α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

))∣∣∣∣

≤ α2(b – a)α+12–α–3
[(

1
3
∣∣f ′(a)

∣∣q +
2
3
∣∣f ′(b)

∣∣q
) 1

q
+

(
2
3
∣∣f ′(a)

∣∣q +
1
3
∣∣f ′(b)

∣∣q
) 1

q
]

+ (1 – α)(b – a)2–α2α–4 1
(3 – 2α)

1

(8 – 2α)
1
q

[(
(3 – 2α)

∣∣f ′′(a)
∣∣q + 5

∣∣f ′′(b)
∣∣q) 1

q

+
(
5
∣∣f ′′(a)

∣∣q + (3 – 2α)
∣∣f ′′(b)

∣∣q) 1
q
]
.

Proof Firstly, let q = 1. By the convexity of |f ′| and |f ′′|, from Lemma 1 it follows that
∣∣∣∣ �(1 – α)
2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]

–
(

α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

))∣∣∣∣
≤ α2(b – a)α+12–α–2

∫ 1

0
t
[∣∣∣∣f ′

(
t
2

a +
2 – t

2
b
)∣∣∣∣ +

∣∣∣∣f ′
(

2 – t
2

a +
t
2

b
)∣∣∣∣

]
dt
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+ (1 – α)(b – a)2–α2α–4
∫ 1

0
t2–2α

[∣∣∣∣f ′′
(

t
2

a +
2 – t

2
b
)∣∣∣∣ +

∣∣∣∣f ′′
(

2 – t
2

a +
t
2

b
)∣∣∣∣

]
dt

≤ α2(b – a)α+12–α–2
∫ 1

0

t2

2
(∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣) +
2t – t2

2
(∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣)dt

+ (1 – α)(b – a)2–α2α–4
∫ 1

0

t3–2α

2
(∣∣f ′′(a)

∣∣ +
∣∣f ′′(b)

∣∣)

+
2t2–2α – t3–2α

2
(∣∣f ′′(a)

∣∣ +
∣∣f ′′(b)

∣∣)dt

= α2(b – a)α+12–α–2
( |f ′(a)| + |f ′(b)|

2

)

+ (1 – α)(b – a)2–α2α–3 1
(3 – 2α)

( |f ′′(a)| + |f ′′(b)|
2

)
.

Secondly, consider q > 1. In view of Lemma 1, using the power mean inequality and the
convexity of |f ′|q and |f ′′|q, we obtain

∣∣∣∣ �(1 – α)
2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]

–
(

α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

))∣∣∣∣

≤ α2(b – a)α+12–α–2
[(∫ 1

0
t dt

) 1
p
(∫ 1

0
t
∣∣∣∣f ′

(
t
2

a +
2 – t

2
b
)∣∣∣∣

q

dt
) 1

q

+
(∫ 1

0
t dt

) 1
p
(∫ 1

0
t
∣∣∣∣f ′

(
2 – t

2
a +

t
2

b
)∣∣∣∣

q

dt
) 1

q
]

+ (1 – α)(b – a)2–α2α–4
[(∫ 1

0
t2–2α dt

) 1
p
(∫ 1

0
t2–2α

∣∣∣∣f ′′
(

t
2

a +
2 – t

2
b
)∣∣∣∣

q

dt
) 1

q

+
(∫ 1

0
t2–2α dt

) 1
p
(∫ 1

0
t2–2α

∣∣∣∣f ′′
(

2 – t
2

a +
t
2

b
)∣∣∣∣

q

dt
) 1

q
]

≤ α2(b – a)α+12–α–2 1

2
1
p

[(∫ 1

0

t2

2
∣∣f ′(a)

∣∣q +
2t – t2

2
∣∣f ′(b)

∣∣q dt
) 1

q

+
(∫ 1

0

2t – t2

2
∣∣f ′(a)

∣∣q +
t2

2
∣∣f ′(b)

∣∣q dt
) 1

q
]

+ (1 – α)(b – a)2–α2α–4 1

(3 – 2α)
1
p

[(∫ 1

0

t3–2α

2
∣∣f ′′(a)

∣∣q

+
2t2–2α – t3–2α

2
∣∣f ′′(b)

∣∣q dt
) 1

q

+
(∫ 1

0

2t2–2α – t3–2α

2
∣∣f ′′(a)

∣∣q +
t3–2α

2
∣∣f ′′(b)

∣∣q dt
) 1

q
]

= α2(b – a)α+12–α–2 1

2
1
p

[(
1
6
∣∣f ′(a)

∣∣q +
1
3
∣∣f ′(b)

∣∣q
) 1

q
+

(
1
3
∣∣f ′(a)

∣∣q +
1
6
∣∣f ′(b)

∣∣q
) 1

q
]
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+ (1 – α)(b – a)2–α2α–4 1

(3 – 2α)
1
p

[( |f ′′(a)|q
8 – 2α

+
5|f ′′(b)|q

(8 – 2α)(3 – 2α)

) 1
q

+
(

5|f ′′(a)|q
(8 – 2α)(3 – 2α)

+
|f ′′(b)|q
(8 – 2α)

) 1
q
]

.

This ends the proof. �

Now we illustrate our theorem by an example.

Example 2 Let the function f : [1, 3] →R be defined by f (x) = x3 +x2. Then the right-hand
side of inequality (6) is

α2

4

[(
1
3

5q +
2
3

33q
) 1

q
+

(
2
3

5q +
1
3

33q
) 1

q
]

+
(1 – α)

4
1

3 – 2α

1

(8 – 2α)
1
q

[(
(3 – 2α)8q + 5.20q) 1

q +
(
5.8q + (3 – 2α)20q) 1

q
]

:= �1.

On the other hand, we obtain
∣∣∣∣ �(1 – α)
2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]

–
(

α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

))∣∣∣∣
= α2 7

3
+

(1 – α)2

2

(
22

3 – 2α
–

11
2 – 2α

)
– 8(1 – α) := �2.

As we can see in Fig. 2, the left-hand side of inequality (6) is always below the right-hand
side of this inequality for all values of α ∈ (0, 1) and q ≥ 1.

Remark 2 Taking the limit as α → 1 and putting q = 1 in Theorem 4, it follows that

∣∣∣∣ 1
b – a

∫ b

a
f (x) dx – f

(
a + b

2

)∣∣∣∣ ≤ (b – a)
8

(∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣),

as it was proved by Kırmacı [22].

Corollary 1 In the limiting case α = 0 in Theorem 4, we obtain

∣∣∣∣ 1
b – a

(∫ b

a+b
2

f (x) dx –
∫ a+b

2

a
f (x) dx

)
–

(
b – a

4

)
f ′

(
a + b

2

)∣∣∣∣

≤ (b – a)2

48

[(
3
8
∣∣f ′′(a)

∣∣q +
5
8
∣∣f ′′(b)

∣∣q
)1/q

+
(

5
8
∣∣f ′′(a)

∣∣q +
3
8
∣∣f ′′(b)

∣∣q
)1/q]

.

Moreover, taking α = 1
2 , we have

∣∣∣∣ 1
b – a

{∫ b

a
f (x) dx + f (b) – f (a)

}
–

[
f
(

a + b
2

)
+

1
2

f ′
(

a + b
2

)]∣∣∣∣
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Figure 2 The graph of both sides of inequality (6) according to Example 2, which is computed and drawn by
MATLAB program, depending on α ∈ (0, 1) and q ∈ [1, 3]

≤ b – a
8

{[
1
3
∣∣f ′(a)

∣∣q +
2
3
∣∣f ′(b)

∣∣]1/q

+
[

2
3
∣∣f ′(a)

∣∣q +
1
3
∣∣f ′(b)

∣∣q
]1/q

+
[

2
7
∣∣f ′′(a)

∣∣q +
5
7
∣∣f ′(b)

∣∣q
]1/q

+
[

5
7
∣∣f ′(a)

∣∣q +
2
7
∣∣f ′(b)

∣∣q
]1/q}

.

Theorem 5 Let f : I ⊂ R
+ → R be a twice differentiable function on Io, where a, b ∈ Io

satisfy a < b, and let f , f ′, f ′′ ∈ L1[a, b]. If |f ′|q and |f ′′|q are convex on [a, b] for q > 1, then
we have the following inequality:

∣∣∣∣ �(1 – α)
2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]

(7)

–
(

α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

))∣∣∣∣

≤ α2(b – a)α+12–α–2
(

4
p + 1

) 1
p (∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣)

+ (1 – α)(b – a)2–α2α–4
(

4
(2 – 2α)p + 1

) 1
p (∣∣f ′′(a)

∣∣ +
∣∣f ′′(b)

∣∣),

where 1
p + 1

q = 1.

Proof Employing the Hölder inequality and the convexity of |f ′|q and |f ′′|q, by Lemma 1
we have

∣∣∣∣ �(1 – α)
2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]
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–
(

α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

))∣∣∣∣

≤ α2(b – a)α+12–α–2
[(∫ 1

0
tp dt

) 1
p
(∫ 1

0

∣∣∣∣f ′
(

t
2

a +
2 – t

2
b
)∣∣∣∣

q

dt
) 1

q

+
(∫ 1

0
tp dt

) 1
p
(∫ 1

0

∣∣∣∣f ′
(

2 – t
2

a +
t
2

b
)∣∣∣∣

q

dt
) 1

q
]

+ (1 – α)(b – a)2–α2α–4
[(∫ 1

0
t2p–2αp dt

) 1
p
(∫ 1

0

∣∣∣∣f ′′
(

t
2

a +
2 – t

2
b
)∣∣∣∣

q

dt
) 1

q

+
(∫ 1

0
t2p–2αp dt

) 1
p
(∫ 1

0

∣∣∣∣f ′′
(

2 – t
2

a +
t
2

b
)∣∣∣∣

q

dt
) 1

q
]

≤ α2(b – a)α+12–α–2
(

1
p + 1

) 1
p
[(∫ 1

0

t
2
∣∣f ′(a)

∣∣q +
2 – t

2
∣∣f ′(b)

∣∣q dt
) 1

q

+
(∫ 1

0

2 – t
2

∣∣f ′(a)
∣∣q +

t
2
∣∣f ′(b)

∣∣q dt
) 1

q
]

+ (1 – α)(b – a)2–α2α–4
(

1
2p – 2αp + 1

) 1
p

×
[(∫ 1

0

t
2
∣∣f ′′(a)

∣∣q +
2 – t

2
∣∣f ′′(b)

∣∣q dt
) 1

q

+
(∫ 1

0

2 – t
2

∣∣f ′′(a)
∣∣q +

t
2
∣∣f ′′(b)

∣∣q dt
) 1

q
]

= α2(b – a)α+12–α–2
(

1
p + 1

) 1
p
[(

1
4
∣∣f ′(a)

∣∣q

+
3
4
∣∣f ′(b)

∣∣q
) 1

q
+

(
3
4
∣∣f ′(a)

∣∣q +
1
4
∣∣f ′(b)

∣∣q
) 1

q
]

+ (1 – α)(b – a)2–α2α–4
(

1
2p – 2αp + 1

) 1
p
[(

1
4
∣∣f ′′(a)

∣∣q +
3
4
∣∣f ′′(b)

∣∣q
) 1

q

+
(

3
4
∣∣f ′′(a)

∣∣q +
1
4
∣∣f ′′(b)

∣∣q
) 1

q
]

.

Also, by the inequality

n∑
k=1

(ak + bk)s ≤
n∑

k=1

as
k +

n∑
k=1

bs
k

for 0 ≤ s < 1 and ak , bk ≥ 0, k ∈ {1, 2, . . . , n}, taking a1 = |f ′(a)|q, b1 = 3|f ′(b)|q, a2 = 3|f ′(a)|q,
b2 = |f ′(b)|q, m1 = |f ′′(a)|q, n1 = 3|f ′′(b)|q, m2 = 3|f ′′(a)|q, n2 = |f ′′(b)|q, we derive

∣∣∣∣ �(1 – α)
2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]

–
(

α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

))∣∣∣∣
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≤ α2(b – a)α+12–α–4
(

4
p + 1

) 1
p (

3
1
q + 1

)(∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣)

+ (1 – α)(b – a)2–α2α–4 1
4

(
4

(2 – 2α)p + 1

) 1
p (

3
1
q + 1

)(∣∣f ′′(a)
∣∣ +

∣∣f ′′(b)
∣∣)

≤ α2(b – a)α+12–α–2
(

4
p + 1

) 1
p (∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣)

+ (1 – α)(b – a)2–α2α–4
(

4
(2 – 2α)p + 1

) 1
p (∣∣f ′′(a)

∣∣ +
∣∣f ′′(b)

∣∣),

which completes the proof. �

To illustrate the inequality in Theorem 5, derived using the Hölder inequality, we provide
the following.

Example 3 Consider the function f defined in Example 2. We can evaluate the expression
on the right-hand side of inequality (7) as follows:

19α2
(

4
p + 1

) 1
p

+ 7(1 – α)
(

4
(2 – 2α)p + 1

) 1
p

:= �1.

On the other hand, we know that

∣∣∣∣ �(1 – α)
2α(b – a)–α+1

[PC
( a+b

2 )+ Dα
b f (b) + PC

( a+b
2 )– Dα

a f (a)
]

–
(

α2(b – a)α2–αf
(

a + b
2

)
+ (1 – α)(b – a)1–α2α–2f ′

(
a + b

2

))∣∣∣∣
= α2 7

3
+

(1 – α)2

2

(
22

3 – 2α
–

11
2 – 2α

)
– 8(1 – α) := �2.

Thus from Fig. 3 we can observe that for all values of α ∈ (0, 1) and p > 1, the left-hand
side of inequality (7) is consistently lower than the right-hand side.

Remark 3 In the limiting case α = 1 in Theorem 5, we get

∣∣∣∣ 1
b – a

∫ b

a
f (x) dx – f

(
a + b

2

)∣∣∣∣ ≤ b – a
4

(
4

p + 1

)1/p(∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣),

as it was proved by Kırmacı [22].

Corollary 2 Taking the limit as α → 0 in Theorem 5, we have

∣∣∣∣ 1
b – a

(∫ b

a+b
2

f (x) dx –
∫ a+b

2

a
f (x) dx

)
–

(
b – a

4

)
f ′

(
a + b

2

)∣∣∣∣

≤ (b – a)2

16

(
4

2p + 1

)1/p(∣∣f ′′(a)
∣∣ +

∣∣f ′′(b)
∣∣).
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Figure 3 The graph of both sides of inequality (7) according to Example 3, which is computed and drawn by
MATLAB program, depending on α ∈ (0, 1) and p ∈ (1, 3]

Also, taking α = 1
2 , we obtain

∣∣∣∣ 1
b – a

(∫ b

a
f (x) dx + f (b) – f (a)

)
–

(
f
(

a + b
2

)
+ f ′

(
a + b

2

))∣∣∣∣
≤ b – a

4

(
4

p + 1

)1/p(∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣ +

∣∣f ′′(a)
∣∣ +

∣∣f ′′(b)
∣∣).

3 Conclusions
This work uses a proportional Caputo-hybrid operator to establish novel Hermite–
Hadamard-type integral inequalities for twice-differentiable convex mappings. To do this,
we begin by proving a new integral identity of the Hermite–Hadamard type associated
with the proportional Caputo-hybrid operator. Later, using convexity, the Hölder inequal-
ity, and the power mean inequality, we give several Hermite–Hadamard-type inequalities.
Compared to classical calculus, our findings are more helpful because they present the
particular situation of previously established boundaries as α → 1. So we believe that our
approach and findings will encourage the readers to learn more about this topic. Simi-
lar inequalities for different fractional integrals can be investigated in future studies, and
by utilizing different types of convexity new Hermite–Hadamard-type inequalities can be
obtained.
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T.T. and İ.D. wrote the main manuscript text and İ.D. prepared Figs. 1-3. All authors reviewed the manuscript.

Funding
There is no funding.

Data availability
Data sharing is not applicable to this paper as no data sets were generated or analyzed during the current study.



Tunç and Demir Boundary Value Problems         (2024) 2024:44 Page 17 of 17

Declarations

Competing interests
The authors declare no competing interests.

Received: 16 June 2023 Accepted: 20 March 2024

References
1. Abbas, M.I., Ragusa, M.A.: On the hybrid fractional differential equations with fractional proportional derivatives of a

function with respect to a certain function. Symmetry 13(2), 264 (2021)
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