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Abstract
We study the existence of solutions of the nonlinear second orderm-point boundary
value problem with p-Laplacian at resonance

{
(φp(x′))′ = f (t, x, x′), t ∈ [0, 1],

x′(0) = 0, x(1) =
∑m–2

i=1 aix(ξi),

where φp(s) = |s|p–2s, p > 1, f : [0, 1]×R
2 → R is a continuous function, ai > 0

(i = 1, 2, . . . ,m – 2) with
∑m–2

i=1 ai = 1, 0 < ξ1 < ξ2 < · · · < ξm–2 < 1. Based on the
topological transversality method together with the barrier strip technique and the
cut-off technique, we obtain new existence results of solutions of the above problem.
Meanwhile some examples are also given to illustrate our main results.
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1 Introduction
In this paper, we consider the existence of solutions of the following m-point boundary
value problem with p-Laplacian at resonance:

⎧⎨
⎩(φp(x′))′ = f (t, x, x′), t ∈ [0, 1],

x′(0) = 0, x(1) =
∑m–2

i=1 aix(ξi),
(1.1)

where φp(s) = |s|p–2s, p > 1, f : [0, 1] × R
2 → R is a continuous function, ai > 0 (i =

1, 2, . . . , m – 2) with
∑m–2

i=1 ai = 1, and 0 < ξ1 < ξ2 < · · · < ξm–2 < 1. By a solution to problem
(1.1), we mean a function x ∈ C1[0, 1] with φp(x′) ∈ C1[0, 1] that satisfies problem (1.1).

It is well known that the research of m-point boundary value problems is significant in
the theory of ordinary differential equations and practical applications, see [4, 13].

We specifically mention that the existence of solutions of problem (1.1) with p = 2 has
been studied by Gupta [12], Feng and Webb [3], Infante and Webb [14], Ma [20], Infante
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and Zima [15], Liang and Lin [18], in which the Leray–Schauder continuation theorem, the
Mawhin’s continuation theorem, the theory of fixed point index, the nonlinear alternative
of Leray–Schauder, the Leggett–Williams norm-type theorem due to O’Regan and Zima
[21], and the fixed point theorem in cones are used, respectively. In the case that p > 1,
problem (1.1) has been studied by García-Huidobro et al. [5–7] via some continuation
lemma of Leray–Schauder type due to themselves, Zhu and Wang [24] via Mawhin’s con-
tinuation theorem. For other types of works regarding the second order nonlocal bound-
ary value problems involving p-Laplacian, we refer the reader to [1, 2, 8–10, 16, 23].

Inspired by the above works and [17, 22], the aim of this paper is to establish the new ex-
istence results of solutions to problem (1.1) by using the topological transversality method
together with the barrier strip technique and the cut-off technique.

We would like to emphasize that the results of this paper are new even when p = 2, and
the main research tool used is the topological transversality theorem, which is different
from those in [5–7, 20, 24]. The advantage of the topological transversality theorem is that
it can transform the resonance problem into a nonresonance problem by appropriately
selecting a convex subset U of X. Besides, in [5–7], the order of growth of f with respect to
the derivative term is less than or equal to p. However, in our results, we just impose some
local sign conditions on the nonlinear term f and do not require the growth constraints,
so the degree of the derivative term in f can exceed p.

This work is organized as follows: In Sect. 2, we first briefly introduce the topological
transversality theory. And then, a modified boundary value problem is constructed by the
cut-off technique. Finally, the barrier strip technique is used to estimate a prior bound of
solutions of the modified boundary value problems in C1[0, 1]. In Sect. 3, the topological
transversality method is used to establish some existence theorems of solutions of problem
(1.1). As applications of our main results, some examples are given in the last section.

Throughout this paper, the following local conditions on f will be used.
(H1) There exists r1 ≤ 0 ≤ r2 with r2

1 + r2
2 > 0 such that

f (t, r1, 0) ≤ 0, f (t, r2, 0) ≥ 0, ∀t ∈ [0, 1].

(H2) There exists R1 ≤ 0 ≤ R2 with R2
1 + R2

2 > 0 such that

f (t, x, R1) ≥ 0, f (t, x, R2) ≤ 0, ∀(t, x) ∈ [0, 1] × [r1, r2].

(H3) There exists R1 ≤ 0 ≤ R2 with R2
1 + R2

2 > 0 such that

f (t, x, R1) ≥ 0, f (t, x, R2) ≥ 0, ∀(t, x) ∈ [0, 1] × [r1, r2],

and

f (t, x, y) ≤ φp(R2)
1 – ξ1

, ∀(t, x, y) ∈ [0, 1] × [r1, r2] × [R1, R2].

(H4) There exists R1 ≤ 0 ≤ R2 with R2
1 + R2

2 > 0 such that

f (t, x, R1) ≤ 0, f (t, x, R2) ≤ 0, ∀(t, x) ∈ [0, 1] × [r1, r2],
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and

f (t, x, y) ≥ φp(R1)
1 – ξ1

, ∀(t, x, y) ∈ [0, 1] × [r1, r2] × [R1, R2].

(H5) There exists R1 ≤ 0 ≤ R2 with R2
1 + R2

2 > 0 such that

f (t, x, R1) ≤ 0, f (t, x, R2) ≥ 0, ∀(t, x) ∈ [0, 1] × [r1, r2],

and

φp(R1)
1 – ξ1

≤ f (t, x, y) ≤ φp(R2)
1 – ξ1

, ∀(t, x, y) ∈ [0, 1] × [r1, r2] × [R1, R2].

Here, the constants r1 and r2 in (H2)–(H5) are as in (H1).

2 Preliminaries
Firstly, we briefly review some concepts and results of topological transversality theory.
Let U be a convex subset of a Banach space X and D ⊂ U be an open set. Denote by
H∂D(D, U) the set of compact operators F : D → U that are fixed point free on ∂D. We
say that F ∈ H∂D(D, U) is essential if every operator in H∂D(D, U) that agrees with F on
∂D has a fixed point in D.

The next two lemmas can be found in [11].

Lemma 2.1 If q ∈D and F ∈ H∂D(D, U) is a constant operator, F(x) = q for x ∈ D, then F
is essential.

Lemma 2.2 Assume that
(i) F ∈ H∂D(D, U) is essential;

(ii) H : D × [0, 1] → U is a compact homotopy, H(·, 0) = F and H(x,λ) 	= x for x ∈ ∂D
and λ ∈ [0, 1].

Then H(·, 1) is essential and therefore it has a fixed point in D.

According to the intermediate value property of continuous functions, it is not difficult
to obtain the following.

Lemma 2.3 Assume that
(i) x ∈ C1[0, 1];

(ii) x(1) =
∑m–2

i=1 aix(ξi), where ai > 0 (i = 1, 2, . . . , m – 2) with
∑m–2

i=1 ai = 1,
0 < ξ1 < ξ2 < · · · < ξm–2 < 1.

Then there exists η ∈ [ξ1, ξm–2] such that x(1) = x(η).

Let the constants r1, r2, R1, R2 be such that

r1 ≤ 0 ≤ r2 (r1 	= r2), R1 ≤ 0 ≤ R2 (R1 	= R2).
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We define the modification g of f as follows:

g(t, x, y) =

⎧⎪⎪⎨
⎪⎪⎩

f (t, r2, y) + x – r2, x > r2;

f (t, x, y), r1 ≤ x ≤ r2;

f (t, r1, y) + x – r1, x < r1,

and define the modification h of g by setting

h(t, x, y) =

⎧⎪⎪⎨
⎪⎪⎩

g(t, x, R2), y > R2;

g(t, x, y), R1 ≤ y ≤ R2;

g(t, x, R1), y < R1.

Obviously, both g(t, x, y) and h(t, x, y) are continuous on [0, 1] ×R
2.

We note here that in the following discussion, we agree that when (H1) is true, the con-
stants r1 and r2 in function g are the ones in (H1), while for i = 2, 3, 4, 5, when (Hi) is true,
the constants R1 and R2 in function h are the ones in (Hi).

Consider the family of the following modified boundary value problem:

(
φp

(
x′(t)

))′ = λh
(
t, x(t), x′(t)

)
, t ∈ [0, 1], (2.1)

x′(0) = 0, x(1) =
m–2∑
i=1

aix(ξi), (2.2)

where λ ∈ (0, 1].
The following lemma is a prior estimate of the possible solutions of the modified prob-

lem (2.1), (2.2) in C1[0, 1].

Lemma 2.4 Assume that (H1) and (H2) hold. Let x be a solution of the modified problem
(2.1), (2.2) for some λ ∈ (0, 1]. Then

r1 ≤ x(t) ≤ r2, ∀t ∈ [0, 1], (2.3)

R1 ≤ x′(t) ≤ R2, ∀t ∈ [0, 1]. (2.4)

Proof We divided the proof into two steps.
Step 1. We prove that (2.3) holds.
Suppose on the contrary that there exists t0 ∈ [0, 1] such that x(t0) < r1 or x(t0) > r2.

Without loss of generality, we may assume that x(t0) < r1. Let t1 ∈ [0, 1] be such that

x(t1) = min
t∈[0,1]

x(t) < r1. (2.5)

By Lemma 2.3, we can assume that t1 ∈ [0, 1), and then from (2.2) we have x′(t1) = 0. It
follows from (H1) and the definition of h that

(
φp

(
x′(t)

))′|t=t1 = λh
(
t1, x(t1), 0

)
= λg

(
t1, x(t1), 0

)
= λ

(
f (t1, r1, 0) + x(t1) – r1

)
< 0,
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and thus there exists δ > 0 such that φp(x′(t)) is decreasing on [t1, t1 + δ) ⊂ [0, 1). This
together with the monotonicity of φ–1

p (·) implies that

x′(t) < x′(t1) = 0, ∀t ∈ (t1, t1 + δ),

which contradicts (2.5). Therefore x(t) ≥ r1, t ∈ [0, 1]. Similarly, we can obtain x(t) ≤ r2,
t ∈ [0, 1]. This implies that (2.3) holds.

Step 2. We use the barrier strip technique to show that (2.4) holds.
Let

S1 =
{

t ∈ [0, 1] : R1 – 1 ≤ x′(t) < R1
}

,

S2 =
{

t ∈ [0, 1] : R2 < x′(t) ≤ R2 + 1
}

.
(2.6)

We now assert that the sets S1 and S2 are empty. We only prove that S1 = ∅. Similarly,
it can be shown that S2 = ∅. Suppose on the contrary that S1 	= ∅. Choose t0 ∈ S1. Then
R1 – 1 ≤ x′(t0) < R1, and so it follows from (2.2) that 0 < t0 ≤ 1. By the continuity of x′(t)
on [0, 1] and the fact of x′(0) = 0, there exist 0 < t1 < t2 ≤ t0 such that

R1 – 1 ≤ x′(t0) ≤ x′(t2) < x′(t1) < R1 (2.7)

and

x′(t2) ≤ x′(t) ≤ x′(t1), ∀t ∈ [t1, t2].

Consequently, [t1, t2] ⊂ S1; whereas from (2.3) and (H2) we obtain

(
φp

(
x′(t)

))′ = λh
(
t, x(t), x′(t)

)
= λg

(
t, x(t), R1

)
= λf

(
t, x(t), R1

) ≥ 0, ∀t ∈ [t1, t2].

Hence φp(x′(t)) is nondecreasing on [t1, t2]. Furthermore, by the monotonicity of φ–1
p (·),

we have that x′(t) is nondecreasing on [t1, t2]. Consequently,

x′(t1) ≤ x′(t2),

which contradicts (2.7). This implies that S1 = ∅. Notice that x′(0) = 0 and x′ ∈ C[0, 1], it
follows that (2.4) holds. This completes the proof of the lemma. �

Lemma 2.5 Assume that (H1) and (H3) hold. Let x be a solution of the modified problem
(2.1), (2.2) for some λ ∈ (0, 1]. Then x(t) satisfies (2.3) and (2.4).

Proof From the proof of Step 1 of Lemma 2.4, it is easy to see that x(t) satisfies (2.3). We
now show that (2.4) holds. To do this, we let Si (i = 1, 2) be as in (2.6). Then S1 = ∅ by the
proof of Step 2 of Lemma 2.4. Therefore, it follows from (2.2) that

x′(t) ≥ R1, ∀t ∈ [0, 1]. (2.8)



Liu et al. Boundary Value Problems         (2024) 2024:46 Page 6 of 17

We now prove that S2 = ∅. Indeed, by contradiction, we assume that there exists t0 ∈ S2

such that R2 < x′(t0) ≤ R2 + 1. According to (2.2), we have 0 < t0 ≤ 1. In view of Lemma 2.3
and the mean value theorem of differentials, there exists ζ ∈ (η, 1) ⊂ [ξ1, 1] such that
x′(ζ ) = 0. Integrating (2.1) from ζ to 1, applying (2.3) and (H3), we obtain

φp
(
x′(1)

)
= λ

∫ 1

ζ

h
(
t, x(t), x′(t)

)
dt

= λ

∫ 1

ζ

g
(
t, x(t), θ

(
x′(t)

))
dt

= λ

∫ 1

ζ

f
(
t, x(t), θ

(
x′(t)

))
dt

≤ λ

∫ 1

ζ

φp(R2)
1 – ξ1

dt

< φp(R2),

where θ (y) := max{R1, min{y, R2}} for y ∈ R. Consequently, x′(1) < R2, and so 0 < t0 < 1.
From the continuity of x′(t) on [0, 1], there exist t0 ≤ t1 < t2 < 1 such that

R2 < x′(t2) < x′(t1) ≤ x′(t0) ≤ R2 + 1, (2.9)

and

x′(t2) ≤ x′(t) ≤ x′(t1), ∀t ∈ [t1, t2].

Consequently, [t1, t2] ⊂ S2. It follows from the definition of h, (2.3), and (H3) that

(
φp

(
x′(t)

))′ = λh
(
t, x(t), x′(t)

)
= λg

(
t, x(t), R2

)
= λf

(
t, x(t), R2

) ≥ 0, ∀t ∈ [t1, t2].

This implies that

φp
(
x′(t1)

) ≤ φp
(
x′(t2)

)
,

and thus, by the monotonicity of φ–1
p (·), we obtain

x′(t1) ≤ x′(t2),

which contradicts (2.9). This shows that S2 = ∅. Notice that x′(0) = 0 and x′ ∈ C[0, 1], we
have

x′(t) ≤ R2, ∀t ∈ [0, 1].

This together with (2.8) implies that (2.4) holds. This completes the proof of the lemma. �

Similar to the proof of Lemma 2.5, we can easily show the following two results.
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Lemma 2.6 Assume that (H1) and (H4) hold. Let x be a solution of the modified problem
(2.1), (2.2) for some λ ∈ (0, 1]. Then x(t) satisfies (2.3) and (2.4).

Lemma 2.7 Assume that (H1) and (H5) hold. Let x be a solution of the modified problem
(2.1), (2.2) for some λ ∈ (0, 1]. Then x(t) satisfies (2.3) and (2.4).

Now, we denote by X = C1[0, 1] ×R the Banach space equipped with the norm

∥∥(x, r)
∥∥ = ‖x‖∞ +

∥∥x′∥∥∞ + |r|, (x, r) ∈ X.

Set

U =
{

(x, r) ∈ X : x(0) = 0, r ∈R
}

and

D =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x, r) ∈ U

∣∣∣∣∣∣∣∣∣

r1 – r2 – 1 < x(t) < r2 – r1 + 1 on [0, 1],

R1 – 1 < x′(t) < R2 + 1 on [0, 1],

r1 – 1 < r < r2 + 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Obviously, U is a convex subset of X and D is an open subset of U .

Lemma 2.8 Let the operator H : D × [0, 1] → U be defined by

H(x, r,λ) =

(
0,λr – λ

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h
(
τ , x(τ ) + r, x′(τ )

)
dτ

)
ds

)
. (2.10)

Then H(x, r,λ) is a compact operator.

Proof Notice that to prove H(x, r,λ) is a compact operator, it is sufficient to show the
second component of H(x, r,λ), that is,

H2(x, r,λ) := λr – λ

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h
(
τ , x(τ ) + r, x′(τ )

)
dτ

)
ds

is compact since the first component H1(x, r,λ) ≡ 0 of H(x, r,λ) is compact.
We now divided the proof into two steps.
Step 1. We prove that H2(x, r,λ) is continuous. To do this, we let {(xn, rn,λn)}∞n=1 ⊂ D ×

[0, 1] be such that (xn, rn,λn) → (x0, r0,λ0) ∈ D × [0, 1](n → ∞). Then

‖xn –x0‖∞ → 0,
∥∥x′

n –x′
0
∥∥∞ → 0, |rn –r0| → 0, |λn –λ0| → 0, n → ∞.
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From the continuity of h and φ–1
p , we have

H2(xn, rn,λn) = λnrn – λn

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h
(
τ , xn(τ ) + rn, x′

n(τ )
)

dτ

)
ds

→ λ0r0 – λ0

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h
(
τ , x0(τ ) + r0, x′

0(τ )
)

dτ

)
ds

= H2(x0, r0,λ0) (n → ∞).

Hence H2(x, r,λ) is continuous on D × [0, 1].
Step 2. We show that H2(D × [0, 1]) is a relatively compact set in R. Notice that for all

(x, r,λ) ∈D × [0, 1], we have

∣∣H2(x, r,λ)
∣∣ =

∣∣∣∣∣λr – λ

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h
(
τ , x(τ ) + r, x′(τ )

)
dτ

)
ds

∣∣∣∣∣
≤ |r| +

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ 1

0

∣∣h(
τ , x(τ ) + r, x′(τ )

)∣∣dτ

)
ds

≤ max{–r1 + 1, r2 + 1} + φ–1
p (M) =: C > 0,

where

M = max

⎧⎨
⎩

∣∣h(t, x, y)
∣∣
∣∣∣∣∣∣
0 ≤ t ≤ 1, 2r1 – r2 – 2 ≤ x ≤ 2r2 – r1 + 2,

R1 – 1 ≤ y ≤ R2 + 1

⎫⎬
⎭ . (2.11)

Thus, H2(D × [0, 1]) is a relatively compact set in R. This completes the proof of the
lemma. �

Lemma 2.9 Assume that (H1) holds. Let the operator F : D → U be defined by

F(x, r) =

(
0, r –

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h
(
τ , x(τ ) + r, x′(τ )

)
dτ

)
ds

)
.

Then F is essential.

Proof It follows from (2.10) that H(·, ·, 1) = F(·, ·), H(x, r, 0) = (0, 0) ∈ D for (x, r) ∈ D, and
thus from Lemma 2.1 we know that H(x, r, 0) is essential. Besides, H(x, r,λ) is compact by
Lemma 2.8.

We now show that

H(x, r,λ) 	= (x, r), ∀(x, r) ∈ ∂D,λ ∈ [0, 1]. (2.12)

Obviously, H(x, r, 0) 	= (x, r) for all (x, r) ∈ ∂D. Suppose that H(x0, r0,λ0) = (x0, r0) for some
(x0, r0) ∈ ∂D and λ0 ∈ (0, 1]. Then x0 = 0 and

λ0r0 – λ0

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h
(
τ , x0(τ ) + r0, x′

0(τ )
)

dτ

)
ds = r0.
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Consequently,

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h(τ , r0, 0) dτ

)
ds = r0

(
1 –

1
λ0

)
.

If r0 > r2, from (H1) we have

h(τ , r0, 0) = g(τ , r0, 0) = f (τ , r2, 0) + r0 – r2 > 0, ∀τ ∈ [0, 1].

The monotonicity of φ–1
p (·) and φ–1

p (0) = 0 imply that

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h(τ , r0, 0) dτ

)
ds >

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p (0) ds = 0,

which contradicts r0(1 – 1/λ0) ≤ 0. Hence, r0 ≤ r2. Similarly, we can obtain r0 ≥ r1. Con-
sequently, (0, r0) ∈D, which contradicts (0, r0) ∈ ∂D. This shows that (2.12) holds. There-
fore, according to Lemma 2.2, F(·, ·) = H(·, ·, 1) is essential. This completes the proof of the
lemma. �

Lemma 2.10 Let the operator G : D × [0, 1] → U be defined by

G(x, r,λ) =

⎛
⎜⎜⎝

∫ t
0 φ–1

p

(
λ

∫ s
0 h

(
τ , x(τ ) + r, x′(τ )

)
dτ

)
ds

r –
∑m–2

i=1 ai
∫ 1
ξi

φ–1
p

(∫ s
0 h

(
τ , x(τ ) + r, x′(τ )

)
dτ

)
ds

⎞
⎟⎟⎠

∗

,

where the symbol “∗” denotes the transpose of vector. Then G is a compact operator.

Proof Firstly, we define operators G1 : D × [0, 1] → C1[0, 1] and G2 : D × [0, 1] →R by

G1(x, r,λ) =
∫ t

0
φ–1

p

(
λ

∫ s

0
h
(
τ , x(τ ) + r, x′(τ )

)
dτ

)
ds

and

G2(x, r,λ) = r –
m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h
(
τ , x(τ ) + r, x′(τ )

)
dτ

)
ds.

Next, we divided the proof into three steps.
Step 1. We prove that G1 : D × [0, 1] → C1[0, 1] is continuous.
Let {(xn, rn,λn)}∞n=1 ⊂ D × [0, 1] be such that (xn, rn,λn) → (x0, r0,λ0) ∈ D × [0, 1](n →

∞). Then

‖xn – x0‖∞ → 0,
∥∥x′

n – x′
0
∥∥∞ → 0,

|rn – r0| → 0, |λn – λ0| → 0 (n → ∞).

The continuity of h and φ–1
p imply that

φ–1
p

(
λn

∫ t

0
h
(
τ , xn(τ ) + rn, x′

n(τ )
)

dτ

)
→ φ–1

p

(
λ0

∫ t

0
h
(
τ , x0(τ ) + r0, x′

0(τ )
)

dτ

)
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uniformly on [0, 1] as n → ∞, and

∫ t

0
φ–1

p

(
λn

∫ s

0
h
(
τ , xn(τ ) + rn, x′

n(τ )
)

dτ

)
ds

→
∫ t

0
φ–1

p

(
λ0

∫ s

0
h
(
τ , x0(τ ) + r0, x′

0(τ )
)

dτ

)
ds

uniformly on [0, 1] as n → ∞. That is,

∥∥∥∥ d
dt

G1(xn, rn,λn) –
d
dt

G1(x0, r0,λ0)
∥∥∥∥∞

→ 0 (n → ∞)

and

∥∥G1(xn, rn,λn) – G1(x0, r0,λ0)
∥∥∞ → 0 (n → ∞).

This shows that G1 : D × [0, 1] → C1[0, 1] is continuous.
Step 2. We show that the set G1(D × [0, 1]) is relatively compact in C1[0, 1]. Obviously,

for all (x, r) ∈D, λ ∈ [0, 1], we have

∣∣G1(x, r,λ)
∣∣ =

∣∣∣∣
∫ t

0
φ–1

p

(
λ

∫ s

0
h
(
τ , x(τ ) + r, x′(τ )

)
dτ

)
ds

∣∣∣∣ ≤ φ–1
p (M),

∣∣∣∣ d
dt

G1(x, r,λ)
∣∣∣∣ =

∣∣∣∣φ–1
p

(
λ

∫ t

0
h
(
τ , x(τ ) + r, x′(τ )

)
dτ

)∣∣∣∣ ≤ φ–1
p (M),

where M is defined by (2.11). Since φ–1
p (·) is uniformly continuous on [–M, M], for any

ε > 0, there exists μ > 0 such that when |s2 – s1| < μ (∀s1, s2 ∈ [–M, M]),

∣∣φ–1
p (s2) – φ–1

p (s1)
∣∣ < ε.

Now, we choose δ = μ/M. Then, for all t1, t2 ∈ [0, 1] with |t2 – t1| < δ and for all (x, r) ∈ D,
we have

∣∣∣∣
∫ t2

t1

h
(
τ , x(τ ) + r, x′(τ )

)
dτ

∣∣∣∣ ≤ M|t2 – t1| < μ.

Thus, when |t2 – t1| < δ (t1, t2 ∈ [0, 1]), we have for all (x, r,λ) ∈D × [0, 1],

∣∣∣∣φ–1
p

(
λ

∫ t2

0
h
(
τ , x(τ ) + r, x′(τ )

)
dτ

)
– φ–1

p

(
λ

∫ t1

0
h
(
τ , x(τ ) + r, x′(τ )

)
dτ

)∣∣∣∣ < ε.

This shows that { d
dt G1(x, r,λ) : (x, r,λ) ∈D× [0, 1]} is equicontinuous on [0, 1]. Therefore,

G1(D × [0, 1]) is a relatively compact set in C1[0, 1] by Arzelà-Ascoli theorem.
Step 3. We prove that G2 : D × [0, 1] →R is a compact operator.
The compactness of the operator G2 is clear, the proof is similar to the one of H2 in

Lemma 2.8.
In summary, G : D × [0, 1] → U is a compact operator. This completes the proof of the

lemma. �
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3 Main results
With the preparatory work in Sect. 2, we can now establish the existence results of solu-
tions of problem (1.1).

Theorem 3.1 Assume that (H1) and (H2) hold. Then boundary value problem (1.1) has at
least one solution x = x(t) satisfying (2.3) and (2.4).

Proof We note that to obtain the existence of solutions satisfying (2.3) and (2.4) of problem
(1.1), it is sufficient to prove that the modified problem (2.1), (2.2) has a solution x = x(t)
satisfying (2.3) and (2.4).

Below, we will prove in two steps.
Step 1. We prove that if the operator G(·, ·, 1), which is defined in Lemma 2.10, has a

fixed point, then the modified problem (2.1), (2.2) has a solution satisfying (2.3) and (2.4).
Suppose that (x1, r1) is a fixed point of G(·, ·, 1). It follows from the definition of the op-

erator G that

x1(t) =
∫ t

0
φ–1

p

(∫ s

0
h
(
τ , x1(τ ) + r1, x′

1(τ )
)

dτ

)
ds, ∀t ∈ [0, 1]

and

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h
(
τ , x1(τ ) + r1, x′

1(τ )
)

dτ

)
ds = 0.

Furthermore, we have

x′
1(t) = φ–1

p

(∫ t

0
h
(
τ , x1(τ ) + r1, x′

1(τ )
)

dτ

)
, ∀t ∈ [0, 1],

and thus

x′
1(0) = 0, x1(1) =

m–2∑
i=1

aix1(ξi).

Setting x2(t) = x1(t) + r1 for t ∈ [0, 1], it is easy to see that x2 is a solution of the modified
problem (2.1), (2.2) with λ = 1, and the validity of (2.3) and (2.4) follows from Lemma 2.4.

Step 2. We show that the operator G(·, ·, 1) has a fixed point.
Notice that G(·, ·, 0) = F(·, ·), F is essential by Lemma 2.9, and G is a compact operator

by Lemma 2.10. For the existence of a fixed point of G(·, ·, 1), it is sufficient to verify that

G(x, r,λ) 	= (x, r), ∀(x, r) ∈ ∂D,λ ∈ [0, 1].

Suppose on the contrary that G(x0, r0,λ0) = (x0, r0) for some (x0, r0) ∈ ∂D and λ0 ∈ [0, 1].
If λ0 = 0, then from the proof of Lemma 2.10, we have (x0, r0) /∈ ∂D, which contradicts
(x0, r0) ∈ ∂D. If λ0 ∈ (0, 1], then we have

x0(t) =
∫ t

0
φ–1

p

(
λ0

∫ s

0
h
(
τ , x0(τ ) + r0, x′

0(τ )
)

dτ

)
ds, ∀t ∈ [0, 1]
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and

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h
(
τ , x0(τ ) + r0, x′

0(τ )
)

dτ

)
ds = 0. (3.1)

Hence

x′
0(t) = φ–1

p

(
λ0

∫ t

0
h
(
τ , x0(τ ) + r0, x′

0(t)
)

dτ

)
, ∀t ∈ [0, 1].

In particular,

x′
0(0) = 0.

Notice that φ–1
p (s1s2) = φ–1

p (s1)φ–1
p (s2) for all s1, s2 ∈R and (3.1), we have

x0(1) –
m–2∑
i=1

aix0(ξi) =
m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(
λ0

∫ s

0
h
(
τ , x0(τ ) + r0, x′

0(τ )
)

dτ

)
ds

= φ–1
p (λ0)

m–2∑
i=1

ai

∫ 1

ξi

φ–1
p

(∫ s

0
h
(
τ , x0(τ ) + r0, x′

0(τ )
)

dτ

)
ds

= 0,

that is,

x0(1) =
m–2∑
i=1

aix0(ξi).

Setting x(t) = x0(t) + r0 for t ∈ [0, 1]. Then we can see that x is a solution of the modified
problem (2.1), (2.2) with λ = λ0. It follows from Lemma 2.4 that

r1 ≤ x(t) = x0(t) + r0 ≤ r2, ∀t ∈ [0, 1] (3.2)

and

R1 – 1 < R1 ≤ x′(t) = x′
0(t) ≤ R2 < R2 + 1, ∀t ∈ [0, 1].

Notice that x0(0) = 0, and so (3.2) yields r1 – 1 < r1 ≤ r0 ≤ r2 < r2 + 1. Thus

r1 – r2 – 1 < r1 – r0 ≤ x0(t) ≤ r2 – r0 < r2 – r1 + 1, ∀t ∈ [0, 1].

Consequently, (x0, r0) ∈D, which contradicts (x0, r0) ∈ ∂D.
In summary, the conclusion of Theorem 3.1 holds. This completes the proof of the the-

orem. �

The following conclusion can be obtained by Theorem 3.1 immediately.
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Corollary 3.1 Assume that all the conditions of Theorem 3.1 with r1 = 0 hold. Then prob-
lem (1.1) has at least one nonnegative solution x = x(t) satisfying (2.3) and (2.4). Further-
more, the solution x = x(t) is nondecreasing on [0, 1] provided R1 = 0.

The following theorems can be proved by using similar arguments to those of Theo-
rem 3.1.

Theorem 3.2 Assume that (H1) and (H3) hold. Then the boundary value problem (1.1)
has at least one solution x = x(t) satisfying (2.3) and (2.4).

Corollary 3.2 Assume that all the conditions of Theorem 3.2 with r1 = 0 hold. Then prob-
lem (1.1) has at least one nonnegative solution x = x(t) satisfying (2.3) and (2.4). Further-
more, the solution x = x(t) is nondecreasing on [0, 1] provided R1 = 0.

Theorem 3.3 Assume that (H1) and (H4) hold. Then the boundary value problem (1.1)
has at least one solution x = x(t) satisfying (2.3) and (2.4).

Corollary 3.3 Assume that all the conditions of Theorem 3.3 with r1 = 0 hold. Then prob-
lem (1.1) has at least one nonnegative solution x = x(t) satisfying (2.3) and (2.4). Further-
more, the solution x = x(t) is nondecreasing on [0, 1] provided R1 = 0.

Theorem 3.4 Assume that (H1) and (H5) hold. Then the boundary value problem (1.1)
has at least one solution x = x(t) satisfying (2.3) and (2.4).

Remark 3.1 Theorem 3.4 takes Theorem 2.1 of [19, 20] as a special case.

Corollary 3.4 Assume that all the conditions of Theorem 3.4 with r1 = 0 hold. Then prob-
lem (1.1) has at least one nonnegative solution x = x(t) satisfying (2.3) and (2.4). Further-
more, the solution x = x(t) is nondecreasing on [0, 1] provided R1 = 0.

Remark 3.2 If the φp in problem (1.1) is replaced by φ, which is an increasing homeomor-
phism from R onto R and satisfies φ(s1s2) = φ(s1)φ(s2) for all s1, s2 ∈R, Theorems 3.1 – 3.4
and Corollaries 3.1 – 3.4 are still true.

4 Some examples
As applications of our results, this section will provide four illustrative examples.

Example 4.1 Consider the m-point boundary value problem with p-Laplacian at reso-
nance

⎧⎨
⎩(φp(x′(t)))′ =

∑n
i=0 ci(x(t))i + Pl(x′(t)), t ∈ [0, 1],

x′(0) = 0, x(1) =
∑m–2

i=1 aix(ξi),
(4.1)

where φp(s) = |s|p–2s, p > 1; n is an even number, ci ∈ R (i = 0, 1, . . . , n); the polynomial∑n
i=0 cixi has at least two distinct real roots with different signs; Pl(y) is a polynomial of

degree l ∈ N, Pl(0) = 0; and ai > 0 (i = 1, 2, . . . , m – 2) with
∑m–2

i=1 ai = 1, 0 < ξ1 < ξ2 < · · · <
ξm–2 < 1.
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Let

f (t, x, y) =
n∑

i=0

cixi + Pl(y), (t, x, y) ∈ [0, 1] ×R
2.

Obviously, f ∈ C([0, 1] ×R
2). Let r1 and r2 be the minimum and maximum real root of the

polynomial
∑n

i=0 cixi, respectively. Then from the assumption it follows that r1 ≤ 0 ≤ r2,
r2

1 + r2
2 > 0 and

f (t, r1, 0) = 0, f (t, r2, 0) = 0, ∀t ∈ [0, 1].

Hence, condition (H1) of Theorem 3.1 is satisfied.
Let

F = max
r1≤x≤r2

∣∣∣∣∣
n∑

i=0

cixi

∣∣∣∣∣.
Then, for x ∈ [r1, r2], y ∈R, we have

Pl(y) – F ≤ f (t, x, y) ≤ Pl(y) + F .

Thus, if there exists y1 < 0 such that Pl(y1) – F > 0 and there exists y2 > 0 such that Pl(y2) +
F < 0, then condition (H2) of Theorem 3.1 is satisfied.

In summary, problem (4.1) has at least one solution x = x(t) provided

inf
y>0

Pl(y) + F < 0 < sup
y<0

Pl(y) – F .

Note that if l is an odd number and the coefficient of yl in Pl(y) is negative, then the above
inequality holds.

Example 4.2 Consider the m-point boundary value problem with p-Laplacian at reso-
nance

⎧⎨
⎩(φp(x′(t)))′ = x2(t) – 1

4 – 1
2n (x′(t))n cos( π

2 x′(t)), t ∈ [0, 1],

x′(0) = 0, x(1) =
∑m–2

i=1 aix(ξi),
(4.2)

where φp(s) = |s|p–2s, p > 1, n is an even number, ai > 0 (i = 1, 2, . . . , m – 2) with
∑m–2

i=1 ai = 1,
and 0 < ξ1 < ξ2 < · · · < ξm–2 < 1.

Let

f (t, x, y) = x2 –
1
4

–
1
2n yn cos

(
π

2
y
)

, (t, x, y) ∈ [0, 1] ×R
2.

Obviously, f ∈ C([0, 1] ×R
2). We choose r1 = –1/2, r2 = 1/2, R1 = –2, R2 = 2. Then

f (t, r1, 0) = f (t, r2, 0) = 0, ∀t ∈ [0, 1].
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This implies that (H1) holds. On the other hand, we have

f (t, x, R1) = f (t, x, R2) > 0, ∀(t, x) ∈ [0, 1] × [r1, r2].

Moreover, we have

f (t, x, y) ≤ 1 <
φp(R2)
1 – ξ1

, ∀(t, x, y) ∈ [0, 1] ×
[

–
1
2

,
1
2

]
× [–2, 2].

Hence, (H3) holds. From Theorem 3.2, problem (4.2) has at least one solution.

Example 4.3 Consider the m-point boundary value problem with p-Laplacian at reso-
nance

⎧⎨
⎩(φp(x′(t)))′ = x2(t) – 1

4 + (x′(t))3 sin( π
2 x′(t)), t ∈ [0, 1],

x′(0) = 0, x(1) =
∑m–2

i=1 aix(ξi),
(4.3)

where φp(s) = |s|p–2s, p > 1, ai > 0 (i = 1, 2, . . . , m – 2) with
∑m–2

i=1 ai = 1, and 0 < ξ1 < ξ2 <
· · · < ξm–2 < 1.

Let

f (t, x, y) = x2 –
1
4

+ y3 sin

(
π

2
y
)

, (t, x, y) ∈ [0, 1] ×R
2.

Clearly, f ∈ C([0, 1] ×R
2). We select r1 = –1/2, r2 = 1/2, R1 = –2, R2 = 2. Then

f (t, r1, 0) = f (t, r2, 0) = 0, ∀t ∈ [0, 1].

This implies that (H1) holds. On the other hand, we have

f (t, x, R1) = f (t, x, R2) ≤ 0, ∀t ∈ [0, 1] × [r1, r2]

and

f (t, x, y) > –1 >
φp(R1)
1 – ξ1

, ∀(t, x, y) ∈ [0, 1] ×
[

–
1
2

,
1
2

]
× [–2, 2].

Hence, (H4) is also true. From Theorem 3.3, problem (4.3) has at least one solution.

Example 4.4 Consider the m-point boundary value problem with p-Laplacian at reso-
nance

⎧⎨
⎩(φp(x′(t)))′ = 1

4 – 1
2 x(t) cos(2πx(t)) + 1

2n+1 (x′(t))n sin( π
4 x′(t)), t ∈ [0, 1],

x′(0) = 0, x(1) =
∑m–2

i=1 aix(ξi),
(4.4)

where φp(s) = |s|p–2s, p > 1, n is an even number, ai > 0 (i = 1, 2, . . . , m – 2) with
∑m–2

i=1 ai = 1,
and 0 < ξ1 < ξ2 < · · · < ξm–2 < 1.
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Let

f (t, x, y) =
1
4

–
1
2

x cos(2πx) +
1

2n+1 yn sin

(
π

4
y
)

, (t, x, y) ∈ [0, 1] ×R
2.

Evidently, f ∈ C([0, 1] × R
2). We choose r1 = –1/2, r2 = 1/2, R1 = –2, R2 = 2. Then, for all

t ∈ [0, 1], we have

f (t, r1, 0) = 0, f (t, r2, 0) > 0.

This implies that (H1) holds. On the other hand, for all (t, x) ∈ [0, 1] × [r1, r2], it follows
that

f (t, x, R1) ≤ 0, f (t, x, R2) > 0.

Moreover, when (t, x, y) ∈ [0, 1] × [–1/2, 1/2] × [–2, 2], we have

φp(R1)
1 – ξ1

< f (t, x, y) <
φp(R2)
1 – ξ1

.

This shows that (H5) is satisfied. From Theorem 3.4, problem (4.4) has at least one solution.
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