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Abstract
The Kirchhoff model is derived from the vibration problem of stretchable strings. This
paper focuses on the longtime dynamics of a higher-order (m1,m2)-coupled Kirchhoff
system with higher-order rotational inertia and nonlocal damping. We first obtain the
state of the model’s solutions in different spaces through prior estimation. After that,
we immediately prove the existence and uniqueness of their solutions in different
spaces through the Faedo-Galerkin method. Subsequently, we prove their family of
global attractors using the compactness theorem. Finally, we reflect on the
subsequent research of the model and point out relevant directions for further
research on the model. In this way, we systematically study the longtime dynamics of
the higher-order (m1,m2)-coupled Kirchhoff model with higher-order rotational
inertia, thus enriching the relevant findings of higher-order coupled Kirchhoff models
and laying a theoretical foundation for future practical applications.
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1 Introduction
This study considers the longtime dynamics of the following higher-order (m1, m2)-
coupled Kirchhoff model in a bounded smooth domain � ⊂R

n:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 + α(–�)m1 )utt + N1(‖∇m1 u‖2)(–�)m1 ut + M(‖∇m1 u‖2 + ‖∇m2 v‖2)(–�)m1 u

+ g1(u, v) = f1(x),

(1 + β(–�)m2 )vtt + N2(‖∇m2 v‖2)(–�)m2 vt + M(‖∇m1 u‖2 + ‖∇m2 v‖2)(–�)m2 v

+ g2(u, v) = f2(x),

(1)
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under the following boundary conditions:

u(x) = 0,
∂ iu
∂ni = 0, i = 1, . . . , m1 – 1, m1 > 1,

v(x) = 0,
∂ jv
∂nj = 0, j = 1, . . . , m2 – 1, m2 > 1,

(2)

and the following initial conditions:

u(x, 0) = u0(x), ut(x, 0) = u1(x), v(x, 0) = v0(x),

vt(x, 0) = v1(x), x ∈ �,
(3)

where � is the Laplace operator, α ∈ (0, 1] and β ∈ (0, 1] are rotational coefficients, N1,
N2, M1, and M2 are scalar functions specified later, g1 and g2 are the given source terms,
and f1 and f2 are the given functions.

Equation (1) is a set of generalized higher-order quasilinear wave equations. The pro-
posed equation in this paper originated from the stretchable string vibration problem es-
tablished by Kirchhoff in 1883:

ρh
∂2u
∂t2 =

{

p0 +
Eh
2L

∫ L

0

(
∂u
∂x

)2

dx
}

∂2u
∂t2 , (4)

where u = u(x, t) is the lateral displacement at space coordinate x and time coordinate t, 0 <
x < L, t ≥ 0, E is the Young’s modulus, ρ is the mass density, h is the cross-sectional area, L
is the length, and p0 is the initial axial tension. In recent decades, the long-term behaviors
of Kirchhoff equations in various forms have attracted much academic attention, and for
abundant research results for some related system, we can refer to [1–12].

For instance, Chueshov [1] studied the well-posedness and long-term dynamic behav-
iors of the following Kirchhoff equation with a nonlinear strong damping term:

utt + σ
(‖∇u‖2)�ut – φ

(‖∇u‖2)�u + f (u) = h(x). (5)

Moreover, Lin, Lv, and Lou [2] studied the global dynamics of the following generalized
nonlinear Kirchhoff–Boussinesq equation with strong damping:

utt + αut – β�ut + �2u = div
(
g
(|∇u|2)∇u

)
+ �h(u) + f (x). (6)

This paper proved that the semigroup conformed to the squeezing property of the sys-
tem, while demonstrating the existence of an exponential attractor. Then, the spectral in-
terval theory verified that the system had an inertial manifold.

Nakao [3] investigated the initial-boundary value problem of a quasilinear Kirchhoff-
type wave equation with standard dissipation ut :

utt –
(
1 +

∥
∥∇u(t)

∥
∥2

2

)
�u + ut + g(x, u) = f (x). (7)

Under an external force, the stretchable string undergoes elastic deformation. Over time,
elastic mechanics methods may not fully reflect the actual long-term characteristics of the
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string, and increasing attention is directed to the long-term properties of the strings with
the rotational inertia effect. Wave equations with rotational inertia have become a research
hotspot in mathematics and physics.

Chueshov and Lasiecka [13] proposed a plate model with rotational inertia,

(1 – α�)utt + �2u – β�ut +
(
Q – ‖∇u‖2)�u = P(u, ut), (8)

where α ≥ 0 represents the rotational inertia parameter, β > 0 is the damping coefficient,
Q is a parameter describing the internal stress acting on the plate, and P is a function repre-
senting the lateral load that may depend on u and ut . When α > 0, this model of transverse
inertia becomes the Rayleigh plate equation, and (8) is a pure hyperbolic problem. When
α = 0, (8) becomes a Berger plate model with structural damping. Chueshov and Lasiecka
[13] studied the well-posedness and longtime dynamic behavior of (8).

Niimura [14] studied the long-term dynamic behavior of autonomous beam equations
with nonlocal structural damping and rotational inertia under initial boundary value con-
ditions:

(1 – α�)utt + �2u – N
(‖∇u‖2)�ut – M

(‖∇u‖2)�u + f (u) = h(x). (9)

The well-posedness of the global solution was established, and the existence of a global
attractor was proved for the autonomous infinite dynamical system corresponding to α ∈
[0, 1], while the existence of an exponential attractor was demonstrated.

With the advance of research, scholars have shifted their focus on the dynamics of
higher-order Kirchhoff equations. Ye and Tao [15] studied the initial-boundary value
problem of the following higher-order Kirchhoff-type equation with a nonlinear dissipa-
tion term:

utt + 

(∥
∥Dmu

∥
∥2)(–�)mu + a|ut|q–2ut = b|u|r–2u. (10)

Lin and Zhu [16] studied the initial-boundary value problem of the following nonlinear
nonlocal higher-order Kirchhoff-type equations:

utt + M
(∥
∥Dmu

∥
∥2)(–�)mu + β(–�)mut + g(x, ut) = f (x). (11)

The existence and uniqueness of the solutions were demonstrated, and the existence of
a global attractor family was confirmed using the compactness method, thus obtaining the
finite Hausdorff and fractal dimensions.

Ding and Yang [17] investigated the well-posedness, regularity, and longtime behavior of
solutions for an extensible beam equation with fractional rotational inertia and structural
nonlinear damping: (1 + (–�)θ )utt + �2u – M(‖∇u‖2)�u + N(‖∇u‖2)(–�)ωut + f (u) = g ,
where the dissipative index is ω ∈ (0, 1], and the rotational index is θ ∈ [0,ω). To the best of
our knowledge, a comprehensive study on the long-term dynamics of coupled Kirchhoff
models incorporating rotational inertia is yet to be reported.

Originating from physics, a system coupling measures the dependence of two entities
on each other. With suitable conditions or parameters, a connected system can be cou-
pled, and its potential energy can enable the generation of new functions by combining the
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structural functions of different systems. As mathematical equations derived from physics,
the Kirchhoff model is naturally considered a coupled system, and scholars gradually con-
sidered the dynamics of coupled Kirchhoff equations. For example, Wang and Zhang [18]
studied the long-term dynamics of coupled beam equations with strong damping under
nonlinear boundary conditions. Lin and Zhang [19] studied the initial boundary value
problem of the following Kirchhoff coupling group with a source term and strong damp-
ing:

⎧
⎨

⎩

utt – β�ut – M(‖∇u‖2 + ‖∇v‖2)�u + g1(u, v) = f1(x),

vtt – β�vt – M(‖∇u‖2 + ‖∇v‖2)�v + g2(u, v) = f2(x).
(12)

The finite Hausdorff dimension of the global attractor was obtained in a previous
work [19].

In recent years, Lin et al. [20–23] explored the dynamics of higher-order coupled Kirch-
hoff equations and obtained a series of excellent results.

Few existing studies have focused on higher-order coupled Kirchhoff problems, and
higher-order (m1, m2)-coupled Kirchhoff models with a nonlinear strong damping have
not been studied. The main difficulties lie in the estimation and processing of the harmonic
term and the nonlinear damping term. In addition, the nonlinear damping also brings
challenges when proving the uniqueness. Therefore, we propose a higher-order cou-
pled Kirchhoff model with higher-order rotational inertia. Under reasonable assumptions,
this paper overcame these difficulties by using Hölder, Young, Poincaré, and Gagliardo–
Nirenberg inequalities, thus obtaining the global solution and the global attractor family.
The conclusions could fill the gap of the global attractor family for higher-order coupled
models with higher-order rotational inertia (regardless of whether m1 equals m2) and lay
the foundation for subsequent engineering applications.

The rest of this paper is organized as follows. Section 2 provides the fundamentals for
this work and states the main results. Section 3 proves the main results. Finally, the sum-
mary and prospects are presented in Sect. 4.

2 Preparatory knowledge and statement of main results
This section introduces the assumptions for this work and presents the main results.

In this paper, ‖ · ‖ and (·, ·) denote the norm and inner product in H = L2(�). Let
Vk = D((–�) k

2 ) be the scale of the Hilbert space generated by the Laplacian with Dirichlet
boundary condition on H and endowed with standard inner product and norm, respec-
tively, (·, ·)Vk = ((–�) k

2 ·, (–�) k
2 ·), and ‖ · ‖Vk = ‖(–�) k

2 · ‖. The main goal here is to study
the well-posedness and long-term dynamics of problem (1)–(3) under the following set of
assumptions:

(A1) Function M(s) is continuous on the interval [0, +∞), M(s) ∈ C1(R+), and
1) M′(s) ≥ 0,
2) M(0) ≡ M0 > 0.

(A2) For any u, v ∈ H , if J(u, v) =
∫

�
[G1(u, v) + G2(u, v)] dx, where

G1(u, v) =
∫ u

0 g1(s, v) ds, G2(u, v) =
∫ v

0 g2(u, s) ds, then for any μ ≥ 0, there exist
C1 ≥ 0, Cμ ≥ 0, C′

μ ≥ 0 such that

G1(u, v) + G2(u, v) – C1J(u, v) + μ
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) ≥ –Cμ,
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J(u, v) + μ
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) ≥ –C′

μ.

(A3) Function gj(u, v) ∈ C1(R) (j = 1, 2), and

∣
∣gj(u, v)

∣
∣ ≤ C2

(
1 + |u|pj + |v|qj

)
;

∣
∣gju(u, v)

∣
∣ ≤ C3

(
1 + |u|pj–1 + |v|qj

)
;

∣
∣gjv(u, v)

∣
∣ ≤ C4

(
1 + |u|pj + |v|qj–1).

Specifically, when n = 1, 2, 1 ≤ pj(qj); when 3 ≤ n ≤ 2m, 1 ≤ pj(qj) ≤ n
n–2 ; when

2m < n, 1 ≤ pj(qj) ≤ n
n–2m , where m = min{m1, m2}.

(A4) One has Nj(sj) ≥ Nj0, where Nj0 (j = 1, 2) are positive constants and ρ1,ρ2 > 0.
Thus, M(s1 + s2) – ρ1N1(s1) – ρ2N2(s2) > 0.

Then, the research phase space of this study is obtained as follows:

V0 = H , V1 = H1
0 (�), Vk = Hk(�) ∩ H1

0 (�),

Xα0×β0 = Vm1 × Vm1 × Vm2 × Vm2 ,

Xαk1×βk2 = Vm1+k1 × Vm1+k1 × Vm2+k2 × Vm2+k2 ,

k1 = 0, 1, 2, . . . , m1, k2 = 0, 1, 2, . . . , m2,

and the norms of the corresponding spaces are as follows:

∥
∥(u, y1, v, y2)

∥
∥2

Xαk1×βk2
=

∥
∥∇m1+k1 u

∥
∥2 +

∥
∥∇k1 y1

∥
∥2 + α

∥
∥∇m1+k1 y1

∥
∥2 +

∥
∥∇m2+k2 v

∥
∥2

+
∥
∥∇k2 y2

∥
∥2 + β

∥
∥∇m2+k2 y2

∥
∥2.

Meanwhile, the general form of the Poincaré inequality is λ1‖∇ru‖2 ≤ ‖∇r+1u‖2, where λ1

is the first eigenvalue of –� with a homogeneous Dirichlet boundary on �. In this paper,
Ci is a constant, and C(·) is a constant depending on the parameters in the parentheses.

The main results of this paper are as follows.

Theorem 1 Suppose that assumptions (A1)–(A4) hold. If f1 ∈ Vk1 , f2 ∈ Vk2 and initial
data (u0, u1, v0, v1) ∈ Xαk1×βk2 , k1 = 0, 1, 2, . . . , m1, k2 = 0, 1, 2, . . . , m2, then for ∀α,β ∈ (0, 1],
problem (1)–(3) admits a unique solution (u, v) satisfying

u ∈ L∞(0,∞; Vm1+k1 );

ut ∈ L∞(0,∞; Vm1+k1 ) ∩ L2(0, T ; Vm1+k1 );

v ∈ L∞(0,∞; Vm2+k2 );

vt ∈ L∞(0,∞; Vm2+k2 ) ∩ L2(0, T ; Vm2+k2 ).

Theorem 2 Suppose that assumptions (A1)–(A4) hold. If f1 ∈ Vm1 , f2 ∈ Vm2 and initial
data (u0, u1, v0, v1) ∈ Xαm1×βm2 , then for ∀α,β ∈ (0, 1], problem (1)–(3) has a global attrac-
tor family A in Xα0×β0:

A = {Aαk1×βk2}, Aαk1×βk2 = ω(Bαk1×βk2,0) =
⋂

τ≥0

⋃

t≥τ

S(t)Bαk1×βk2,0,
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k1 = 1, 2, . . . , m1, k2 = 1, 2, . . . , m2,

where Bαk1×βk2,0 = {(u, ut , v, vt) ∈ Xαk1×βk2 : ‖(u, ut , v, vt)‖2
Xαk1×βk2

= ‖∇m1+k1 u‖2 +‖∇k1 ut‖2 +
α‖∇m1+k1 ut‖2 + ‖∇m2+k2 v‖2 + ‖∇k2 vt‖2 + β‖∇m2+k2 vt‖2 ≤ C(Rα0×β0) + C(Rαk1×βk2 )} are
bounded absorbing sets in Xα0×β0, Bαk1×βk2,0 are compact in Xα0×β0, Aαk1×βk2 ⊂ Xα0×β0.
Moreover,

1) S(t)Aαk1×βk2 = Aαk1×βk2 , for all t ≥ 0,
2) Sets Aαk1×βk2 attract all bounded sets in Xα0×β0, i.e., for all Bαk1×βk2 ⊂ Xα0×β0, they

are mapped to bounded sets in Xα0×β0, and

dist
(
S(t)Bαk1×βk2 , Aαk1×βk2

)

= sup
x∈Bαk1×βk2

inf
y∈Aαk1×βk2

∥
∥S(t)x – y

∥
∥

Xα0×β0
→ 0 (t → ∞),

where {S(t)}t≥0 is the solution semigroup generated by problem (1)–(3).

3 Proof of the main results
This section presents the proof of the existence and uniqueness of the solutions and the
family of global attractors for problem (1)–(3).

Let ε > 0 be small enough, and λ
m1
1
2 N10 – 2 – 4ε – 2ε2 ≥ 0, N10

4α
– 2ε – ε2 ≥ 0, λ

m2
1
2 N20 – 2 –

4ε – 2ε2 ≥ 0, and N20
4β

– 2ε – ε2 ≥ 0.

Lemma 1 ([24]) Let y : R+ →R
+ be an absolutely continuous positive function, which sat-

isfies the following differential inequality for some δ > 0:

d
dt

y(t) + 2δy(t) ≤ g(t)y(t) + K , t > 0,

where K ≥ 0, and a ≥ 0 if t ≥ s ≥ 0 so that
∫ t

s g(τ ) dτ ≤ δ(t – s) + a. Then,

y(t) ≤ eay(0)e–δt +
Kea

δ
, t ≥ 0.

Lemma 2 ([16]) Let X be a Banach space, then the continuous operator semigroup {S(t)}t≥0

satisfies the following:
(1) Semigroup {S(t)}t≥0 is uniformly bounded in X , i.e., for all R0 > 0, there exists a

positive constant C0(R0) that when ‖u‖X ≤ R0,

∥
∥S(t)u

∥
∥

X ≤ C0(R0), for all t ∈ [0, +∞);

(2) There exists a bounded absorbing set B0 in X , and for any bounded set B ⊂ X , there
exists a moment t0 such that

S(t)B ⊂ B0, t ≥ t0;

(3) If t > 0, and S(t) is a fully continuous operator,
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then the semigroup {S(t)}t≥0 has a global attractor A in X, and

A = ω(B0) =
⋂

τ≥0

⋃

t≥τ

S(t)B0.

Lemma 3 Suppose that assumptions (A1)–(A4) hold. If fj ∈ H (j = 1, 2) and initial data
(u0, u1, v0, v1) ∈ Xα0×β0, then for Rα0×β0 > 0, there exist positive constants C(Rα0×β0) and
tα0×β0 so that when t ≥ tα0×β0, (u, y1, v, y2) determined by problem (1)–(3) satisfies

∥
∥(u, y1, v, y2)

∥
∥2

Xα0×β0
=

∥
∥∇m1 u

∥
∥2 + ‖y1‖2 + α

∥
∥∇m1 y1

∥
∥2 +

∥
∥∇m2 v

∥
∥2

+ ‖y2‖2 + β
∥
∥∇m2 y2

∥
∥2 ≤ C(Rα0×β0), for ∀α,β ∈ (0, 1],

(13)

where y1 = ut + εu, y2 = vt + εv.

Proof Multiplying the first equation of (1) by y1 in H and the second by y2 in H , we have

1
2

d
dt

[

‖y1‖2 + α
∥
∥∇m1 y1

∥
∥2 + ‖y2‖2 + β

∥
∥∇m2 y2

∥
∥2

+
∫ ‖∇m1 u‖2+‖∇m2 v‖2

0
M(τ ) dτ + 2J(u, v)

]

+ εM
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) · (∥∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2)

– ε
(‖y1‖2 + α

∥
∥∇m1 y1

∥
∥2) – ε

(‖y2‖2 + β
∥
∥∇m2 y2

∥
∥2)

+ ε2((u, y1) + α
(
(–�)m1 u, y1

)
+ (v, y2) + β

(
(–�)m2 v, y2

))

+ N1
(∥
∥∇m1 u

∥
∥2)∥∥∇m1 y1

∥
∥2 + N2

(∥
∥∇m2 v

∥
∥2)∥∥∇m2 y2

∥
∥2

– εN1
(∥
∥∇m1 u

∥
∥2)(∇m1 y1,∇m1 u

)
– εN2

(∥
∥∇m2 v

∥
∥2)(∇m2 y2,∇m2 v

)

+ ε
(
g1(u, v), u

)
+ ε

(
g2(u, v), v

)
= (f1, y1) + (f2, y2).

(14)

Using Hölder, Young, and Poincaré inequalities, we have

–ε
(‖y1‖2 + α

∥
∥∇m1 y1

∥
∥2 + ‖y2‖2 + β

∥
∥∇m2 y2

∥
∥2)

+ ε2((u, y1) + α
(
(–�)m1 u, y1

))
+ ε2((v, y2) + β

(
(–�)m2 v, y2

))

≥
(

–ε –
ε2

2

)
(‖y1‖2 + α

∥
∥∇m1 y1

∥
∥2 + ‖y2‖2 + β

∥
∥∇m2 y2

∥
∥2)

–
ε2

2
(‖u‖2 + α

∥
∥∇m1 u

∥
∥2 + ‖v‖2 + β

∥
∥∇m2 v

∥
∥2)

≥
(

–ε –
ε2

2

)
(‖y1‖2 + α

∥
∥∇m1 y1

∥
∥2) +

(

–ε –
ε2

2

)
(‖y2‖2 + β

∥
∥∇m2 y2

∥
∥2)

–
ε2

2
(
λ

–m1
1 + α

)∥
∥∇m1 u

∥
∥2 –

ε2

2
(
λ

–m2
1 + β

)∥
∥∇m2 v

∥
∥2, (15)

N1
(∥
∥∇m1 u

∥
∥2)∥∥∇m1 y1

∥
∥2 + N2

(∥
∥∇m2 v

∥
∥2)∥∥∇m2 y2

∥
∥2

– εN1
(∥
∥∇m1 u

∥
∥2)(∇m1 y1,∇m1 u

)
– εN2

(∥
∥∇m2 v

∥
∥2)(∇m2 y2,∇m2 v

)
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≥ 1
2

N1
(∥
∥∇m1 u

∥
∥2)∥∥∇m1 y1

∥
∥2 +

1
2

N2
(∥
∥∇m2 v

∥
∥2)∥∥∇m2 y2

∥
∥2

–
ε2

2
N1

(∥
∥∇m1 u

∥
∥2)∥∥∇m1 u

∥
∥2 –

ε2

2
N2

(∥
∥∇m2 v

∥
∥2)∥∥∇m2 v

∥
∥2, (16)

(f1, y1) + (f2, y2) ≤ ‖f1‖‖y1‖ + ‖f2‖‖y2‖ ≤ 1
2
‖y1‖2 +

1
2
‖y2‖2 +

1
2
‖f1‖2 +

1
2
‖f2‖2. (17)

Inserting the above estimates into (14), we have

1
2

d
dt

[

‖y1‖2 + α
∥
∥∇m1 y1

∥
∥2 + ‖y2‖2 + β

∥
∥∇m2 y2

∥
∥2

+
∫ ‖∇m1 u‖2+‖∇m2 v‖2

0
M(τ ) dτ + 2J(u, v)

]

+
1
2

N1
(∥
∥∇m1 u

∥
∥2)∥∥∇m1 y1

∥
∥2 –

(
1
2

+ ε +
ε2

2

)

‖y1‖2

–
(

ε +
ε2

2

)

α
∥
∥∇m1 y1

∥
∥2 +

1
2

N2
(∥
∥∇m2 v

∥
∥2)∥∥∇m2 y2

∥
∥2

–
(

1
2

+ ε +
ε2

2

)

‖y2‖2 –
(

ε +
ε2

2

)

β
∥
∥∇m2 y2

∥
∥2

+ εM
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2)(∥∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2)

–
ε2

2
(
N1

(∥
∥∇m1 u

∥
∥2) + λ

–m1
1 + α

)∥
∥∇m1 u

∥
∥2

–
ε2

2
(
N2

(∥
∥∇m2 v

∥
∥2) + λ

–m2
1 + β

)∥
∥∇m2 v

∥
∥2

≤ –ε
(
g1(u, v), u

)
– ε

(
g2(u, v), v

)
+

1
2
‖f1‖2 +

1
2
‖f2‖2.

(18)

According to (A1),

εM
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2)(∥∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2)

≥ ε

4

∫ ‖∇m1 u‖2+‖∇m2 v‖2

0
M(τ ) dτ

+
3ε

4
M

(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) · (∥∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2),

(19)

and according to (A2),

–ε
(
g1(u, v), u

)
– ε

(
g2(u, v), v

) ≤ –εC1J(u, v) + εμ
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) + εCμ. (20)

Inserting (18) and (19) into (20), we have

d
dt

[

‖y1‖2 + α
∥
∥∇m1 y1

∥
∥2 + ‖y2‖2 + β

∥
∥∇m2 y2

∥
∥2

+
∫ ‖∇m1 u‖2+‖∇m2 v‖2

0
M(τ ) dτ + 2J(u, v)

]

+
(

λ
m1
1
2

N1
(∥
∥∇m1 u

∥
∥2) – 1 – 2ε – ε2

)

‖y1‖2
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+
(

1
2α

N1
(∥
∥∇m1 u

∥
∥2) – 2ε – ε2

)

α
∥
∥∇m1 y1

∥
∥2

+
(

λ
m2
1
2

N2
(∥
∥∇m2 v

∥
∥2) – 1 – 2ε – ε2

)

‖y2‖2 (21)

+
(

1
2β

N2
(∥
∥∇m2 v

∥
∥2) – 2ε – ε2

)

β
∥
∥∇m2 y2

∥
∥2

+
ε

2

∫ ‖∇m1 u‖2+‖∇m2 v‖2

0
M(τ ) dτ + 2εC1J(u, v)

+
(

3ε

2
M

(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) – 2εμ – ε2N1

(∥
∥∇m1 u

∥
∥2) – ε2λ

–m1
1

)
∥
∥∇m1 u

∥
∥2

+
(

3ε

2
M

(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) – 2εμ – ε2N2

(∥
∥∇m2 v

∥
∥2) – ε2λ

–m2
1

)
∥
∥∇m2 v

∥
∥2

≤ 2εCμ + ‖f1‖2 + ‖f2‖2.

Let H1(t) = ‖y1‖2 + α‖∇m1 y1‖2 + ‖y2‖2 + β‖∇m2 y2‖2 +
∫ ‖∇m1 u‖2+‖∇m2 v‖2

0 M(τ ) dτ + 2J(u, v)

and σ1 = min{ λ
m1
1
2 N10 – 2 – 4ε – 2ε2, 1

2α
N10 – 2ε – ε2, λ

m2
1
2 N20 – 2 – 4ε – 2ε2, 1

2β
N10 – 2ε –

ε2, ε
2 , εC1}. Then we can infer from (21) that

d
dt

H1(t) + σ1H1(t) ≤ 2εCμ + ‖f1‖2 + ‖f2‖2. (22)

According to Gronwall’s inequality, we have

H1(t) ≤ H1(0)e–σ1t +
2εCμ + ‖f1‖2 + ‖f2‖2

σ1
, (23)

and

H1(t) ≥ ‖y1‖2 + α
∥
∥∇m1 y1

∥
∥2 + ‖y2‖2 + β

∥
∥∇m2 y2

∥
∥2

+ M0
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) + 2J(u, v)

≥ ‖y1‖2 + α
∥
∥∇m1 y1

∥
∥2 + ‖y2‖2 + β

∥
∥∇m2 y2

∥
∥2

+
M0

2
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) – 2C′

μ

≥ C5
(‖y1‖2 + ‖y2‖2 +

∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) – 2C′

μ,

(24)

according to (A1) and (A2), where μ = M0
4 and C5 = min{1, M0

2 }. Thus,

∥
∥(u, y1, v, y2)

∥
∥2

Xα0×β0
=

∥
∥∇m1 u

∥
∥2 + ‖y1‖2 + α

∥
∥∇m1 y1

∥
∥2

+
∥
∥∇m2 v

∥
∥2 + ‖y2‖2 + β

∥
∥∇m2 y2

∥
∥2

≤ (H1(t) + 2C′
μ)

C5

≤ H1(0)e–σ1t + 2C′
μ

C5
+

2εCμ + ‖f1‖2 + ‖f2‖2

σ1C5
,

(25)
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i.e.,

lim
t→∞

∥
∥(u, y1, v, y2)

∥
∥2

Xα0×β0
≤ 2C′

μ

C5
+

2εCμ + ‖f1‖2 + ‖f2‖2

σ1C5
= Rα0×β0. (26)

Therefore, there exist positive constants C(Rα0×β0) and tα0×β0 such that, whenever t ≥
tα0×β0,

∥
∥(u, y1, v, y2)

∥
∥2

Xα0×β0
=

∥
∥∇m1 u

∥
∥2 + ‖y1‖2 + α

∥
∥∇m1 y1

∥
∥2

+
∥
∥∇m2 v

∥
∥2 + ‖y2‖2 + β

∥
∥∇m2 y2

∥
∥2

≤ C(Rα0×β0).

(27)

Thus, Lemma 3 is proved. �

Lemma 4 Suppose that assumptions (A1)–(A4) hold. If f1 ∈ Vk1 , f2 ∈ Vk2 , k1 = 1, 2, . . . , m1,
k2 = 1, 2, . . . , m2, and initial data (u0, u1, v0, v1) ∈ Xαk1×βk2 , then, for Rαk1×βk2 > 0, there exist
positive constants C(Rαk1×βk2 ) and tαk1×βk2 such that, whenever t ≥ tαk1×βk2 , (u, y1, v, y2)
determined by problem (1)–(3) satisfies

∥
∥(u, y1, v, y2)

∥
∥2

Xαk1×βk2
=

∥
∥∇m1+k1 u

∥
∥2 +

∥
∥∇k1 y1

∥
∥2 + α

∥
∥∇m1+k1 y1

∥
∥2

+
∥
∥∇m2+k2 v

∥
∥2 +

∥
∥∇k2 y2

∥
∥2 + β

∥
∥∇m2+k2 y2

∥
∥2

≤ C(Rαk1×βk2 ), for ∀α,β ∈ (0, 1],

(28)

where y1 = ut + εu, y2 = vt + εv.

Proof Multiplying the first equation of (1) by (–�)k1 y1, k1 = 1, 2, . . . , m1 in H and the sec-
ond by (–�)k2 y2, k2 = 1, 2, . . . , m2 in H and then integrating over �, we have

1
2

d
dt

[∥
∥∇k1 y1

∥
∥2 + α

∥
∥∇m1+k1 y1

∥
∥2 +

∥
∥∇k2 y2

∥
∥2 + β

∥
∥∇m2+k2 y2

∥
∥2

+ M
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2)(∥∥∇m1+k1 u

∥
∥2 +

∥
∥∇m2+k2 v

∥
∥2)]

+ εM
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) · (∥∥∇m1+k1 u

∥
∥2 +

∥
∥∇m2+k2 v

∥
∥2)

– ε
(∥
∥∇k1 y1

∥
∥2 + α

∥
∥∇m1+k1 y1

∥
∥2) – ε

(∥
∥∇k2 y2

∥
∥2 + β

∥
∥∇m2+k2 y2

∥
∥2)

+ ε2((∇k1 u,∇k1 y1
)

+ α
(∇m1+k1 u,∇m1+k1 y1

))

+ ε2((∇k2 v,∇k2 y2
)

+ β
(∇m2+k2 v,∇m2+k2 y2

))

+ N1
(∥
∥∇m1 u

∥
∥2)∥∥∇m1+k1 y1

∥
∥2 + N2

(∥
∥∇m2 v

∥
∥2)∥∥∇m2+k2 y2

∥
∥2

– εN1
(∥
∥∇m1 u

∥
∥2)(∇m1+k1 y1,∇m1+k1 u

)

– εN2
(∥
∥∇m2 v

∥
∥2)(∇m2+k2 y2,∇m2+k2 v

)

+
(
g1(u, v), (–�)k1 y1

)
+

(
g2(u, v), (–�)k2 y2

)

=
‖∇m1+k1 u‖2 + ‖∇m2+k2 v‖2

2
d
dt

M
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2)

+
(
f1, (–�)k1 y1

)
+

(
f2, (–�)k2 y2

)
.

(29)
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Using Hölder, Young, and Poincaré inequalities, we then have

–ε
(∥
∥∇k1 y1

∥
∥2 + α

∥
∥∇m1+k1 y1

∥
∥2) – ε

(∥
∥∇k2 y2

∥
∥2 + β

∥
∥∇m2+k2 y2

∥
∥2)

+ ε2((∇k1 u,∇k1 y1
)

+ α
(∇m1+k1 u,∇m1+k1 y1

))

+ ε2((∇k2 v,∇k2 y2
)

+ β
(∇m2+k2 v,∇m2+k2 y2

))

≥
(

–ε –
ε2

2

)
(∥
∥∇k1 y1

∥
∥2 + α

∥
∥∇m1+k1 y1

∥
∥2)

+
(

–ε –
ε2

2

)
(∥
∥∇k2 y2

∥
∥2 + β

∥
∥∇m2+k2 y2

∥
∥2)

–
ε2

2
(∥
∥∇k1 u

∥
∥2 + α

∥
∥∇m1+k1 u

∥
∥2) –

ε2

2
(∥
∥∇k2 v

∥
∥2 + β

∥
∥∇m2+k2 v

∥
∥2)

≥ –
(

ε +
ε2

2

)
(∥
∥∇k1 y1

∥
∥2 + α

∥
∥∇m1+k1 y1

∥
∥2)

–
(

ε +
ε2

2

)
(∥
∥∇k2 y2

∥
∥2 + β

∥
∥∇m2+k2 y2

∥
∥2)

–
ε2

2
(
λ

–m1
1 + α

)∥
∥∇m1+k1 u

∥
∥2 –

ε2

2
(
λ

–m2
1 + β

)∥
∥∇m2+k2 v

∥
∥2, (30)

N1
(∥
∥∇m1 u

∥
∥2)∥∥∇m1+k1 y1

∥
∥2 + N2

(∥
∥∇m2 v

∥
∥2)∥∥∇m2+k2 y2

∥
∥2

– εN1
(∥
∥∇m1 u

∥
∥2)(∇m1+k1 y1,∇m1+k1 u

)
– εN2

(∥
∥∇m2 v

∥
∥2)(∇m2+k2 y2,∇m2+k2 v

)

≥ 1
2

N1
(∥
∥∇m1 u

∥
∥2)∥∥∇m1+k1 y1

∥
∥2 +

1
2

N2
(∥
∥∇m2 v

∥
∥2)∥∥∇m2+k2 y2

∥
∥2

–
ε2

2
N1

(∥
∥∇m1 u

∥
∥2)∥∥∇m1+k1 u

∥
∥2 –

ε2

2
N2

(∥
∥∇m2 v

∥
∥2)∥∥∇m2+k2 v

∥
∥2, (31)

(
g1(u, v), (–�)k1 y1

)
+

(
g2(u, v), (–�)k2 y2

)

≤ ∥
∥g1(u, v)

∥
∥
∥
∥∇2k1 y1

∥
∥ +

∥
∥g2(u, v)

∥
∥
∥
∥∇2k2 y2

∥
∥

≤ N10

8
∥
∥∇m1+k1 y1

∥
∥2 +

2λ
k1–m1
1
N10

∥
∥g1(u, v)

∥
∥2

+
N20

8
∥
∥∇m2+k2 y2

∥
∥2 +

2λ
k2–m2
1
N20

∥
∥g2(u, v)

∥
∥2, (32)

(
f1, (–�)k1 y1

)
+

(
f2, (–�)k2 y2

)

≤ ∥
∥∇k1 f1

∥
∥
∥
∥∇k1 y1

∥
∥ +

∥
∥∇k2 f2

∥
∥
∥
∥∇k2 y2

∥
∥

≤ 1
2
∥
∥∇k1 y1

∥
∥2 +

1
2
∥
∥∇k2 y2

∥
∥2 +

1
2
∥
∥∇k1 f1

∥
∥2 +

1
2
∥
∥∇k2 f2

∥
∥2, (33)

and

∥
∥g1(u, v)

∥
∥2 =

∫

�

∣
∣g1(u, v)

∣
∣2 dx ≤

∫

�

∣
∣C2

(
1 + |u|p1 + |v|q1

)∣
∣2 dx

≤ C6

∫

�

(
1 + |u|2p1 + |v|2q1

)
dx ≤ C7

(
1 + ‖u‖2p1

2p1 + ‖v‖2q1
2q1

)
, (34)

∥
∥g2(u, v)

∥
∥2 ≤ C8

(
1 + ‖u‖2p2

2p2 + ‖v‖2q2
2q2

)
, (35)
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according to (A3). Furthermore, based on the Gagliardo–Nirenberg inequality, we can
conclude that

⎧
⎪⎨

⎪⎩

‖u‖2pj
2pj

≤ C9j‖∇m1 u‖
n(pj–1)

m1 ‖u‖
2m1pj–n(pj–1)

m1 ,

‖v‖2qj
2qj

≤ C10j‖∇m2 v‖
n(qj–1)

m2 ‖v‖
2m2qj–n(qj–1)

m2 .

Thus, we have

∥
∥g1(u, v)

∥
∥2 +

∥
∥g2(u, v)

∥
∥2 ≤ C(Rα0×β0). (36)

Inserting (31)–(33) and (36) into (29), we have

1
2

d
dt

[∥
∥∇k1 y1

∥
∥2 + α

∥
∥∇m1+k1 y1

∥
∥2 +

∥
∥∇k2 y2

∥
∥2

+ β
∥
∥∇m2+k2 y2

∥
∥2 + M

(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2)(∥∥∇m1+k1 u

∥
∥2 +

∥
∥∇m2+k2 v

∥
∥2)]

+
N1(‖∇m1 u‖2)λm1

1 – 2 – 4ε – 2ε2

4
∥
∥∇k1 y1

∥
∥2

+
(

2N1(‖∇m1 u‖2) – N10

8α
– ε –

ε2

2

)

α
∥
∥∇m1+k1 y1

∥
∥2

+
N2(‖∇m2 v‖2)λm2

1 – 2 – 4ε – 2ε2

4
∥
∥∇k2 y2

∥
∥2

+
(

2N2(‖∇m2 v‖2) – N20

8β
– ε –

ε2

2

)

β
∥
∥∇m2+k2 y2

∥
∥2

+
ε

2
M

(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2)(∥∥∇m1+k1 u

∥
∥2 +

∥
∥∇m2+k2 v

∥
∥2)

+
(

ε

2
M

(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) –

ε2

2
N1

(∥
∥∇m1 u

∥
∥2)

–
ε2

2
(
λ

–m1
1 + α

)
)

∥
∥∇m1+k1 u

∥
∥2

+
(

ε

2
M

(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) –

ε2

2
N2

(∥
∥∇m2 v

∥
∥2)

–
ε2

2
(
λ

–m2
1 + β

)
)

∥
∥∇m2+k2 v

∥
∥2

≤ ‖∇m1+k1 u‖2 + ‖∇m2+k2 v‖2

2
d
dt

M
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) +

1
2
∥
∥∇k1 f1

∥
∥2

+
1
2
∥
∥∇k2 f2

∥
∥2 + C(R0,λ1)

≤ (∥
∥∇m1+k1 u

∥
∥2 +

∥
∥∇m2+k2 v

∥
∥2) · M′(∥∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2)

× ((∇m1 u,∇m1 ut
)

+
(∇m2 v,∇m2 vt

))

+
1
2
∥
∥∇k1 f1

∥
∥2 +

1
2
∥
∥∇k2 f2

∥
∥2 + C(R0,λ1)

≤ C9
(∥
∥∇m1 ut

∥
∥ +

∥
∥∇m2 vt

∥
∥
) · (∥∥∇m1+k1 u

∥
∥2 +

∥
∥∇m2+k2 v

∥
∥2) +

1
2
∥
∥∇k1 f1

∥
∥2

+
1
2
∥
∥∇k2 f2

∥
∥2 + C(Rα0×β0,λ1).

(37)
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Letting H2(t) = ‖∇k1 y1‖2 + α‖∇m1+k1 y1‖2 + ‖∇k2 y2‖2 + β‖∇m2+k2 y2‖2 + M(‖∇m1 u‖2 +
‖∇m2 v‖2) · (‖∇m1+k1 u‖2 + ‖∇m2+k2 v‖2) and σ2 = min{ λ

m1
1 N10–2–4ε–2ε2

4 , λ
m2
1 N20–2–4ε–2ε2

4 , N10
8α

–
ε – ε2

2 , N20
8β

– ε – ε2

2 , ε
2 }, we have

d
dt

H2(t) + σ2H2(t)

≤ C11
(∥
∥∇m1 ut

∥
∥ +

∥
∥∇m2 vt

∥
∥
)
H2(t) +

∥
∥∇k1 f1

∥
∥2 +

∥
∥∇k2 f2

∥
∥2 + C(Rα0×β0,λ1).

(38)

Taking the scalar product of (1) in H with ut , vt , we have

1
2

d
dt

[

‖ut‖2 + α
∥
∥∇m1 ut

∥
∥2 + ‖vt‖2 + β

∥
∥∇m2 vt

∥
∥2

+
∫ ‖∇m1 u‖2+‖∇m2 v‖2

0
M(τ ) dτ + 2J(u, v) – 2(f1, u) – 2(f2, v)

]

+ N1
(∥
∥∇m1 u

∥
∥2)∥∥∇m1 ut

∥
∥2 + N2

(∥
∥∇m2 v

∥
∥2)∥∥∇m2 vt

∥
∥2 = 0,

(39)

and integrating (39) on (0, t) yields

∫ t

0

(∥
∥∇m1 ut(τ )

∥
∥2 +

∥
∥∇m2 vt(τ )

∥
∥2)dτ

≤ 1
min{N10, N20}

∫ t

0

(
N1

(∥
∥∇m1 u(τ )

∥
∥2)∥∥∇m1 ut(τ )

∥
∥2

+ N2
(∥
∥∇m2 v(τ )

∥
∥2)∥∥∇m2 vt(τ )

∥
∥2)dτ

≤ 1
min{N10, N20}

(

‖u1‖2 + α
∥
∥∇m1 u1

∥
∥2 + ‖v1‖2 + β

∥
∥∇m2 v1

∥
∥2

+
∫ ‖∇m1 u0‖2+‖∇m2 v0‖2

0
M(τ ) dτ + 2J(u0, v0) – 2(f1, u0) – 2(f2, v0)

)

≤ C12.

(40)

Then,

C11

∫ t

s

((∥
∥∇m1 ut(τ )

∥
∥ +

∥
∥∇m2 vt(τ )

∥
∥
))

dτ ≤ σ2

2
(t – s) + a (41)

for t > s ≥ 0 and some a > 0. Based on (38), (41), and Lemma 1, we obtain

H2(t) ≤ C13H2(0)e– σ2
2 t + C14. (42)

According to (A1), we have

H2(t) ≥ ∥
∥∇k1 y1

∥
∥2 + α

∥
∥∇m1+k1 y1

∥
∥2 +

∥
∥∇k2 y2

∥
∥2 + β

∥
∥∇m2+k2 y2

∥
∥2

+ M
(∥
∥∇m1 u

∥
∥2 +

∥
∥∇m2 v

∥
∥2) · (∥∥∇m1+k1 u

∥
∥2 +

∥
∥∇m2+k2 v

∥
∥2)

≥ C15
(∥
∥∇k1 y1

∥
∥2 + α

∥
∥∇m1+k1 y1

∥
∥2 +

∥
∥∇k2 y2

∥
∥2 + β

∥
∥∇m2+k2 y2

∥
∥2

+
∥
∥∇m1+k1 u

∥
∥2 +

∥
∥∇m2+k2 v

∥
∥2),

(43)
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and then,

∥
∥(u, y1, v, y2)

∥
∥2

Xαk1×βk2
=

∥
∥∇k1 y1

∥
∥2 + α

∥
∥∇m1+k1 y1

∥
∥2 +

∥
∥∇k2 y2

∥
∥2 + β

∥
∥∇m2+k2 y2

∥
∥2

+
∥
∥∇m1+k1 u

∥
∥2 +

∥
∥∇m2+k2 v

∥
∥2 ≤ C13H2(0)e– σ2

2 t + C14

C15
,

(44)

i.e.,

lim
t→∞

∥
∥(u, y1, v, y2)

∥
∥2

Xαk1×βk2
≤ Rαk1×βk2 . (45)

Therefore, there exist positive constants C(Rαk1×βk2 ) and tαk1×βk2 such that whenever t ≥
tαk1×βk2 , the obtained (u, y1, v, y2) satisfies

∥
∥(u, y1, v, y2)

∥
∥2

Xαk1×βk2
=

∥
∥∇k1 y1

∥
∥2 + α

∥
∥∇m1+k1 y1

∥
∥2 +

∥
∥∇k2 y2

∥
∥2 + β

∥
∥∇m2+k2 y2

∥
∥2

+
∥
∥∇m1+k1 u

∥
∥2 +

∥
∥∇m2+k2 v

∥
∥2

≤ C(Rαk1×βk2 ), k1 = 1, 2, . . . , m1, k2 = 1, 2, . . . , m2.

(46)

Thus, Lemma 4 is proved. �

Proof of Theorem 1 According to previous findings [16] and the Faedo–Galerkin method,
problem (1)–(3) has global solutions, which follows by combining with Lemmas 3 and 4.

Let (u1, v1) and (u2, v2) be two solutions of problem (1)–(3) corresponding to the same
initial data, respectively, w = u1 – u2, z = v1 – v2. Then, (w, z) solves

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 + α(–�)m1 )wtt + 1
2σ12(t)(–�)m1 wt + 1

2
12(t)(–�)m1 w

+ G1(u1, u2, v1, v2; t) = 0,

(1 + β(–�)m2 )ztt + 1
2σ34(t)(–�)m2 zt + 1

2
12(t)(–�)m2 z

+ G2(u1, u2, v1, v2; t) = 0,

(47)

where

σ12 = σ1(t) + σ2(t), 
12(t) = 
1(t) + 
2(t),

σi(t) = N1
(∥
∥∇m1 ui∥∥2), 
i(t) = M

(∥
∥∇m1 ui∥∥2 +

∥
∥∇m2 vi∥∥2), i = 1, 2,

σ34 = σ3(t) + σ4(t), σj(t) = N2
(∥
∥∇m2 vj∥∥2), j = 3, 4,

G1
(
u1, u2, v1, v2; t

)

=
1
2
{[

σ1(t) – σ2(t)
]
(–�)m1

(
u1

t + u2
t
)

+
[

1(t) – 
2(t)

]
(–�)m1

(
u1 + u2)}

+ g1(u1, v1) – g1(u2, v2),

G2
(
u1, u2, v1, v2; t

)

=
1
2
{[

σ3(t) – σ4(t)
]
(–�)m2

(
v1

t + v2
t
)

+
[

1(t) – 
2(t)

]
(–�)m2

(
v1 + v2)}

+ g2(u1, v1) – g2(u2, v2).
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According to Lemma 3,

σ ′
12 ≤ C(Rα0×β0)

(∥
∥∇m1 u1

t
∥
∥ +

∥
∥∇m1 u2

t
∥
∥
)
,σ ′

34 ≤ C(Rα0×β0)
(∥
∥∇m2 v1

t
∥
∥ +

∥
∥∇m2 v2

t
∥
∥
)
.

Taking the scalar product of (47) in H with wt , zt , we obtain

1
2

d
dt

[

‖wt‖2 + α
∥
∥∇m1 wt

∥
∥2 + ‖zt‖2 + β

∥
∥∇m2 zt

∥
∥2

+
1
4

0 · (∥∥∇m1 w

∥
∥2 +

∥
∥∇m2 z

∥
∥2)

]

+
1
2
σ12(t)

∥
∥∇m1 wt

∥
∥2 +

1
2
σ34(t)

∥
∥∇m2 zt

∥
∥2

+
(
G1

(
u1, u2, v1, v2; t

)
, wt

)
+

(
G2

(
u1, u2, v1, v2; t

)
, zt

)
= 0.

(48)

According to Lemma 3 and (A1), M0 ≤ M ≤ C(R0, H1(0)) ≡ M1. When d
dt (‖∇m1 w‖2 +

‖∇m2 z‖2) ≥ 0, we have 
0 = 2M0; otherwise 
0 = 2M1.
Letting (G1(u1, u2, v1, v2; t), wt) = G11 + G12 + G13 and (G2(u1, u2, v1, v2; t), zt) = G21 + G22 +

G23, we have

G11 =
1
2
(
σ1(t) – σ2(t)

)(∇m1
(
u1

t + u2
t
)
,∇m1 wt

)

≤ C(Rα0×β0)
(∥
∥∇m1 u1

t
∥
∥ +

∥
∥∇m1 u2

t
∥
∥
)∥
∥∇m1 w

∥
∥
∥
∥∇m1 wt

∥
∥

≤ σ120

8
∥
∥∇m1 wt

∥
∥2 +

2C(Rα0×β0)
σ120

(∥
∥∇m1 u1

t
∥
∥2 +

∥
∥∇m1 u2

t
∥
∥2)∥∥∇m1 w

∥
∥2, (49)

G12 =
1
2
(

1(t) – 
2(t)

)(∇m1
(
u1 + u2),∇m1 wt

)

≤ C(Rα0×β0)
(∥
∥∇m1 w

∥
∥ +

∥
∥∇m2 z

∥
∥
)∥
∥∇m1 wt

∥
∥

≤ σ120

8
∥
∥∇m1 wt

∥
∥2 +

2C(Rα0×β0)
σ120

(∥
∥∇m1 w

∥
∥2 +

∥
∥∇m2 z

∥
∥2), (50)

G13 =
(
g1(u1, v1) – g1(u2, v2), wt

) ≤ C(Rα0×β0)
(‖wt‖2 +

∥
∥∇m1 w

∥
∥2 +

∥
∥∇m2 z

∥
∥2), (51)

G21 =
1
2
(
σ3(t) – σ4(t)

)(∇m2
(
v1

t + v2
t
)
,∇m2 zt

)

≤ C(Rα0×β0)
(∥
∥∇m2 v1

t
∥
∥ +

∥
∥∇m2 v2

t
∥
∥
)∥
∥∇m2 z

∥
∥
∥
∥∇m2 zt

∥
∥

≤ σ340

8
∥
∥∇m2 zt

∥
∥2 +

2C(Rα0×β0)
σ340

(∥
∥∇m2 v1

t
∥
∥2 +

∥
∥∇m2 v2

t
∥
∥2)∥∥∇m2 z

∥
∥2, (52)

G22 =
1
2
(

1(t) – 
2(t)

)(∇m2
(
v1 + v2),∇m2 zt

)

≤ C(Rα0×β0)
(∥
∥∇m1 w

∥
∥ +

∥
∥∇m2 z

∥
∥
)∥
∥∇m2 zt

∥
∥

≤ σ340

8
∥
∥∇m2 zt

∥
∥2 +

2C(Rα0×β0)
σ340

(∥
∥∇m1 w

∥
∥2 +

∥
∥∇m2 z

∥
∥2), (53)

G23 =
(
g2(u1, v1) – g2(u2, v2), zt

) ≤ C(Rα0×β0)
(‖zt‖2 +

∥
∥∇m1 w

∥
∥2 +

∥
∥∇m2 z

∥
∥2), (54)

where σ120 = 2N10 and σ340 = 2N20.
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Inserting (49)–(54) into (48), we have

1
2

d
dt

[

‖wt‖2 + α
∥
∥∇m1 wt

∥
∥2 + ‖zt‖2 + β

∥
∥∇m2 zt

∥
∥2

+
1
4

0 · (∥∥∇m1 w

∥
∥2 +

∥
∥∇m2 z

∥
∥2)

]

≤ C16
(
1 +

∥
∥∇m1 u1

t
∥
∥2 +

∥
∥∇m1 u2

t
∥
∥2 +

∥
∥∇m2 v1

t
∥
∥2 +

∥
∥∇m2 v2

t
∥
∥2)

×
[

‖wt‖2 + α
∥
∥∇m1 wt

∥
∥2 + ‖zt‖2 + β

∥
∥∇m2 zt

∥
∥2

+
1
4

0 · (∥∥∇m1 w

∥
∥2 +

∥
∥∇m2 z

∥
∥2)

]

.

(55)

Solving this differential inequality yields
[

‖wt‖2 + α
∥
∥∇m1 wt

∥
∥2 + ‖zt‖2 + β

∥
∥∇m2 zt

∥
∥2

+
1
4

0 · (∥∥∇m1 w

∥
∥2 +

∥
∥∇m2 z

∥
∥2)

]

≤
[

‖w1‖2 + α
∥
∥∇m1 w1

∥
∥2 + ‖z1‖2 + β

∥
∥∇m2 z1

∥
∥2

+
1
4

0 · (∥∥∇m1 w0

∥
∥2 +

∥
∥∇m2 z0

∥
∥2)

]

× exp

(∫ t

0
C17

(
1 +

∥
∥∇m1 u1

t
∥
∥2 +

∥
∥∇m1 u2

t
∥
∥2 +

∥
∥∇m2 v1

t
∥
∥2 +

∥
∥∇m2 v2

t
∥
∥2)ds

)

.

(56)

Thus, the uniqueness of the solutions is proved.
Therefore, problem (1)–(3) possess a unique solution (u, v). Theorem 1 is proved. �

According to Theorem 1, we can define a nonlinear operator {S(t)}t≥0 the on space
Xα0×β0 : S(t)(u0, u1, v0, v1) = (u, ut , v, vt), for all t ≥ 0. Theorem 1 shows that {S(t)}t≥0 forms
a continuous semigroup in Xα0×β0. Before proving the existence of a family of global at-
tractors, we first present their definition.

Definition 1 Let X0 be a Banach space and {S(t)}t≥0 a continuous operator semigroup. If
there exists a compact set Ak1×k2 satisfying the following conditions:

(i) (Invariance) All Ak1×k2 are invariant sets under the action of semigroup {S(t)}t≥0,

S(t)Ak1×k2 = Ak1×k2 , ∀t ≥ 0;

(ii) (Attractiveness) All Ak1×k2 attract all bounded sets in X0, i.e., for any bounded
B ⊂ X0,

dist
(
S(t)B, Ak1×k2

)
= sup

x∈B
inf

y∈Ak1×k2

∥
∥S(t)x – y

∥
∥

X0
→ 0, as t → ∞.

In particular, when t → ∞, all trajectories S(t)u0 from u0 converge to Ak1×k2 , i.e.,

dist
(
S(t)u0, Ak1×k2

) → 0, as t → ∞.



Lv et al. Boundary Value Problems         (2024) 2024:50 Page 17 of 19

then, a compact set Ak is a global attractor of the semigroup {S(t)}t≥0. Let A = {Ak1×k2 ⊂
X0 : k1 = 1, 2, . . . , m1, k2 = 1, 2, . . . , m2} be a family of subsets in X0. Then A is called the
global attractor family in X0.

Proof of Theorem 2 By Lemma 3, for all Rα0×β0 > 0, we have ‖(u0, u1, v0, v1)‖Xα0×β0 ≤
Rα0×β0. Thus,

∥
∥S(t)(u0, u1, v0, v1)

∥
∥2

Xα0×β0
=

∥
∥∇m1 u

∥
∥2 + ‖ut‖2 + α

∥
∥∇m1 ut

∥
∥2 +

∥
∥∇m2 v

∥
∥2

+ ‖vt‖2 + β
∥
∥∇m2 vt

∥
∥2

≤ C(Rα0×β0),

indicating that {S(t)}t≥0 are uniformly bounded in Xα0×β0.
Further,

Bαk1×βk2,0 =
{

(u, ut , v, vt) ∈ Xαk1×βk2 :
∥
∥(u, ut , v, vt)

∥
∥2

Xαk1×βk2
=

∥
∥∇m1+k1 u

∥
∥2 +

∥
∥∇k1 ut

∥
∥2 + α

∥
∥∇m1+k1 ut

∥
∥2

+
∥
∥∇m2+k2 v

∥
∥2 +

∥
∥∇k2 vt

∥
∥2 + β

∥
∥∇m2+k2 vt

∥
∥2 ≤ C(Rα0×β0) + C(Rαk1×βk2 )

}

are bounded absorbing sets of the semigroup {S(t)}t≥0 in Xα0×β0.
Because Xαk1×βk2 ↪→↪→ Xα0×β0 are compactly embedded, i.e., bounded sets in Xαk1×βk2

are compact sets in Xα0×β0, the solution semigroup {S(t)}t≥0 is a fully continuous operator.
To sum up, we obtained the global attractor family A = {Aαk1×βk2} of the solution semi-

group {S(t)}t≥0 in Xα0×β0, and

Aαk1×βk2 = ω(Bαk1×βk2,0) =
⋂

τ≥0

⋃

t≥τ

S(t)Bαk1×βk2,0,

Aαk1×βk2 ⊂ Xα0×β0, k1 = 1, 2, . . . , m1, k2 = 1, 2, . . . , m2, for ∀α,β ∈ (0, 1].

Theorem 2 is proved. �

Note 1 Lemma 4 and Theorem 2 show that bounded absorbing sets

Bαk1×βk2,0 =
{

(u, ut , v, vt) ∈ Xαk1×βk2 :
∥
∥(u, ut , v, vt)

∥
∥2

Xαk1×βk2
=

∥
∥∇m1+k1 u

∥
∥2 +

∥
∥∇k1 ut

∥
∥2 + α

∥
∥∇m1+k1 ut

∥
∥2

+
∥
∥∇m2+k2 v

∥
∥2 +

∥
∥∇k2 vt

∥
∥2 + β

∥
∥∇m2+k2 vt

∥
∥2 ≤ C(Rα0×β0) + C(Rαk1×βk2 )

}

are compact sets in Xα0×β0. Therefore, based on condition 3 in Lemma 2, the operator
semigroup {S(t)}t≥0 only needs to be a continuous operator. According to Theorem 1, the
semigroup {S(t)}t≥0 is already continuous. Thus, the global attractor family A = {Aαk1×βk2}
of problem (1)–(3) in Xα0×β0 can also be obtained.

4 Summary and prospects
This paper investigated higher-order (m1, m2)-coupled Kirchhoff systems with higher-
order rotational inertia and nonlocal damping. For the first time, we systematically defined
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the family of global attractors of problem (1)–(3) and proved its existence. The findings
enriched the relevant findings on higher-order coupled Kirchhoff models and laid a theo-
retical foundation for future practical applications.

Despite defining and proving the existence of the global attractor family of the higher-
order (m1, m2)-coupled Kirchhoff system, many questions concerning such models still
require further investigation:

1. The higher-order (m1, m2)-coupled Kirchhoff system in this paper is autonomous,
while the relatively complex nonautonomous higher-order (m1, m2)-coupled
Kirchhoff systems and higher-order (m1, m2)-coupled Kirchhoff systems with delays
have not been studied. Thus, it is very meaningful to study the asymptotic behaviors
of such systems;

2. This paper focused mainly on the global attractor family of dynamic systems, while
many other properties were not explored, such as the dimension estimate, the
exponential attractor family, and the inertial manifold family. The scarce relevant
theoretical results warrant further research efforts.

Acknowledgements
The authors would like to thank the anonymous referees for their careful reading of the paper.

Author contributions
All authors contributed to the writing of this paper. All authors read and approved the final manuscript.

Funding
This work was partially supported by the basic science (NATURAL SCIENCE) research project of colleges and universities in
Jiangsu Province (21KJB110013) and the fundamental research fund of Yunnan Education Department (2020J0908).

Data availability
No datasets were generated or analysed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Author details
1Applied Technology College of Soochow University, Suzhou, Jiangsu 215325, China. 2Jiangsu Keyida Environmental
Protection Technology Co., LTD., Yancheng, Jiangsu 224005, China. 3School of Mathematics and Statistics, Yunnan
University, Kunming, Yunnan 650500, China.

Received: 10 February 2024 Accepted: 27 March 2024

References
1. Chueshov, I.: Long-time dynamics of Kirchhoff wave models with strong nonlinear damping. J. Differ. Equ. 252,

1229–1262 (2012)
2. Lin, G., Lv, P., Lou, R.: Exponential attractors and inertial manifolds for a class of nonlinear generalized

Kirchhoff–Boussinesq model. Far East J. Math. Sci. 101(9), 1913–1945 (2017)
3. Nakao, M.: An attractor for a nonlinear dissipative wave equation of Kirchhoff type. J. Math. Anal. Appl. 353(2),

652–659 (2009)
4. Cao, Y., Zhao, Q.: Asymptotic behavior of global solutions to a class of mixed pseudo-parabolic Kirchhoff equations.

Appl. Math. Lett. 118, 107119 (2021)
5. Ma, H., Zhong, C.: Attractors for the Kirchhoff equations with strong nonlinear damping. Appl. Math. Lett. 74, 127–133

(2017)
6. Ghisi, M.: Global solutions for dissipative Kirchhoff strings with non-Lipschitz nonlinear term. J. Differ. Equ. 230(1),

128–139 (2006)
7. Qin, D., Tang, X., Zhang, J.: Ground states for planar Hamiltonian elliptic systems with critical exponential growth.

J. Differ. Equ. 308, 130–159 (2022)
8. Papageorgiou, N.S., Zhang, J., Zhang, W.: Solutions with sign information for noncoercive double phase equations.

J. Geom. Anal. 34(1), 14 (2024)
9. Papadopoulos, P.G., Stavrakakis, N.M.: Global existence and blow-up results for an equation of Kirchhoff type on R

N .
Topol. Methods Nonlinear Anal. 17(1), 91–109 (2001)

10. Li, Q., Nie, J., Zhang, W.: Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff
equation. J. Geom. Anal. 33(4), 126 (2023)



Lv et al. Boundary Value Problems         (2024) 2024:50 Page 19 of 19
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