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Abstract
A novel analysis of the pulsatile nano-blood flow through a sinusoidal wavy channel,
emphasizing the significance of diverse influences in the modelling, is investigated in
this paper. This study examines the collective effects of slip boundary conditions,
magnetic field, porosity, channel waviness, nanoparticle concentration, and heat
source on nano-blood flow in a two-dimensional wavy channel. In contrast to prior
research that assumed a constant pulsatile pressure gradient during channel
waviness, this innovative study introduces a variable pressure gradient that
significantly influences several associated parameters. The mathematical model
characterising nano-blood flow in a horizontally wavy channel is solved using the
perturbation technique. Analytical solutions for fundamental variables such as stream
function, velocity, wall shear stress, pressure gradient, and temperature are visually
depicted across different physical parameter values. The findings obtained for various
parameter values in the given problem demonstrate a significant influence of the
amplitude ratio parameter of channel waviness, Hartmann number of the magnetic
field, permeability parameter of the porous medium, Knudsen number due to the slip
boundary, volume fraction of nanoparticles, radiation parameter, Prandtl number, and
heat source parameters on the flow dynamics. The simulations provide valuable
insights into the decrease in velocity with increasing magnetic field and its increase
with increasing permeability and slip parameters. Additionally, the temperature
increases with increasing nanoparticle volume fraction and radiation parameter, while
it decreases with increasing Prandtl number.

Keywords: Pulsatile flow; Nanofluid; Magnetic field; Heat transfer; Wavy channel; Slip
boundary; Perturbation method

1 Introduction
Understanding fluid dynamics in the context of nano-blood flow through a sinusoidal
wavy channel is highly significant in cardiovascular disease research. Cardiovascular in-
fections (such as coronary heart disease [1], stroke, aneurysm, and stenosis) are regarded
as the cause of the most significant number of deaths in the world [2]. Atherosclerosis,
resulting in plaque accumulation and stenosis, obstructs blood flow, contributing to these
diseases. Atherosclerosis is believed to play a pivotal role in aneurysmal disease. The dif-
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ferent models of blood flow through normal, stenosed, or aneurysmal arteries have been
investigated by numerous researchers [3–8]. Karim et al. [9] used a mathematical model
to investigate blood flow through a stenosed tapered artery, finding increased wall shear
stress and decreased blood velocity with both stenosis and tapering angle. Gandhi et al.
[10] employed a novel EMHD Casson nanofluid model to analyse blood flow through a
stenosed and aneurysmal artery, investigating the combined effects of nanoparticle size
and magnetic field on heat transfer and momentum diffusion. Shahzadi et al. [11] demon-
strate a novel fractional fluid model with ternary nanoparticles (Cu, Ag, CuO) to analyse
blood flow in an oblique stenosed aneurysmal artery, finding ternary nanoparticles more
effective at reducing hemodynamic factors like wall shear stress than hybrid or copper
nanoparticles. In recent decades, pulsatile blood flow has garnered significant attention
from researchers owing to its pivotal role in understanding cardiovascular dynamics and
associated pathologies. Periodic variations in blood flow velocity and pressure within the
cardiovascular system characterise the pulsatile flow. This variation is driven by the rhyth-
mic contraction and relaxation of the heart during the cardiac cycle. Understanding pul-
satile flow dynamics is essential for elucidating various physiological processes, such as
regulating blood pressure, distributing nutrients and oxygen to tissues, and developing
arterial diseases like atherosclerosis and hypertension. Consequently, numerous investi-
gations have delved into the study of pulsatile blood flow, aiming to unravel its intricate
mechanisms and clinical implications [12–16].

The study of the flow through a channel with permeable walls possesses a theoretical
appeal and models biological and engineering systems. The primary activity of the entire
cardiovascular system is to supply blood to tissues under a sufficient pressure gradient
to exchange materials through the arterial wall. Incorporating a porous medium into the
study of fluid flow enriches its physical realism, particularly in modelling blood vessels
and pulmonary systems where fatty deposits and artery blockages are present. Numer-
ous researchers have theoretically examined the dynamics of blood flow across permeable
walls [17–22]. Sinha and Misra [23] delved into the impact of slip velocity on blood flow
through a permeable-walled artery, using a perturbation technique to unravel the com-
plex interplay between blood flow dynamics and wall permeability. Makinde and Osalusi
[24] discussed the interaction of electromagnetic forces, fluid viscosity, and permeable
boundaries by analysing the steady flow of a conducting fluid through a channel with slip
conditions at the walls. Mishra et al. [25] studied the impact of arterial wall permeability
and flow dynamics in composite stenosis. Ijaz and Nadeem [26] delved into the potential
of copper nanoparticles as drug carriers to mitigate the hemodynamic effects of composite
stenosed arteries with permeable walls.

The presence of slip at the arterial wall significantly impacts blood flow dynamics. Con-
sidering the slip velocity effect at the boundary, the problems can be modelled close to
real-life applications such as blood flow in the arteries. It can be defined as a velocity gra-
dient between two different mediums: a solid boundary and adjacent fluid flow on it [27].
This relative movement between fluid layers and the artery surface reduces the overall
flow rate, necessitating its inclusion in accurate blood flow analysis. Previous research has
explored the role of slip velocity in stenosed arteries, demonstrating the presence of slip
conditions on the vessel wall [28–31]. Biswas and Chakraborty [32] investigated pulsatile
blood flow in catheterised arteries with varying stenosis geometry, observing decreased
wall shear stress and effective viscosity alongside increased axial velocity under velocity
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slip conditions. Eldesoky [33] examined unsteady, incompressible, pulsatile blood flow in
a porous medium, which is influenced by slip, body acceleration, and magnetic-field im-
pacts, highlighting slip’s significant impact on spurt, skin shear, and hysteresis. Lukendra
et al. [34] explored pulsatile blood flow past a permeable porous artery with inclined and
tapered mild stenosis, noting that increased slip velocity correlated with higher axial blood
flow and volumetric flow rate.

The investigation of electrically conducting fluid flow through a permeable wall in a
channel holds both theoretical attraction and practical significance for various biological
and engineering scenarios. The influence of magnetic fields on fluid dynamics, particularly
in blood flow, is a subject of considerable interest. When an electrically conducting fluid,
such as the nano-blood investigated in these studies [35, 36], interacts with a magnetic
field, it induces the generation of electric and magnetic fields, creating a Lorentz force.
This force acts as a body force that can impede fluid movement. The nano-blood exhibits
significantly higher conductivity compared to normal blood flo, due to the presence of
nanoparticles designed to enhance thermal and electrical conductivity. Consequently, the
nano-blood is more prone to interactions with magnetic fields, leading to more substantial
Lorentz force effects than those typically observed in conventional blood flow. These in-
sights are particularly relevant in biomedical applications such as targeted drug delivery or
magnetic resonance imaging, where external magnetic fields are commonly employed to
manipulate and control nano-blood behaviour. Numerous authors [37–42] have delved
into blood flow in arteries under the influence of magnetic fields for different scenar-
ios. Kolin [43] initially proposed utilizing electromagnetic fields in medical investigations.
Subsequently, Korchevskii and Marochnik [44] delved into the exploration of applying a
magnetic field to regulate blood movement within the human system. Furthermore, Gold
[45] provided a comprehensive analytical solution for the magnetohydrodynamic equa-
tions. This analysis considered a no-slip wall condition and the imposition of a transverse
uniform magnetic field. Ponalagusamy and Selvi [46] presented a mathematical model for
a two-phase blood flow model in a stenosed artery, incorporating the combined effects
of heat transfer, magnetic field, and a peripheral plasma layer. Amos et al. [47] investigate
the combined impact of slip velocity, blood flow pulsatility, body acceleration, and an in-
clined, permeable, stenosed artery on Newtonian unsteady blood flow in the presence of
a magnetic field. In the field of cancer treatment, hyperthermia has emerged as a promis-
ing approach for tumors resistant to chemotherapy. Michele et al. [48] present a novel
mathematical model for magnetic nanoparticle hyperthermia, incorporating nanoparti-
cle infusion and heating dynamics to optimize treatment design. Their work proposes a
quantitative framework to predict temperature profiles based on factors like infusion du-
ration, nanoparticle concentration, and external magnetic field.

Nanofluid is one of the innovative ideas to improve the heat transfer process of fluids.
It can be defined as a fluid that consists of metallic nanometer-sized particles dispersed
in the low thermal conductivity base fluid. In recent years, nanoparticles, or nanofluids,
have been used strategically in numerous heat transfer applications with outstanding suc-
cess. Their exceptional adsorption capabilities render them invaluable for clinical appli-
cations for transporting drugs, proteins, and other substances to specific cellular targets.
Previous research endeavours have meticulously investigated the influence of nanopar-
ticles across diverse contexts, laying a solid foundation for further exploration [49–57].
This new kind of nanotechnology was first introduced by Choi and Eastman [58]. Buon-
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giorno [59] showed that Brownian motion and thermophoresis effects are significant in
the dynamics of nanofluids. Akbar [60] investigated the impact of nanoparticles on in-
compressible viscous fluid by considering an asymmetric channel. Sharma et al. [61] anal-
ysed the impact of heat transfer and body acceleration on unsteady magnetohydrodynam-
ics (MHD) blood flow through a curved artery, considering the presence of stenosis and
aneurysm and incorporating hybrid nanoparticles. Ellahi et al. [62] explored mixed con-
vection nanofluid flow over a wedge, considering particle shape effects. Their findings
highlight that increased volume friction and smaller particle sizes enhance heat transfer
rates.

The literature survey shows that previous studies mainly concentrated on analysing mo-
mentum and heat transfer within Newtonian incompressible one-dimensional models.
It also entailed the assumption of a constant pressure gradient along the length of the
artery. However, Chow and Abumandour et al. [63, 64] identified a significant variation
in pressure gradient relative to the restricted channel length, impacting other associated
parameters. In light of the constraints observed in the current literature, the present anal-
ysis aims to discuss the effects of slip on the behaviour of unsteady pulsatile flow in a
two-dimensional sinusoidal wavy channel. Additionally, this analysis considers the vari-
ations in pressure gradient, including the impact of magnetic field, nanoparticle volume
fraction, slip parameter, radiation, and heat source parameters. The perturbation tech-
nique solves the governing equations of nano-blood flow in a horizontal wavy channel.
The analytical solutions of stream function, velocity, wall shear stress, pressure gradient,
and temperature are illustrated graphically, considering various values of the pertinent
physical parameters. In this research, Sect. 1 represents the introduction, Sect. 2 presents
the mathematical formulation, Sect. 3 shows the solution method, Sect. 4 shows the val-
idation of results, and Sect. 5 presents the discussion and results. Last, Sect. 6 concludes
the summary.

2 Mathematical formulation
The research investigates a Newtonian nanofluid unsteady, incompressible flow through
a symmetric, two-dimensional porous sinusoidal-wall channel, as depicted in Fig. 1 [14].
This study aims to analyse the behaviour of nano-blood flow with the effects of a magnetic
field, slip boundary, and heat transfer. Specifically, a uniform magnetic field B0 is applied
to the pulsatile nano-blood flow in the transverse direction. Also, the temperature of the
bottom wall is denoted by T0, while Tw indicates the temperature of the top wall. The
boundary of the wavy channel is expressed by:

η∗ = d∗ + a sin

(
2π

λ
x∗

)
, (1)

where x∗ is the longitudinal axis of the channel, a is the height of the wall constriction,
d∗ is the half-width of the channel, λ is the length of the wall constriction. The governing
equations for conservative momentum and energy in the general form are as follows [65–
67]:

A. Continuity Equation

∂u∗

∂x∗ +
∂v∗

∂y∗ = 0, (2)
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Figure 1 A schematic diagram for the flow geometry

B. Momentum Equation

∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗

= –
1

ρnf

∂p∗

∂x∗ + υnf

(
∂2u∗

∂x∗2 +
∂2u∗

∂y∗2

)
–

(
σB2

O
ρnf

)
u∗ –

(
υnf

k

)
u∗,

(3)

∂v∗

∂t∗ + u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂y∗ = –
1

ρnf

∂p∗

∂y∗ + υnf

(
∂2v∗

∂x∗2 +
∂2v∗

∂y∗2

)
, (4)

C. Energy Equation

∂T∗

∂t∗ + u∗ ∂T∗

∂x∗ + v∗ ∂T∗

∂y∗ =
knf

(ρCp)nf

(
∂2T∗

∂y∗2

)
–

1
(ρCp)nf

∂qr

∂y∗ +
Q0

(ρCp)nf

(
T∗ – T0

)
. (5)

Rosseland approximation for radiative heat flux, qr is defined as [68]:

qr = –
(

4σ ∗

3k∗
∂T∗4

∂y∗

)
. (6)

The Rosseland mean absorption coefficient is denoted as k∗, and the Stefan–Boltzmann
constant is denoted as σ ∗. It is assumed that the temperature variation within the flow is
slight enough to permit the expansion of T∗4 in a Taylor’s series. The expansion of T∗4

around T0 and the neglect of higher-order terms result in the following expression [69]:

T∗4 ∼= 4T3
0 T∗ – 3T4

0 . (7)
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Upon substituting Eqs. (6)–(7) into Eq. (5), the following expression is obtained:

∂T∗

∂t∗ + u∗ ∂T∗

∂x∗ + v∗ ∂T∗

∂y∗ =
knf

(ρCp)nf

(
∂2T∗

∂y∗2

)

+
16σ ∗T3

0
3k∗(ρCp)nf

(
∂2T∗

∂y∗2

)
+

Q0

(ρCp)nf

(
T∗ – T0

)
.

(8)

In blood flow analysis, the fulfilment of slip conditions becomes pivotal, particularly
when considering the presence of permeability at the artery wall. This requirement is es-
sential for the blood to adhere to the arterial boundary. While the blood still adheres to
the Navier-Stokes equation, the no-slip condition is replaced with the slip condition, which
accounts for relative movement between the fluid and the wall. This condition states that
the tangential velocity of the blood at the wall is not zero, but proportional to the nor-
mal derivative of the velocity perpendicular to the surface. The proportionality constant
is represented by Ap, a coefficient close to the mean free path of the blood’s molecules
[70]. Although the Navier–Stokes equation appears simple, its analytical solution under
slip conditions is significantly more complex compared to the no-slip scenario. With slip
conditions incorporated, the boundary conditions on the artery wall become [71–73]:

u∗ = ∓Ap
∂u∗
∂y∗

v∗ = 0

}
at y∗ = ±η∗, (9a)

T∗ = Tw at y∗ = η∗, (9b)

T∗ = T0 at y∗ = –η∗. (9c)

The thermophysical properties of the nanofluid, as presented by Zahir et al. [74], are as
follows:

ρnf = (1 – ϕ)ρf + ϕρn,
μnf = μf

(1–ϕ)2.5 ,
υnf = μnf

ρnf
,

(ρCp)nf = (1 – ϕ)(ρCp)f + ϕ(ρCp)n,
knf
kf

= (2kf +kn)–2ϕ(kf –kn)
(2kf +kn)+ϕ(kf –kn) .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(10)

Furthermore, the function ψ∗ is chosen in the following manner:

u∗ = ∂ψ∗
∂y∗ ,

v∗ = – ∂ψ∗
∂x∗ .

}
(11)

After substituting ψ∗ into Eqs. (3)–(9c) and eliminating the pressure from Eqs. (3)–(4),
these equations can be expressed as follows:

∂

∂t∗
(∇2ψ∗) +

∂ψ∗

∂y∗ ∇2 ∂ψ∗

∂x∗ –
∂ψ∗

∂x∗ ∇2 ∂ψ∗

∂y∗ = υnf ∇4ψ∗ –
(

σB2
O

ρnf
+

υnf

k

)
∂2ψ∗

∂y∗2 , (12)

∂T∗

∂t∗ +
∂ψ∗

∂y∗
∂T∗

∂x∗ –
∂ψ∗

∂x∗
∂T∗

∂y∗

=
knf

(ρCp)nf

(
∂2T∗

∂y∗2

)
+

16σ ∗T3
0

3k∗(ρCp)nf

(
∂2T∗

∂y∗2

)
+

Q0

(ρCp)nf

(
T∗ – T0

)
,

(13)
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where

∇2 =
∂2

∂x∗2 +
∂2

∂y∗2 , (14)

The relevant boundary conditions are as follows:

∂ψ∗
∂y∗ = ∓Ap

∂2ψ∗
∂y∗2

∂ψ∗
∂x∗ = 0

}
at y∗ = ±η∗, (15a)

ψ∗ = 0 at y∗ = 0, (15b)

ψ∗ = Q (constant) at y∗ = η∗, (15c)

T∗ = Tw at y∗ = η∗, (15d)

T∗ = T0 at y∗ = –η∗. (15e)

Introducing the following non-dimensional variables as follows:

x = x∗
λ

, y = y∗
d , η = η∗

d ,
ζ = y

η
, t = υf t∗

λd , ψ = ψ∗
υf

,

P = λdP∗
ρf υ

2
f

, θ = T∗–T0
Tw–T0

.

⎫⎪⎪⎬
⎪⎪⎭

(16)

Using the dimensionless variables stated above, Eqs. (12)–(15e) are obtained as follows:

∇4ψ –
(

Ha2(1 – ϕ)2.5 +
1

Da

)
∂2ψ

∂y2

= δ(1 – ϕ)2.5
(

1 – ϕ +
(

ϕρn

ρf

))(
∂

∂t
(∇2ψ

)
+

∂ψ

∂y
∇2 ∂ψ

∂x
–

∂ψ

∂x
∇2 ∂ψ

∂y

)
,

(17)

( (( knf
kf

) + ( 4
3 )Rd)

Pr

∂2θ

∂y2 + Qtθ

)

= δ

(
1 – ϕ +

(
ϕ(ρCp)n

(ρCp)f

))(
∂θ

∂t
+

∂ψ

∂y
∂θ

∂x
–

∂ψ

∂x
∂θ

∂y

)
,

(18)

where amplitude ratio ε, wall slope parameter δ, Knudsen number kn, Darcy number Da,
Hartmann number Ha, radiation parameter Rd, Prandtl number Pr, and heat source pa-
rameter Qt are defined respectively by:

ε = a
d , δ = d

λ
, kn = Ap

d ,
Da = k

d2 , Ha = B0d
√

σ
μf

,

Rd = 4σ∗T3
0

kf k∗ , Pr = (μCp)f
kf

,

Qt = Q0d2

(ρCp)f νf
, ∇2 = δ2 ∂2

∂x∗2 + ∂2

∂y∗2 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19)

The new boundary conditions corresponding to this transformation are as follows:

∂ψ

∂y = ∓kn ∂2ψ

∂y2
∂ψ

∂x = 0

}
at y = ±η, (20a)
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ψ = 0 at y = 0, (20b)

ψ = Q (constant) at y = η, (20c)

θ = 1 at y = η, (20d)

θ = 0 at y = –η. (20e)

3 Solution method
After applying the dimensionless technique, it is possible to assume that the stream func-
tion ψ , temperature θ , and pressure P have expansions in terms of the small parameter
δ, representing the slope of the channel, as indicated in [14]. These expansions can be
expressed as follows:

ψ = ψ0 + δψ1 + δ2ψ2 + · · · , (21a)

θ = θ0 + δθ1 + δ2θ2 + · · · , (21b)

P = P0 + δP1 + δ2P2 + · · · , (21c)

By substituting Eq. (21a)-(21c) into Eqs. (17)–(20e) and collecting terms of the same
powers of δ, including zero and first order terms, yields the subsequent perturbed equa-
tions:

Zero order:

∂4ψ0

∂y4 – m2 ∂2ψ0

∂y2 = 0, (22)

∂2θ0

∂y2 + m2
1θ0 = 0, (23)

∂ψ0
∂y = ∓kn ∂2ψ0

∂y2
∂ψ0
∂x = 0

}
at y = ±η, (24a)

ψ0 = Q (constant) at y = η, (24b)

ψ0 = 0 at y = 0, (24c)

θ0 = 1 at y = η, (24d)

θ0 = 0 at y = –η. (24e)

First order:

∂4ψ1

∂y4 – m2 ∂2ψ1

∂y2 = B1

(
∂3ψ0

∂t∂y2 +
∂ψ0

∂y
∂3ψ0

∂x∂y2 –
∂ψ0

∂x
∂3ψ0

∂y3

)
, (25)

∂2θ1

∂y2 + m2
1θ1 = B2

(
∂θ0

∂t
+

∂ψ0

∂y
∂θ0

∂x
–

∂ψ0

∂x
∂θ0

∂y

)
, (26)

∂ψ1
∂y = ∓kn ∂2ψ1

∂y2
∂ψ1
∂x = 0

}
at y = ±η, (27a)



Dawood et al. Boundary Value Problems         (2024) 2024:59 Page 9 of 25

ψ1 = 0 at y = η, (27b)

ψ1 = 0 at y = 0, (27c)

θ1 = 0 at y = η, (27d)

θ1 = 0 at y = –η. (27e)

Furthermore, it is assumed:

ψ0 = ψ00(x, y)eiωt , (28a)

θ0 = θ00(x, y)eiωt , (28b)

P0 = P00(x, y)eiωt , (28c)

ψ1 = ψ10(x, y) + ψ11(x, y)eiωt + ψ12(x, y)e2iωt , (28d)

θ1 = θ10(x, y) + θ11(x, y)eiωt + θ12(x, y)e2iωt , (28e)

P1 = P10(x, y) + P11(x, y)eiωt + P12(x, y)e2iωt . (28f)

By substituting Eq. (28a)–(28f) into Eqs. (22)–(27e), equating similar harmonic terms,
and solving the resulting partial differential equations under the corresponding boundary
conditions, the following results are obtained:

ψ = QC1m
(

sinh(my)
m

– y
(
cosh(mη) + knm sinh(mη)

))
eiωt

+ δ

{
C2

[
C1C3

2

(
y –

η sinh(my)
sinh(mη)

)
–

η cosh(mη) sinh(my)
2m3 sinh(mη)

+
y cosh(my)

2m3

]
eiωt

+ C4

[
C5

(
2 sinh(my)

m5 –
5y cosh(my)

4m4 +
y2 sinh(my)

4m3

)

+ C6

(
y cosh(my)

2m3 –
sinh(my)

m4

)
+ C7

(
sinh(my)

m2 –
y sinh(mη)

ηm2

)

+ C8y
]

e2iωt
}

,

(29)

θ =
[

cos(m1y)
2 cos(m1η)

+
sin(m1y)

2 sin(m1η)

]

+ δ

{
C9

[
C10 cos(m1y) + C11 sin(m1y) + C12

sin(m1y) sinh(my)
m(m2 + 4m2

1)

+ C13
cos(m1y) cosh(my)

m(m2 + 4m2
1)

+ C14
cos(m1y) sinh(my)

m(m2 + 4m2
1)

+ C15
sin(m1y) cosh(my)

m(m2 + 4m2
1)

+ C16
y sin(m1y)

4m2
1

+ C17
y cos(m1y)

4m2
1

+ C18
y2 sin(m1y)

4m1
+ C19

y2 cos(m1y)
4m1

]
eiωt

}
,

(30)
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The axial velocity can be determined by substituting Eq. (29) into Eq. (11):

u = QC1meiωt(cosh(my) – cosh(mη) – knm sinh(mη)
)

+ δ

{
C2

[
C1C3

2

(
1 –

ηm cosh(my)
sinh(mη)

)
–

(
η cosh(mη)

2m2 sinh(mη)
–

1
2m3

)
cosh(my)

+
y sinh(my)

2m2

]
eiωt + C4

[
C5

(
3 cosh(my)

4m4 –
3y sinh(my)

4m3 +
y2 cosh(my)

4m2

)

+ C6

(
y sinh(my)

2m2 –
cosh(my)

2m3

)
+ C7

(
cosh(my)

m
–

sinh(mη)
ηm2

)
+ C8

]
e2iωt

}
,

(31)

The non-dimensional shear stress exerted on the wall is expressed as:

τw =
[

∂2ψ

∂y2

]
y=η

, (32)

By employing Eq. (29) in Eq. (32), the wall shear stress can be expressed as:

τw = QC1m2eiωt sinh(mη)

+ δ

{
C2

[
sinh(mη)

m2 –
C1C3ηm2

2

]
eiωt + C4

[
C5

(
η2 sinh(mη)

4m
–

η cosh(mη)
4m2

)

+
C6η cosh(mη)

2m
+ C7 sinh(mη)

]
e2iωt

}
,

(33)

The non-dimensional axial pressure gradient can be derived from Eq. (2) as follows:

P =
∂p/∂x
ρf v2

f /d3

=
(

1
(1 – ϕ)2.5

)(
∇2 ∂ψ

∂y
– m2 ∂ψ

∂y
– δB1

(
∂2ψ

∂t∂y
+

∂ψ

∂y
∂2ψ

∂x∂y
–

∂ψ

∂x
∂2ψ

∂y2

))
,

(34)

By substituting Eqs. (21a)–(21c) and (28a)–(28f) into Eq. (34), equating similar terms
and simplifying, it results in:

P =
QC1m3eiωt

(1 – ϕ)2.5

(
cosh(mη) + knm sinh(mη)

)

+
δ

(1 – ϕ)2.5

{
C2

[
cosh(mη)

m
+ kn sinh(mη) –

C1C3m2

2

]
eiωt

+ C4

[
–C5(cosh(mη) + knm sinh(mη))

m2 –
(

η

m
+

kn
m

+
ηkn cosh(mη)

sinh(mη)

)

+
C7 sinh(mη)

η
– C8m2

]
e2iωt

}
.

(35)

The coefficients C1, C2, C3... etc. are provided in the appendix.

4 Validation of results
For validation, the present results for the pulsatile flow of the base fluid (i.e., with ϕ = 0)
are compared with those obtained by Abumandour et al. [64]. In the case of steady flow,
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Figure 2 Pressure gradient for various values of the amplitude ratio (ε)

Table 1 Default values for critical parameters employed in simulations

Parameter δ t ω ε kn Da Ha ϕ Pr Rd

Value 0.1 2π 1 0.25 0.1 0.1 2 0.1 14 0.2

Table 2 Numerical values of base fluid and nanoparticles

Materials Thermophysical properties Base Fluid (Blood) Nanoparticles (Gold)

Density [ρ (kg/m3)] 1063 19320
Heat Capacitance [cp (J/kgK)] 3594 129
Thermal Conductivity [k (W/mK)] 0.492 314

Fig. 2 shows a good agreement of the present results with [64], the variation of pressure
gradient with axial distance, with the relevant parameter values ε = 0.1, 0.25, 0.5. with
Ha = kn = ϕ = 1

Da = Rd = Pr = Qt = 0.

5 Results and discussion
In this section, numerical simulations were conducted to investigate the impact of bio-
physical parameters, including the amplitude ratio parameter, Hartmann number, Knud-
sen number, Darcy number, nanoparticle concentration, radiation parameter, and Prandtl
number, on profiles of pressure gradient, velocity, wall shear stress, and temperature, as
governed by Eqs. (29)–(35). The graphical representation of these profiles can be observed
in Figs. 3–23. Table 1 provides the default values for the biophysical parameters utilized
in the simulation.

Moreover, Table 2 presents the thermophysical numerical parameters for both blood
and gold nanoparticles [75, 76].

The simulations in Figs. 3–8 provide insights into the pressure gradient variations along
the axial distance of the wavy channel. Figure 3 illustrates the interaction between the am-
plitude ratio parameter and the pressure gradient, highlighting its impact on stenosis and
dilatation regions. In regions with stenosis, an increased amplitude ratio parameter inten-
sifies the pressure gradient, while in dilatations, it diminishes the pressure gradient along
the axial distance. This observation is further supported by the boundary layer thickness
considerations, where the pressure gradient variation across dilatations is less pronounced
than across stenotic regions, as aneurysms lead to a thicker boundary layer. Consequently,
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Figure 3 Pressure gradient for various values of the amplitude ratio (ε)

Figure 4 Pressure gradient for various values of Hartmann number (Ha)

Figure 5 Pressure gradient for various values of Knudsen number (kn)

lower shear stresses near the vessel wall contribute to a lower pressure gradient across di-
latations, contrasting with the steeper gradient across stenosis induced by thinner bound-
ary layers and higher shear stresses, and this observation agrees qualitatively well with
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Figure 6 Pressure gradient for various values of the amplitude ratio (ε) over time

Figure 7 Pressure gradient for various values of Hartmann number (Ha) over time

Figure 8 Pressure gradient for various values of Knudsen number (kn) over time

[64]. Figure 4 depicts the variation of the pressure gradient along the length of the steno-
sis for different Hartmann number values. The pressure gradient increases with increas-
ing Hartmann number, as demonstrated by [6]. Conversely, Fig. 5 indicates that boundary
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Figure 9 Velocity profile for various values of the cross sections (x)

Figure 10 Velocity profile for various values of the amplitude ratio (ε)

layer thickness increases with increasing Knudsen number, leading to a reduced pressure
gradient. Figure 6 illustrates the periodic variation of the pressure gradient over time. In re-
gions with stenosis, a rise in the amplitude ratio parameter leads to an increase in the peak
value of each oscillation. On the contrary, in the segments with a dilatation, an opposite
trend is apparent, with elevated amplitude ratio parameters causing a decline in the peak
values of each oscillation. Figure 7 illustrates that the pressure gradient varies periodically
with time and the peak value of each oscillation increases with the rise of the Hartmann
number. Figure 8 highlights the contrasting effect of the Knudsen number, where the peak
value of each oscillation decreases with an increase in the Knudsen number.

The velocity profiles, depicted in Figs. 9–14, offer insightful observations. Figure 9 shows
the velocity profile for the wavy channel geometry. As expected, velocity is maximum at
the centre of the channel for x = 0.75 and minimum at x = 0.25, representing the stenosis
and dilatation segments, respectively. Figure 10 illustrates a substantial increase in veloc-
ity as the wavy channel constricts (stenosis), accompanied by a reduction in velocity as
the channel widens (dilatation). This behaviour reflects the influence of channel geome-
try on fluid flow dynamics, where constriction accelerates flow, while widening leads to
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Figure 11 Velocity profile for various values of Hartmann number (Ha)

Figure 12 Velocity profile for various values of Hartmann number (Ha) and the nanoparticle concentration
(ϕ)

velocity reduction. Figure 11 illustrates the relationship between the Hartmann number
and velocity. With an increase in the Hartmann number, the centreline velocity decreases,
leading to a rise in near-wall velocity due to mass flow rate conservation. Consequently,
applying an external magnetic field leads to a flattened velocity profile near the centreline,
resulting in a reduced rate of velocity change. This phenomenon is attributed to the in-
duction of the Lorentz force, which decelerates the fluid motion, as discussed in [47]. In
Fig. 12, depicting the influence of the Hartmann number on velocity for fluid flow with
two scenarios, pure blood (ϕ = 0) and nano-blood (ϕ = 0.15), the observed behaviour can
be attributed to distinct physical mechanisms. In the case of nano-blood, the lower de-
creasing rate of velocity compared to pure blood suggests that nanoparticles contribute
to a more stabilized flow. Practically, the observed lower rate of velocity decrease in the
nanofluid scenario implies a potential advantage. It suggests that utilizing nanofluids in
medical procedures might result in a more controlled and stable blood flow environment,
presenting a valuable consideration for optimising procedures and ensuring patient safety
[77]. Figure 13 presents a contrasting trend concerning the impact of porosity on veloc-
ity. It demonstrates that with an increase in the Darcy number, there is a corresponding
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Figure 13 Velocity profile for various values of Darcy number (Da)

Figure 14 Velocity profile for various values of Knudsen number (kn)

growth in centreline velocity, coupled with a decline in near-wall velocity. Figure 14 delves
into the connection between the Knudsen number and velocity behaviour, rooted in the
conservation of mass flow rate. The centreline velocity decreases as the Knudsen num-
ber increases, signifying specific flow conditions. This reduction in centreline velocity is
compensated by an increase in near-wall velocity, ensuring that the overall mass flow rate
remains constant.

The distribution of wall shear stress along the longitudinal direction provides signifi-
cant insights, as demonstrated in Figs. 15–19, with different rheological parameters. As
depicted in Fig. 15, the narrowed segments lead to higher velocity gradients, resulting in
elevated shear stresses near these regions. Conversely, in the widened segments, reduced
velocity gradients lead to lower shear stresses near these areas. These observations are
consistent with the findings in [6]. Figure 16 provides significant insights, demonstrating
that as the Hartmann number increases, the slope of the velocity profile near the wall
also rises. This increased slope leads to a corresponding wall shear stress elevation, which
aligns with [14]. Figure 17 illustrates the impact of the Hartmann number on wall shear
stress for fluid flow in two scenarios (ϕ = 0) for pure blood and (ϕ = 0.15) for nano-blood.
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Figure 15 Wall shear stress profile for various values of the amplitude ratio (ε)

Figure 16 Wall shear stress profile for various values of Hartmann number (Ha)

Notably, lower wall shear stress was observed in the case of nano-blood compared to pure
blood. Figure 18 demonstrates a decrease in the shear stress at the wall with an increasing
Darcy number. This reduction can be attributed to the diminishing slope of the veloc-
ity profile near the wall. Similarly, Fig. 19 shows the relationship between the Knudsen
number and wall shear stress. As the Knudsen number increases, the slope of the velocity
profile near the wall decreases, leading to a corresponding decrease in wall shear stress.

Regarding the temperature profiles, as depicted in Fig. 20, as the volume fraction of
nanoparticles increases, there is a substantial enlargement of the surface area exposed
to blood flow, facilitating enhanced heat transfer within the fluid, and this result closely
agrees with [8]. A higher Prandtl number signifies a lower thermal diffusivity relative to
momentum diffusivity, resulting in less efficient heat conduction than momentum trans-
fer, which leads to a lower temperature profile with an increasing Prandtl number, as il-
lustrated in Fig. 21. Figure 22 demonstrates that temperature increases as the radiation
parameter grows, this finding is consistent with the discourse highlighted in [32]. The
temperature profile for different values of Qt (heat source) is plotted in Fig. 23, revealing
an enhancement in temperature significance with increasing Qt . As the heat source rises,
the heat input from nanoparticles intensifies, contributing to a notable rise in temperature,
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Figure 17 Wall shear stress profile for various values of Hartmann number (Ha) and the nanoparticle
concentration (ϕ)

Figure 18 Wall shear stress profile for various values of Darcy number (Da)

and this result closely aligns with [78]. This enhanced temperature is primarily due to the
effective thermal properties of nanoparticles, which facilitate heat conduction or absorp-
tion. In the context of blood flow applications involving nanoparticles, this phenomenon
carries practical significance. For example, in hyperthermia treatments, controlled heating
targets specific areas for therapeutic purposes [79].

6 Conclusions
The present study investigates the unsteady flow characteristics of nano-blood within a
two-dimensional porous wavy channel. The model incorporates the effects of a magnetic
field and slip boundary conditions on the flow behaviour. The governing equations, non-
linear partial differential equations, are solved using a perturbation technique. The influ-
ence of various parameters on the flow is analysed, and the obtained results are validated
against existing literature, demonstrating good agreement with [6, 14, 64]. The main find-
ings from the graphical representations can be summarised as follows:

• The pressure gradient exhibits an inverse relationship with stenosis size and a positive
correlation with dilatation size.
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Figure 19 Wall shear stress profile for various values of Knudsen number (kn)

Figure 20 Temperature profile for various values of the nanoparticle concentration (ϕ)

Figure 21 Temperature profile for various values of Prandtl number (Pr)

• A magnetic field increases the pressure gradient, while a higher slip parameter leads
to a decrease.
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Figure 22 Temperature profile for various values of the radiation parameter (Rd)

Figure 23 Temperature profile for various values of the heat source/sink (Qt )

• Velocity positively correlated with stenosis size and an inverse relationship with
dilatation size.

• A magnetic field decreases the centerline velocity, whereas permeability and slip
parameters increase it.

• Pure blood exhibits higher velocities than nano-blood under a magnetic field.
• Wall shear stress peaked within the stenosis region before dropping sharply.

Conversely, the dilatation segment displayed the opposite trend.
• The wall shear stress profile increases with an increase in the magnetic field. It is also

apparent that the wall shear stress decreases as the permeability and slip parameters
increase.

• The temperature profile increases with increasing magnetic field, nanoparticle
volume fraction, heat source, and radiation parameter but decreases with the
permeability parameter and Prandtl number rising.

Limitations and future perspectives: The investigation of nano-blood flow holds signifi-
cance in therapeutic approaches for various ailments. However, limitations arise concern-
ing the magnetic-field’s strength, necessitating further consideration for a more physically
precise magnetic model, as advocated by the recent analytical model [80]. Additionally,
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while the current study focuses on fixed nanoparticle concentrations, future research en-
deavours could explore the impact of varying nanoparticle concentrations on key flow
characteristics, thereby enhancing comprehension of nano-blood flow dynamics. Further-
more, prospective investigations could entail detailed comparisons between the analyt-
ical solutions proposed herein and outcomes derived from diverse numerical schemes
applied to analogous scenarios. Such comparative analyses would yield valuable insights
into the accuracy and efficacy of different numerical methodologies in simulating pulsatile
nanofluid flow within wavy geometries. Addressing these limitations and broadening the
research scope will significantly advance understanding nano-blood flow phenomena in
pertinent biological contexts.

Appendix

B1 = (1 – ϕ)2.5
(

1 – ϕ +
(

ϕρn

ρf

))
,

B2 =
Pr (1 – ϕ + ( ϕ(ρCp)n

(ρCp)f
))

(( knf
kf

) + ( 4
3 )Rd)

,

m =

√(
Ha2(1 – ϕ)2.5 +

1
Da

)
,

m1 =

√√√√ Qt Pr

(( knf
kf

) + ( 4
3 )Rd)

,
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1

sinh(mη) – ηm cosh(mη) – kn m2η sinh(mη)
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η
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sinh(2mη)
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C9 =
B2Q m1m2 C2

1
dη

dx sinh(mη)
2

,
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–1
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[
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1)
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1)
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1
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.
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(kg/m.s); υf , Kinematic viscosity of the fluid (m2/s); ρn , Density of the nanoparticles (kg/m.s); (ρCp)f , Heat capacity of the
fluid (kg/m.s2.K ); (ρCp)n , Heat capacity of the nanoparticles (kg/m.s2.K ); (ρCp)nf , Heat capacity of the nanofluid (kg/m.s2.K );
η, Height of wavy channel (m); λ, Length of wall constriction (m); ε, Amplitude ratio parameter (m); δ , Wall slope
parameter; σ , Electrical conductivity of the fluid (S/m); σ ∗ , Stefan–Boltzmann constant (W/m2. K4); ϕ , Nanoparticle
volume fraction; ω, The angular frequency of the flow (s–1); ψ , Dimensionless Streamlines Function; θ , Dimensionless
Temperature; τw , Wall shear stress; ζ , Dimensionless transverse coordinate; f , Fluid fraction; n, Nanoparticle; nf , Nanofluid
fraction.

Author contributions
Conceptualization, F.K, and A.D.; methodology, F.K, and A.D.; software, F.K, and A.D., and R.A; formal analysis, F.K, A.D. and I.
E.; investigation, F.K, A.D., and I.E., resources, F.K, A.D., I.E., and R.A.; data curation, F.K, A.D., I.E, and R.A.; writing—original
draft preparation, F.K., and A.D.; writing—review and editing, F.K, A.D., I.E, and R.A.; visualization, F.K, A.D., I.E, and R.A.;
supervision, F.K, A.D., I.E, and R.A.; project administration, F.K, A.D., I.E, and R.A. All authors have read and agreed to the
published version of the manuscript.



Dawood et al. Boundary Value Problems         (2024) 2024:59 Page 23 of 25

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with
The Egyptian Knowledge Bank (EKB).

Data Availability
No datasets were generated or analysed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Author details
1Basic Engineering Sciences Department, Faculty of Engineering, Menofia University, Shebin El-Kom 32513, Egypt. 2Dean
of Menofia Higher Institute of Engineering and Technology, El-Bagour 32829, Egypt.

Received: 14 January 2024 Accepted: 19 April 2024

References
1. McMurray, J.J.V., Stewart, S.: The burden of heart failure. Eur. Heart J. Suppl. 4(suppl_D), D50–D58 (2002).

https://doi.org/10.1016/s1520-765x(02)90160-4
2. Kroon, M., Holzapfel, G.A.: Modeling of Saccular Aneurysm Growth in a Human Middle Cerebral Artery. J. Biomech.

Eng. 130(5) (2008). https://doi.org/10.1115/1.2965597
3. Pincombe, B., Mazumdar, J.: The effects of post-stenotic dilatations on the flow of a blood analogue through

stenosed coronary arteries. Math. Comput. Model. 25(6), 57–70 (1997)
4. Mantha, A.R., Benndorf, G., Hernandez, A., Metcalfe, R.W.: Stability of pulsatile blood flow at the ostium of cerebral

aneurysms. J. Biomech. 42(8), 1081–1087 (2009)
5. Nadeem, S., Ijaz, S.: Influence of metallic nanoparticles on blood flow through arteries having both stenosis and

aneurysm. IEEE Trans. Nanobiosci. 14(6), 668–679 (2015)
6. Abdelsalam, S.I., Mekheimer, K.S., Zaher, A.: Alterations in blood stream by electroosmotic forces of hybrid nanofluid

through diseased artery: aneurysmal/stenosed segment. Chin. J. Phys. 67, 314–329 (2020)
7. Sharma, B., Kumawat, C., Vafai, K.: Computational biomedical simulations of hybrid nanoparticles

(Au-Al2O3/blood-mediated) transport in a stenosed and aneurysmal curved artery with heat and mass transfer:
hematocrit dependent viscosity approach. Chem. Phys. Lett. 800, 139666 (2022)

8. Dawood, A., Kroush, F.A., Abumandour, R.M., Eldesoky, I.M.: Multi-effect analysis of nanofluid flow in stenosed arteries
with variable pressure gradient: analytical study. SN Appl. Sci. 5(12), 1–23 (2023)

9. Karim, A., Uddin, M.N., Akter, M.: Geometrical Analysis to Blood Flow Across Tapered-Non Tapered Arteries by the Use
of Various Advanced Flow Parameters. J. Inform. Math. Sci. 13(1) (2021)

10. Gandhi, R., Sharma, B.K., Mishra, N.K., Al-Mdallal, Q.M.: Computer simulations of EMHD Casson nanofluid flow of blood
through an irregular stenotic permeable artery: application of Koo-Kleinstreuer-Li correlations. Nanomaterials 13(4),
652 (2023)

11. Shahzadi, I., Duraihem, F.Z., Ijaz, S., Raju, C., Saleem, S.: Blood stream alternations by mean of electroosmotic forces of
fractional ternary nanofluid through the oblique stenosed aneurysmal artery with slip conditions. Int. Commun. Heat
Mass Transf. 143, 106679 (2023)

12. Sarkar, A., Jayaraman, G.: Correction to flow rate—pressure drop relation in coronary angioplasty: steady streaming
effect. J. Biomech. 31(9), 781–791 (1998)

13. Elshehawey, E., Elbarbary, E.M., Afifi, N., El-Shahed, M.: Pulsatile flow of blood through a porous mediumunder
periodic body acceleration. Int. J. Theor. Phys. 39, 183–188 (2000)

14. Kiran, G.R., Murthy, V.R., Radhakrishnamacharya, G.: Pulsatile flow of a dusty fluid thorough a constricted channel in
the presence of magnetic field. Mater. Today Proc. 19, 2645–2649 (2019)

15. Berselli, L.C., Miloro, P., Menciassi, A., Sinibaldi, E.: Exact solution to the inverse Womersley problem for pulsatile flows
in cylindrical vessels, with application to magnetic particle targeting. Appl. Math. Comput. 219(10), 5717–5729 (2013)

16. Berselli, L.C., Guerra, F., Mazzolai, B., Sinibaldi, E.: Pulsatile viscous flows in elliptical vessels and annuli: solution to the
inverse problem, with application to blood and cerebrospinal fluid flow. SIAM J. Appl. Math. 74(1), 40–59 (2014)

17. Sorek, S., Sideman, S.: A porous-medium approach for modeling heart mechanics. I. Theory. Math. Biosci. 81(1), 1–14
(1986)

18. Vankan, W., Huyghe, J., Janssen, J., Huson, A., Hacking, W., Schreiner, W.: Finite element analysis of blood flow through
biological tissue. Int. J. Eng. Sci. 35(4), 375–385 (1997)

19. Preziosi, L., Farina, A.: On Darcy’s law for growing porous media. Int. J. Non-Linear Mech. 37(3), 485–491 (2002)
20. Khaled, A.-R., Vafai, K.: The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat

Mass Transf. 46(26), 4989–5003 (2003)
21. Ogulu, A., Amos, E.: Modeling pulsatile blood flow within a homogeneous porous bed in the presence of a uniform

magnetic field and time-dependent suction. Int. Commun. Heat Mass Transf. 34(8), 989–995 (2007)
22. Bhargava, R., Rawat, S., Takhar, H.S., Anwar Bég, O.: Pulsatile magneto-biofluid flow and mass transfer in a non-Darcian

porous medium channel. Meccanica 42, 247–262 (2007)
23. Sinha, A., Misra, J.: Influence of slip velocity on blood flow through an artery with permeable wall: a theoretical study.

Int. J. Biomath. 5(05), 1250042 (2012)
24. Makinde, O., Osalusi, E.: MHD steady flow in a channel with slip at the permeable boundaries. Rom. J. Phys. 51(3/4),

319 (2006)
25. Mishra, S., Siddiqui, S., Medhavi, A.: Blood flow through a composite stenosis in an artery with permeable wall. Appl.

Appl. Math. 6(1), 5 (2011)

https://doi.org/10.1016/s1520-765x(02)90160-4
https://doi.org/10.1115/1.2965597


Dawood et al. Boundary Value Problems         (2024) 2024:59 Page 24 of 25

26. Ijaz, S., Nadeem, S.: Examination of nanoparticles as a drug carrier on blood flow through catheterized composite
stenosed artery with permeable walls. Comput. Methods Programs Biomed. 133, 83–94 (2016)

27. Nubar, Y.: Blood flow, slip, and viscometry. Biophys. J. 11(3), 252–264 (1971)
28. Casson, N.: Rheology of disperse systems. In: Flow Equation for Pigment Oil Suspensions of the Printing Ink Type.

Rheology of Disperse Systems, pp. 84–102 (1959)
29. Nubar, Y.: Effect of slip on the rheology of a composite fluid: application to blood. Biorheology 4(4), 133–150 (1967)
30. Srivastava, L., Srivastava, V.: On two-phase model of pulsatile blood flow with entrance effects. Biorheology 20(6),

761–777 (1983)
31. Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, Berlin (2016)
32. Biswas, D., Chakraborty, U.S.: Pulsatile blood flow through a catheterized artery with an axially nonsymmetrical

stenosis. Appl. Math. Sci. 4(58), 2865–2880 (2010)
33. Eldesoky, I.M.: Slip effects on the unsteady MHD pulsatile blood flow through porous medium in an artery under the

effect of body acceleration. Int. J. Math. Math. Sci. 2012, 2012
34. Kakati, L., Barua, D.P., Ahmed, N., Choudhury, K.D.: MHD pulsatile slip flow of blood through porous medium in an

inclined stenosed tapered artery in presence of body acceleration. Adv. Theor. Appl. Math. 12(1), 15–38 (2017)
35. Hussain, A., Riaz Dar, M.N., Khalid Cheema, W., Kanwal, R., Han, Y.: Investigating hybrid nanoparticles for drug delivery

in multi-stenosed catheterized arteries under magnetic field effects. Sci. Rep. 14(1), 1170 (2024)
36. Akbar, N.S., Habib, M.B., Rafiq, M., Muhammad, T., Alghamdi, M.: Biological structural study of emerging shaped

nanoparticles for the blood flow in diverging tapered stenosed arteries to see their application in drug delivery. Sci.
Rep. 14(1), 1475 (2024)

37. Sud, V., Sekhon, G., Mishra, R.: Pumping action on blood by a magnetic field. Bull. Math. Biol. 39, 385–390 (1977)
38. Haik, Y., Pai, V., Chen, C.-J.: Apparent viscosity of human blood in a high static magnetic field. J. Magn. Magn. Mater.

225(1–2), 180–186 (2001)
39. Mekheimer, K.S., Al-Arabi, T.: Nonlinear peristaltic transport of MHD flow through a porous medium. Int. J. Math. Math.

Sci. 2003, 1663–1682 (2003)
40. Misra, J., Maiti, S., Shit, G.: Peristaltic transport of a physiological fluid in an asymmetric porous channel in the

presence of an external magnetic field. J. Mech. Med. Biol. 8(04), 507–525 (2008)
41. Srinivasacharya, D., Shiferaw, M.: Hydromagnetic effects on the flow of a micropolar fluid in a diverging channel. Z.

Angew. Math. Mech. 89(2), 123–131 (2009)
42. Misra, J., Sinha, A., Shit, G.: A numerical model for the magnetohydrodynamic flow of blood in a porous channel. J.

Mech. Med. Biol. 11(03), 547–562 (2011)
43. Kolin, A.: An electromagnetic flowmeter. Principle of the method and its application to bloodflow measurements.

Proc. Soc. Exp. Biol. Med. 35(1), 53–56 (1936)
44. Korchevskii, E., Marochnik, L.: Magnetohydrodynamic version of movement of blood. Biophysics 10(2), 411–414

(1965)
45. Gold, R.R.: Magnetohydrodynamic pipe flow. Part 1. J. Fluid Mech. 13(4), 505–512 (1962)
46. Ponalagusamy, R., Tamil Selvi, R.: Influence of magnetic field and heat transfer on two-phase fluid model for

oscillatory blood flow in an arterial stenosis. Meccanica 50, 927–943 (2015)
47. Amos, E., Omamoke, E., Nwaigwe, C.: MHD pulsatile blood flow through an inclined stenosed artery with body

acceleration and slip effects. Int. J. Theor. Appl. Math. 8(1), 1–3 (2022)
48. Di Michele, F., Pizzichelli, G., Mazzolai, B., Sinibaldi, E.: On the preliminary design of hyperthermia treatments based on

infusion and heating of magnetic nanofluids. Math. Biosci. 262, 105–116 (2015)
49. Sus, C.: Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of

non-Newtonian flows. In: ASME, FED, MD, 1995, vol. 1995, pp. 99–105 (1995)
50. Xuan, Y., Li, Q.: Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf. 125(1),

151–155 (2003)
51. Khan, W., Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53(11–12),

2477–2483 (2010)
52. Nadeem, S., Lee, C.: Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Res. Lett. 7,

1–6 (2012)
53. Akbar, N.S., Nadeem, S., Hayat, T., Hendi, A.A.: Peristaltic flow of a nanofluid in a non-uniform tube. Heat Mass Transf.

48, 451–459 (2012)
54. Dogonchi, A.S., Ganji, D.D.: Thermal radiation effect on the nano-fluid buoyancy flow and heat transfer over a

stretching sheet considering Brownian motion. J. Mol. Liq. 223, 521–527 (2016)
55. Hosseinzadeh, K., Alizadeh, M., Ganji, D.: RETRACTED ARTICLE: hydrothermal analysis on MHD squeezing nanofluid

flow in parallel plates by analytical method. Int. J. Mech. Mater. Eng. 13, 1–13 (2018)
56. Pizzichelli, G., Di Michele, F., Sinibaldi, E.: An analytical model for nanoparticles concentration resulting from infusion

into poroelastic brain tissue. Math. Biosci. 272, 6–14 (2016)
57. Grillone, A., et al.: Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment.

Nanomedicine 8(3), 727–752 (2019)
58. Choi, S.U., Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. Argonne National Lab. (ANL),

Argonne (1995)
59. Buongiorno, J.: Convective transport in nanofluids (2006)
60. Akbar, N.S.: Metallic nanoparticles analysis for the peristaltic flow in an asymmetric channel with MHD. IEEE Trans.

Nanotechnol. 13(2), 357–361 (2014)
61. Sharma Poonam, B.K., Chamkha, A.J.: Effects of heat transfer, body acceleration and hybrid nanoparticles (Au–Al2O3)

on MHD blood flow through a curved artery with stenosis and aneurysm using hematocrit-dependent viscosity.
Waves Random Complex Media, 1–31 (2022)

62. Ellahi, R., Hassan, M., Zeeshan, A., Khan, A.A.: The shape effects of nanoparticles suspended in HFE-7100 over wedge
with entropy generation and mixed convection. Appl. Nanosci. 6(5), 641–651 (2016)

63. Chow, J., Soda, K.: Laminar flow and blood oxygenation in channels with boundary irregularities (1973)
64. Abumandour, R.M., EL-Behery, S., Kamel, M.H., Dawood, A.S., Eldesoky, I.M.: Analysis of different stenotic geometries

on two-phase blood flow. ERJ. Eng. Res. J. 43(4), 355–367 (2020)



Dawood et al. Boundary Value Problems         (2024) 2024:59 Page 25 of 25

65. Bandyopadhyay, S., Layek, G.: Study of magnetohydrodynamic pulsatile flow in a constricted channel. Commun.
Nonlinear Sci. Numer. Simul. 17(6), 2434–2446 (2012)

66. Akbarzadeh, M., Rashidi, S., Bovand, M., Ellahi, R.: A sensitivity analysis on thermal and pumping power for the flow of
nanofluid inside a wavy channel. J. Mol. Liq. 220, 1–13 (2016)

67. Ali, A., Bukhari, Z., Shahzadi, G., Abbas, Z., Umar, M.: Numerical simulation of the thermally developed pulsatile flow of
a hybrid nanofluid in a constricted channel. Energies 14(9), 2410 (2021)

68. Brewster, M.Q.: Thermal Radiative Transfer and Properties. Wiley, New York (1992)
69. Ali, A., Bukhari, Z., Amjad, M., Ahmad, S., Din, T.E., Hussain, S.M.: Newtonian heating effect in pulsating

magnetohydrodynamic nanofluid flow through a constricted channel: a numerical study. Front. Energy Res. 10,
1002672 (2022)

70. Wang, C.: Stagnation flows with slip: exact solutions of the Navier-Stokes equations. Z. Angew. Math. Phys. 1(54),
184–189 (2003)

71. El-Shehawy, E., El-Dabe, N., El-Desoky, I.: Slip effects on the peristaltic flow of a non-Newtonian Maxwellian fluid. Acta
Mech. 186, 141–159 (2006)

72. Eldesoky, I.M., Kamel, M.H., Abumandour, R.M.: Numerical study of slip effect of unsteady MHD pulsatile flow through
porous medium in an artery using generalized differential quadrature method (comparative study). World J. Eng.
Technol. 2, 131–148 (2014)

73. Abumandour, R., Eldesoky, I.M., Abumandour, M., Morsy, K., Ahmed, M.M.: Magnetic field effects on thermal nanofluid
flowing through vertical stenotic artery: analytical study. Mathematics 10(3), 492 (2022)

74. Shah, Z., Kumam, P., Selim, M.M., Alshehri, A.: Impact of nanoparticles shape and radiation on the behavior of
nanofluid under the Lorentz forces. Case Stud. Therm. Eng. 26, 101161 (2021)

75. Shahzadi, I., Suleman, S., Saleem, S., Nadeem, S.: Utilization of Cu-nanoparticles as medication agent to reduce
atherosclerotic lesions of a bifurcated artery having compliant walls. Comput. Methods Programs Biomed. 184,
105123 (2020)

76. Tripathi, J., Vasu, B., Bég, O.A., Gorla, R.S.R.: Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and
heat transfer through an overlapped stenotic artery: biomedical drug delivery simulation. Proc. Inst. Mech. Eng., H J.
Eng. Med. 235(10), 1175–1196 (2021)

77. Ardahaie, S.S., Amiri, A.J., Amouei, A., Hosseinzadeh, K., Ganji, D.: Investigating the effect of adding nanoparticles to
the blood flow in presence of magnetic field in a porous blood arterial. Informatics in Medicine Unlocked 10, 71–81
(2018)

78. Shahzadi, I., Nadeem, S., Rabiei, F.: Simultaneous effects of single wall carbon nanotube and effective variable
viscosity for peristaltic flow through annulus having permeable walls. Results Phys. 7, 667–676 (2017)

79. Hedayatnasab, Z., Abnisa, F., Daud, W.M.A.W.: Review on magnetic nanoparticles for magnetic nanofluid
hyperthermia application. Mater. Des. 123, 174–196 (2017)

80. Masiero, F., Sinibaldi, E.: Exact and computationally robust solutions for cylindrical magnets systems with
programmable magnetization. Adv. Sci. 10(25), 2301033 (2023)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Effect of slip boundary conditions on unsteady pulsatile nanoﬂuid ﬂow through a sinusoidal channel: an analytical study
	Abstract
	Keywords

	Introduction
	Mathematical formulation
	Solution method
	Validation of results
	Results and discussion
	Conclusions
	Appendix
	Abbreviations
	Author contributions
	Funding
	Data Availability
	Declarations
	Competing interests
	Author details
	References
	Publisher's Note


