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Abstract
This work focuses on discretizing a second-order linear wave equation using the
implicit Euler scheme for time discretization and the spectral element method for
spatial discretization. We prove that optimal adaptivity can be achieved by combining
adaptive time steps with adaptive spectral mesh. We introduce two sets of error
indicators for time and space, respectively, and derive optimal estimates.
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1 Introduction
Over the past two decades, there has been significant attention given to a posteriori error
analysis of partial differential equations. This theory has been extensively applied to ellip-
tic and parabolic problems in the context of finite element approximation, as evidenced by
various studies [1–13]. However, the a posteriori analysis of hyperbolic problems, whether
using the finite element method or the spectral element method, remains relatively unex-
plored in the literature [14–24].

This study aims to advance the a posteriori error analysis for the initial-boundary-value
problem associated with the second-order linear wave equation, which is discretized us-
ing the spectral element method. In this method, the solution of partial differential equa-
tions is approximated using higher-order polynomial functions over each element of the
decomposition [25–27]. The discretization parameter comprises a K-tuple, determined
by the maximum polynomial degree Nk on each element. Similar to the concept in the
h – p version of the finite element method (as discussed in [2, 7, 28]), this parameter
also includes a quantity hk representing the diameter of the element. Additionally, we
demonstrate that converting the second-order wave equation into a first-order system
involves time discretization equivalent to the backward Euler-time discretization of the
corresponding first-order system.

This study extends the results obtained by Bernardi et al. [6] for the finite element
method to the spectral element method. Specifically, we introduce two families of indi-
cators, both of which are of residual type. The first family, as introduced in [11], is global
concerning spatial variables but local concerning time discretization. The selection of the
next time step relies on the time error indicator from this family. The second family serves
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as an efficient tool for mesh adaptivity. These indicators are local with respect to both
temporal and spatial variables and can be explicitly computed as functions of the discrete
solution and problem data. They are deemed optimal if their Hilbert sum is equivalent
to the error, and the corresponding constant remains independent of the discretization
parameter. The structure of this document is as follows:

In Sect. 2, we introduce the second-order linear wave equation and delve into the time-
semi-discrete problem along with its spatial discretization.

Section 3 focuses on the construction of error indicators for the wave equation, accom-
panied by the establishment of upper and lower bounds derived from time and space in-
dicators.

2 The discrete problems
We denote � as an open bounded connected domain in R

d , where d takes on values of 1,
2, or 3. Let � represent its Lipschitz continuous boundary, and T denote a positive real
number.

Considering f ∈ L1(0, T ; H1
0 (�)), we examine the following initial-boundary-value prob-

lem for the second-order linear wave equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t u – �u = f in �×]0, T[,

u = 0 on �×]0, T[,

u(·, 0) = u0 in �,

∂tu(·, 0) = v0 in �,

(1)

Here, u represents the unknown function defined over �×]0, T[, while (u0, v0) denote the
data functions defined over �.

Proposition 1 For any given data f ∈ L1(0, T ; H1
0 (�)) and (u0, v0) ∈ H1

0 (�) × L2(�), prob-
lem (1) possesses a unique solution u within the space C1(0, T ; L2(�)) ∩ C0(0, T ; H1

0 (�)),
satisfying the following estimate for 0 ≤ t ≤ T :

(‖∂tu‖2 + ‖∇u‖2) 1
2 ≤ (‖v0‖2 + ‖∇u0‖2) 1

2 +
∫ t

0
‖f ‖(s) ds. (2)

The establishment of the well-posedness of system (1) relies on the Cauchy–Lipschitz
theorem and the estimate (2). For a detailed proof, refer to ([29], Chap. 1, Th. 12.3). Addi-
tionally, for a broader examination of non-linear wave equations, consult [30–35].

In order to formulate the time semi-discrete problem, we partition the interval [0, T]
into sub-intervals [ti, ti+1], where 1 ≤ i ≤ I , with 0 = t0 < t1 < · · · < tI = T . We define τi =
ti+1 – ti, τ = (τ1, . . . , τi), |τ | = max1≤i≤I |τi|, and

στ = max
2≤i≤I

τi

τi–1

as the regularity parameter. For any family ui = u(·, ti), 1 ≤ i ≤ I , we define the function uτ

on the interval [0, T] to be affine on each sub-interval [ti–1, ti], where 1 ≤ i ≤ I , such that
uτ (ti) = u(·, ti). This function is given by:

∀t ∈ [ti–1, ti], uτ (t) = ui –
ti – t
τi

(
ui – ui–1).
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We then employ the implicit Euler method to discretize the time derivative in problem (1),
with the data f = 0 for simplification purposes. The time-discrete problem aims to find the
sequence ui = u(x, ti)0≤i≤I in H1

0 (�)I+1 such that:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ui+1–ui

τi
– ui–ui–1

τi–1
– τi�ui+1 = 0 in �, 1 ≤ i ≤ I,

ui+1 = 0 on �, 1 ≤ i ≤ I,

u0 = u0 in �,

u1 = u0 + h0v0 in �,

(3)

Given that (u0, v0) is an element of H1
0 (�) × H1

0 (�), when the values of u0 and v0 are
known, we establish that ui+1, for i ≥ 1, serves as a solution to the following variational
formulation:

Find ui+1 in H1
0 (�) such that for any v ∈ H1

0 (�) we have:

∫

�

ui+1(x)v(x) dx + τ 2
i

∫

�

∇ui+1(x)∇v(x) dx

=
∫

�

(

ui +
τi

τi–1

(
ui – ui–1)

)

(x)v(x) dx.
(4)

Proposition 2 If (u0, v0) lies in H1
0 (�) × H1

0 (�), then problem (4) possesses a unique solu-
tion ui+1 for i ≥ 1 within H1

0 (�), satisfying the following stability conditions:

∥
∥
∥
∥

ui+1 – ui

τi

∥
∥
∥
∥

2

+
∥
∥∇ui+1∥∥2 ≤ ‖v0‖2 + 2‖∇u0‖2 + 2τ 2

0 ‖∇v0‖2. (5)

and

∥
∥
∥
∥

ui+1 – ui

τi

∥
∥
∥
∥

2

+
∥
∥∇ui+1∥∥2 ≤ 2

(∥
∥v1∥∥2 +

∥
∥∇u1∥∥2). (6)

Proof We employ the Lax–Milgram theorem to readily demonstrate the uniqueness of
the solution to the variational formulation (4). Refer to [21] for the verification of stability
conditions (5) and (6). �

Next, we present the a priori time error estimate in the following theorem.

Theorem 1 For the solution u of problem (1) and (ui)1≤i≤I , the solution of problem (3), the
a priori error estimate holds for 0 ≤ i ≤ I :

∥
∥
∥
∥

u(ti+1) – u(ti)
τi

– ∂tu(ti+1)
∥
∥
∥
∥

2

+
∥
∥∇(

u(ti) – ui)∥∥2

≤ Cτ 2
(∫ ti

0

(∥
∥∂3

t u
∥
∥ +

∥
∥∂2

t ∇u
∥
∥
)
(s) ds

)2

,

(7)

where C is a positive constant that remains independent of the step τ .

Refer to [21] for the proof of Theorem 1. The estimate (7) is of order 1, as the time
discretization relies on the implicit Euler scheme.
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In the subsequent discussion, we will concentrate on the a posteriori analysis of the spec-
tral element method in one dimension, given that the polynomial inverse inequalities are
not optimal for the spectral method in dimensions d ≥ 2. Now, we delineate the discrete
space. Let � denote the interval ] – 1, 1[. For each discrete time ti, 0 ≤ i ≤ I , we introduce
a partition Pi of the interval � such that

–1 = a0 ≤ a1 ≤ · · · ≤ aK–1 ≤ aK = 1,

and �k =]ak–1, ak[, 1 ≤ k ≤ K . Let hk the length of the sub-interval �k , and h =
max1≤k≤K hk . The discrete parameter δ is a K-tuple of couples (hk , Nk), 1 ≤ k ≤ K , where
a integer Nk ≥ 2.

Let’s begin by revisiting the following formulas, which we will utilize later on. Con-
sider ξ0 < · · · < ξN as the zeros of the polynomial (1 – x2)L′

N , and ρj as their corresponding
weights, where LN represents the Legendre polynomial defined on �. The Gauss–Lobatto
quadrature formula on the interval � =] – 1, 1[ can be expressed as:

∀φ ∈ P2N–1(�);
∫ 1

–1
φ(x) dx =

N∑

j=0

φ
(
ξN

j
)
ρN

j , (8)

where PN (�) is the space of polynomials, defined on �, with degree ≤ N .
We define a discrete scalar product for any continuous functions u and v over � as

follows:

(u, v)δ =
K∑

k=1

Nk∑

j=0

u
(
ξ

Nk
j

)
v
(
ξ

Nk
j

)
ρ

Nk
j , (9)

where ξ
Nk
j = F–1

k (ξN
j ) and ρ

Nk
j = (ak – ak–1)ρN

j , 0 ≤ j ≤ N , such that Fk is the bijection from
�k into �.

Let iδ denote the Lagrange interpolation operator on the set of nodes ξ
Nk
j , taking values

in

Yδ =
{

vδ ∈ H1(�); vδ|�k ∈ PNk (�k), 1 ≤ k ≤ K
}

.

For every function ϕ continuous over �k , iδ(ϕ)|�k belongs to PNk (�k), and we confirm

iδ(ϕ)|�k

(
ξ

Nk
j

)
= ϕ|�k

(
ξ

Nk
j

)
.

We consider the following property, which will be widely used in the following:

∀uδ ∈ Yδ , ‖uδ‖2
L2(�) ≤ (uδ , uδ)δ ≤ 3‖uδ‖2

L2(�). (10)

We define the discrete space as

Xi
δ =

{
vδ ∈ H1

0 (�);∀�k ∈ Pi vδ|�k ∈ PNk (�k), 1 ≤ k ≤ K
}

. (11)
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We introduce the orthogonal projection operator �i
δ defined on H1

0 (�) into Xi
δ . If w ∈

H1
0 (�), �i

δw belongs to Xi
δ such that:

∀tδ ∈ Xi
δ ,

(
∂(w – �i

δw)
∂x

,
∂tδ
∂x

)

= 0. (12)

By employing the Galerkin method along with numerical integration, we formulate the
discrete problem derived from problem (3) as follows: Given that u0 and v0 are continuous
over �, the task is to find (ui

δ , 0 ≤ i ≤ I) in
∏I

i=0 Xi
δ such that:

u0
δ = iδu0 and u1

δ = iδu0 + τ0iδv0, (13)

∀vδ ∈ Xi+1
δ ,

(
ui+1

δ – �i+1
δ ui

δ

τi
–

ui
δ – �i

δui–1
δ

τi–1
, vδ

)

δ

+ τi

(
∂ui+1

δ

∂x
∂vδ

∂x

)

δ

= 0. (14)

As in the problem (4), we prove that ui+1
δ , 1 ≤ i ≤ I is the solution of the following discrete

variational problem:
Find ui+1

δ in Xi+1
δ such that:

∀vδ ∈ Xi+1
δ ,

(
ui+1

δ , vδ

)

δ
+ τ 2

i

(
∂ui+1

δ

∂x
,
∂vδ

∂x

)

δ

=
(

�i+1
δ ui

δ +
τi

τi–1

(
ui

δ – �i
δui–1

δ

)
, vδ

)

δ

. (15)

Hence, utilizing the Lax–Milgram theorem, we readily establish that the problem (13)-(14)
possesses a unique solution.

Remark 1 Opting to utilize various spectral meshes at each time step led us to employ the
�i

δ operators, diverging from the conventional approach of fixed-grid spectral discretiza-
tion for the wave equation (as outlined in [21]).

3 A posteriori analysis of the discretizations
In this section, we commence by introducing two sets of error indicators. The first pertains
to the temporal discretization, while the second addresses the spectral discretization. We
establish upper and lower bounds on the error, initially concentrating on the temporal
discretization, followed by an examination of the spatial discretization.

3.1 A posteriori analysis of the time discretization
We define the time indicators for each 1 ≤ i ≤ I ,

κi = τi

∥
∥
∥
∥
∂(ui+1

δ – ui
δ)

∂x

∥
∥
∥
∥ + τi

∥
∥
∥
∥

ui+1
δ – �i+1

δ ui
δ

τi
–

ui
δ – �i

δui–1
δ

τi–1

∥
∥
∥
∥. (16)

This type of time indicators was initially introduced in [11]. Additionally, their utilization
in the a posteriori analysis of the finite element discretization of certain parabolic prob-
lems (such as the heat equation) can be found in [6]. It is worth noting that given the
knowledge of the discrete solutions ui+1

δ , ui
δ , and ui–1

δ , the time indicator κi can be readily
computed.
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Let vi = ui–ui–1

τi–1
for 1 ≤ i ≤ I . Thus, the residual problem if U =

(u
v
)
, and Uτ =

(uτ

vτ

)
is:

⎧
⎪⎪⎨

⎪⎪⎩

∂t(U – Uτ ) – ( 0 1
� 0)(U – Uτ ) = ( Du

Dv
) in �×]0, T[,

u – uτ = 0 on �×]0, T[,

(U – Uτ )(·, 0) = 0 in �,

(17)

where Du(x, t) = v – vτ , for ti ≤ t ≤ ti+1, 1 ≤ i ≤ I – 1, and Du(x, t) = 0, for 0 ≤ t ≤ t1 likewise
Dv(x, t) = ∂2(u–uτ )

∂x2 , for ti ≤ t ≤ ti+1, 1 ≤ i ≤ I – 1 and Dv(x, t) = ∂2uτ

∂x2 , for 0 ≤ t ≤ t1.

Proposition 3 The a posteriori error estimate between the solution u of problem (1) with
f = 0, and the solution (ui)0≤i≤I of problem (3), remains valid for 0 ≤ i ≤ I :

∥
∥
∥
∥(∂tu)(ti+1) –

ui+1 – ui

τi

∥
∥
∥
∥

H–1(�)
+

∥
∥u(ti+1) – ui+1∥∥

≤ C

( i∑

j=1

τj

(∥
∥
∥
∥
∂(uj+1 – uj+1

δ )
∂x

∥
∥
∥
∥ +

∥
∥
∥
∥
∂(uj – uj

δ)
∂x

∥
∥
∥
∥

)

+
∥
∥
(
uj+1 – uj+1

δ

)
–

(
uj – �

j+1
δ uj

δ

)∥
∥

+
(

τj

τj–1

)
∥
∥
(
uj – uj

δ

)
–

(
uj–1 – �

j
δuj–1

δ

)∥
∥ + κj + τ0‖∇u0‖ + τ 2

0 ‖∇v0‖
)

.

(18)

Proof Taking the inner product of (17) with
( u–uδ

�–1(v–vδ )

)
yields:

�(t) =
(‖u – uδ‖2 + ‖v – vδ‖2

H–1(�)
) 1

2 .

Thus,

1
2

d2�

dt
= (Du, u – uδ) +

(
Dv,�–1(v – vδ)

) ≤ (‖Du‖2 + ‖Dv‖2
H–1(�)

) 1
2 �.

So,

d�

dt
≤ (‖Du‖2 + ‖Dv‖2

H–1(�)
) 1

2 ≤ ‖Du‖ + ‖Dv‖H–1(�). (19)

Since �(0) = 0, then by integration (19) between 0 and ti+1, we have

�(ti+1) ≤
∫ ti+1

0

(‖Du‖ + ‖Dv‖H–1(�)
)

dt.

Since

∀t ∈ [tj, tj+1], uτ (t) = uj+1 –
tj+1 – t

τj

(
uj+1 – uj),
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then

∫ tj+1

tj

‖Dv‖H–1(�) dt =
∂2(uj+1 – uj)

∂x2

∫ tj+1

tj

(
tj+1 – t

τj

)

dt

=
(

τj

2

)(
∂2(uj+1 – uj)

∂x2

)

.

And we conclude by the triangular inequality

∥
∥
∥
∥
∂2(uj+1 – uj)

∂x2

∥
∥
∥
∥ ≤

∥
∥
∥
∥
∂2(uj+1

δ – uj
δ)

∂x2

∥
∥
∥
∥ +

∥
∥
∥
∥
∂2(uj+1 – uj+1

δ )
∂x2

∥
∥
∥
∥ +

∥
∥
∥
∥
∂2(uj – uj

δ)
∂x2

∥
∥
∥
∥.

Employing identical arguments, we evaluate
∫ tj+1

tj
‖Du‖dt. The combination of all these

inequalities yields the desired result (18). �

In the forthcoming proposition, we establish an upper bound for the error indicators κi

for each 0 ≤ i ≤ I .

Proposition 4 For indicators κi, 0 ≤ i ≤ I , the following estimate is applicable:

κi ≤
∥
∥
∥
∥

∫ ti+1

ti

∂2(u – uδ)
∂x2 dt

∥
∥
∥
∥ +

∥
∥
∥
∥

∫ ti+1

ti

(v – vδ) dt
∥
∥
∥
∥

+
1∑

k=0

∥
∥
∥
∥(∂tu)(ti+1–k) –

ui+1–k – ui–k

τi–k

∥
∥
∥
∥

H–1(�)
+

∥
∥u(ti+1–k) – ui+1–k∥∥

+ τi

1∑

k=0

∥
∥
∥
∥
∂2(ui+1–k – ui+1–k

δ )
∂x2

∥
∥
∥
∥

+
∥
∥
∥
∥

(ui+1–k – ui+1–k
δ ) – (ui–k – �i+1–k

δ ui–k
δ )

τi–k

∥
∥
∥
∥.

(20)

Proof Applying the triangle inequality, we only need to bound the following terms:

τi

∥
∥
∥
∥
∂2(ui+1 – ui)

∂x2

∥
∥
∥
∥, τi

∥
∥vi+1 – vi∥∥. (21)

i) To bound the first term in (21), we take the inner product of the second line of (17) with
(ui+1 – ui) and integrate over the time interval [ti, ti+1]. Thus, we obtain:

τi

2

∥
∥
∥
∥
∂2(ui+1 – ui)

∂x2

∥
∥
∥
∥

2

≤
∫ ti+1

ti

(
∂t(v – vτ ), ui+1 – ui)dt

+
(∫ ti+1

ti

∂2(u – uτ )
∂x2 dt,

∂2(ui+1 – ui)
∂x2

)

.
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Then, through integration by parts, we deduce that

τi

2

∥
∥
∥
∥
∂2(ui+1 – ui)

∂x2

∥
∥
∥
∥

2

≤
(

(∂tu)(ti+1) –
ui+1 – ui

τi
, ui+1 – ui

)

–
(

(∂tu)(ti) –
ui – ui–1

τi–1
, ui+1 – ui

)

+
(∫ ti+1

ti

∂2(u – uτ )
∂x2 dt,

∂2(ui+1 – ui)
∂x2

)

.

Applying Cauchy–Schwarz inequality then

τi

2

∥
∥
∥
∥
∂2(ui+1 – ui)

∂x2

∥
∥
∥
∥ ≤

∥
∥
∥
∥(∂tu)(ti+1) –

ui+1 – ui

τi

∥
∥
∥
∥

H–1(�)

+
∥
∥
∥
∥(∂tu)(ti) –

ui – ui–1

τi–1

∥
∥
∥
∥

H–1(�)

+
∥
∥
∥
∥

∫ ti+1

ti

∂2(u – uτ )
∂x2 dt

∥
∥
∥
∥.

ii) Similarly to estimating the first term in (21), for bounding the second term of (21), we
take the inner product of the first equation in (17) with vi+1 – vi and integrate over the
interval [ti, ti+1]. This yields:

τi

2
∥
∥vi+1 – vi∥∥2 ≤ (

u(ti+1) – ui+1, vi+1 – vi) –
(
u(ti) – ui, vi+1 – vi)

–
(∫ ti+1

ti

(v – vτ ) dt, vi+1 – vi
)

.

This allows us to derive the estimate (20). �

3.2 A posteriori analysis of the spectral discretization
For each 1 ≤ i ≤ I and each �k , 1 ≤ k ≤ K , we define the spectral indicators

βk
i =

∥
∥ui

δ – �i+1
δ ui

δ

∥
∥ + N–1

k

∥
∥
∥
∥

ui+1
δ – �i+1

δ ui
δ

τi
–

ui
δ – �i

δui–1
δ

τi–1

∥
∥
∥
∥. (22)

These indicators are local and respect both the time and spatial variables, depending on
the local discrete solution. Consequently, they can be explicitly computed for each time
iteration. It is noteworthy that the first term in (22) arises due to the utilization of dif-
ferent spatial meshes across various time levels, while the other term is consistent with
standard residual-based error bounds for the elliptic equation (refer to [1]). Subsequently,
the residual problem is derived from the system (13)–(14). For each 1 ≤ i ≤ I , we define:

vi =
ui – ui–1

τi–1
, vi

δ =
ui

δ – �i
δui–1

δ

τi–1
, eui

δ = ui – ui
δ , evi

δ = vi – vi
δ . (23)
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Thus, from problems (3) and (13)–(14), we deduce that the error vector Ei
δ =

(eui
δ

evi
δ

)
consti-

tutes the solution to the following residual problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ei+1
δ –Ei

δ

τi
– ( 0 1

� 0)Ei+1
δ = ( ξui

δ

ξvi
δ

) in �, 0 ≤ i ≤ I,

eui+1
δ = 0 on �, 0 ≤ i ≤ I,

E1
δ = ( u0–u0

δ +τ0(v0–v0
δ )

v0–v0
δ

) in �.

(24)

The two terms ξui
δ and ξvi

δ belongs to H–1(�) and are defined as

〈
ξui

δ , v
〉
=

(
ui

δ – �i+1
δ ui

δ

τi
, v

)

〈
ξvi

δ , v
〉

= –
1
τi

(
ui

δ – �i+1
δ ui

δ

τi
–

ui
δ – �i

δui–1
δ

τi–1
, v

)

–
(

∂ui+1
δ

∂x
,
∂v
∂x

)

,
(25)

where 〈·, ·〉 is the duality product between H–1(�), and H1
0 (�). The proposition following

this deals with bounding the error estimate using the refinement spectral indicators.

Proposition 5 The a posteriori error estimate between the solution (ui) of problem (3) and
the solution (ui

δ) of problem (13)-(14) holds for all 1 ≤ i ≤ I – 1,

∥
∥
∥
∥

(ui+1 – ui+1
δ ) – (ui – �i+1

δ ui
δ)

τi

∥
∥
∥
∥

H–1(�)
+

∥
∥ui+1 – ui+1

δ

∥
∥

≤ C

( i∑

j=1

( K∑

k=1

(
βk

j
)2

) 1
2

+
∥
∥u0 – u0

δ

∥
∥ + τ0

∥
∥v0 – v0

δ

∥
∥

)

.

(26)

Proof Applying inequality (6) to the residual problem (24), and noting that for any a ≥ 0,
b ≥ 0, 1√

2 (a + b) ≤ √
a2 + b2 ≤ a + b, we derive:

∥
∥evi+1

δ

∥
∥

H–1(�) +
∥
∥eui+1

δ

∥
∥ ≤ C

(
∥
∥ev1

δ

∥
∥

H–1(�) +
∥
∥eu1

δ

∥
∥

+
i∑

j=1

τj
(∥
∥ξvj+1

δ

∥
∥

H–1(�) +
∥
∥ξuj+1

δ

∥
∥
)
)

.

(27)

Next, we need to constrain the terms on the right-hand side of inequality (27). The upper
bounds of ‖eu1

δ‖H–1(�) and ‖ev1
δ‖ are established using the final equation of the system (24).

By utilizing the definition of ξui
δ , we demonstrate that

∥
∥ξuj+1

δ

∥
∥ =

∥
∥
∥
∥

uj
δ – �

j+1
δ uj

δ

τj

∥
∥
∥
∥ =

1
τj

( K∑

k=1

∥
∥uj

δ – �
j+1
δ uj

δ

∥
∥2

L2(�k )

) 1
2

.

Since,

∥
∥ξvj+1

δ

∥
∥

H–1(�) = sup
v∈H1

0 (�)

〈ξvj+1
δ , v〉
‖v‖ ,
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and using the equality (14), we have for any v ∈ H1
0 (�) and vδ ∈ Xi

δ

∥
∥ξvj+1

δ

∥
∥

H–1(�) = –
1
τj

(
uj+1

δ – �
j+1
δ uj

δ

τj
–

uj
δ – �

j
δuj–1

δ

τj–1
, v – vδ

)

–
(

∂uj
δ

∂x
,
∂(v – vδ)

∂x

)

.

We consider for any function v ∈ H1
0 (�) the function

vδ =
K∑

k=1

π
1,0
Nk –1

(
v – v(ak–1)ψk–1 – v(ak)ψk

)
+

K∑

k=1

v(ak)ψk ,

Here, ψk represents affine functions on �k , which are equal to 1 at node ak and 0 at other
nodes al for l = k. π

1,0
Nk –1 denotes the orthogonal projection operator from H1

0 (�k) onto
PNk (�k) ∩ H1

0 (�k). For properties of this operator, we refer the reader to [25]. Since v ∈
H1

0 (�), the function vδ belongs to the space Xδ . Subsequently, through integration by parts,
we derive:

∥
∥ξvj+1

δ

∥
∥

H–1(�) = –
1
τj

(
uj+1

δ – �
j+1
δ uj

δ

τj
–

ui
δ – �

j
δuj–1

δ

τj–1
, v – vδ

)

.

Therefore, we establish result (26) by employing the Cauchy–Schwarz inequality. �

The following proposition concerns the upper bound estimate of the spectral indicators.

Proposition 6 The subsequent estimate is valid for the indicators βk
i , where 1 ≤ i ≤ I .

βk
i ≤ C

( 1∑

j=0

(∥
∥
∥
∥

(ui+1–j – ui+1–j
δ ) – (ui–j – �

i+1–j
δ ui–j

δ )
τi–j

∥
∥
∥
∥

H–1(�k )

+
∥
∥ui+1–j – ui+1–j

δ

∥
∥

L2(�k )

)

+ τi

(∥
∥
∥
∥

(ui+1 – ui+1
δ ) – (ui – �i+1

δ ui
δ)

τi

∥
∥
∥
∥

L2(�k )

+
∥
∥
∥
∥
∂(ui+1 – ui+1

δ )
∂x

∥
∥
∥
∥

L2(�k )

))

,

(28)

where C is a positive constant independent of τ and δ.

Proof We successively bound the two terms in βk
i , labeled as β1

k
i and β2

k
i . From the first

equation of system (24), we have:

eui+1
δ – eui

δ

τi
– evi+1

δ = ξui+1
δ =

ui
δ – �i+1

δ ui
δ

τi
.

Next, we take the L2 norm of this equation and multiply by τi, resulting in:

β1
k
i ≤

1∑

j=0

∥
∥ui+1–j – ui+1–j

δ

∥
∥

L2(�k ) + τi

∥
∥
∥
∥

(ui+1 – ui+1
δ ) – (ui – �i+1

δ ui
δ)

τi

∥
∥
∥
∥

L2(�k )
. (29)

Let vδ be the function defined as ( ui+1
δ –�i+1

δ ui
δ

τi
– ui

δ–�i
δui–1

δ

τi–1
)ψk on the interval �k , and 0 else-

where on �\�k , where ψk represents affine functions on �k equal to 1 at the node ak and
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0 at other nodes al for l = k. Then, we demonstrate through integration by parts that:

〈
ξvi+1

δ , vδ

〉
= –

1
τi

∥
∥
∥
∥

(
ui+1

δ – �i+1
δ ui

δ

τi
–

ui
δ – �i

δui–1
δ

τi–1

)

ψ
1
2

k

∥
∥
∥
∥

2

L2(�k )
.

Therefore, taking the inner product of the second equation of system (24) with –τivδ yields:

–
1
τi

∥
∥
∥
∥

(
ui+1

δ – �i+1
δ ui

δ

τi
–

ui
δ – �i

δui–1
δ

τi–1

)

ψ
1
2

k

∥
∥
∥
∥

2

L2(�k )

≤
( 1∑

j=0

∥
∥
∥
∥

(ui+1–j – ui+1–j
δ ) – (ui–j – �

i+1–j
δ ui–j

δ )
τi–j

∥
∥
∥
∥

H–1(�k )

+
∥
∥
∥
∥
∂(ui+1 – ui+1

δ )
∂x

∥
∥
∥
∥

L2(�k )

)∥
∥
∥
∥
∂vδ

∂x

∥
∥
∥
∥

L2(�k )
.

We now employ the following two inverse inequalities (refer to [25] and [26] for the proof ).
For any ϕN ∈ PN (�), we have:

∫ 1

–1

(
ϕ′

N
)2(ζ )

(
1 – ζ 2)2 dζ ≤ cN2

∫ 1

–1
ϕ2

N (ζ )
(
1 – ζ 2)dζ ,

and

∫ 1

–1
ϕ2

N (ζ ) dζ ≤ c N2
∫ 1

–1
ϕ2

N (ζ )
(
1 – ζ 2)dζ .

Combining all these inequalities, we deduce the existence of a constant C such that:

β2
k
i ≤ C

( 1∑

j=0

∥
∥
∥
∥

(ui+1–j – ui+1–j
δ ) – (ui–j – �

i+1–j
δ ui–j

δ )
τi–j

∥
∥
∥
∥

H–1(�k )

+
∥
∥
∥
∥
∂(ui+1 – ui+1

δ )
∂x

∥
∥
∥
∥

L2(�k )

)

.

(30)

Ultimately, by considering (29) and (30), we obtain the desired result (28). �

4 Conclusion
In the discretization of partial differential equations, a posteriori analysis proves highly
effective for mesh adaptivity. Our focus in this work lies in applying a posteriori analysis to
the discretization of the second-order wave equation using the spectral element method.
We have developed two types of residual indicators and established their optimal upper
and lower error bounds. The resolution algorithm and implementation of these findings
will be detailed in our forthcoming paper.
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33. Zhang, J., Zhang, W., Rădulescu, V.D.: Double phase problems with competing potentials concentration and
multiplication of ground states. Math. Z. 301, 4037–4078 (2022)
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