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Abstract
In this paper, we consider a (φ1,φ2)-Laplacian system as follows:

{
�φ1(�u(t – 1)) +∇uF(t,u(t), v(t)) = 0,

�φ2(�v(t – 1)) +∇vF(t,u(t), v(t)) = 0,

where F(t,u(t), v(t)) = –K (t,u(t), v(t)) +W(t,u(t), v(t)) is T -periodic in t. By using the
mountain pass theorem, we obtain that the (φ1,φ2)-Laplacian system has at least one
periodic solution ifW is asymptotically (p,q)-linear at infinity. Our results improve and
extend some known works.
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1 Introduction
Let N , Z, and R represent the sets of all natural numbers, integers, and real numbers, re-
spectively. In this paper, we investigate the following (φ1,φ2)-Laplacian difference system:

⎧⎨
⎩�φ1(�u(t – 1)) + ∇uF(t, u(t), v(t)) = 0

�φ2(�v(t – 1)) + ∇vF(t, u(t), v(t)) = 0,
(1.1)

where � is the forward difference operator, t ∈ Z, u, v ∈ R
N , F(t, x1, x2) = –K(t, x1, x2) +

W (t, x1, x2), K , W : Z×R
N ×R

N → R are T-periodic in t, φi, i = 1, 2 satisfy the following
condition:

(A0) φi : RN → R
N , and φi(0) = 0, φi = ∇�i, �i ∈ C1(RN , [0, +∞)) strictly convex,

�i(0) = 0.
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Remark 1.1 Condition (A0) is introduced in [1, 2] to depict the classical homeomorphism.
If �i(x) → +∞ (|x| → ∞), there exists δi > 0 such that

�i(x) ≥ δi
(|x| – 1

)
, x ∈R

N ,

where δi = min�i(x), (|x| = 1, i = 1, 2).

The variational method (see [3–5]) has become an important method to study periodic
solutions, homoclinic solutions, ground state solutions, sign-changing solutions of differ-
ential equations ([6–9]), difference equations ([10–12]), Hamiltonian systems ([13–18]),
poly-Laplacian system ([19, 20]), fractional problems ([21–23]), and so on. The nonlinear
difference equations have become an important theoretical basis for computer science,
ecology, engineering control, economics, etc. Mawhin ([1, 2]) considered the existence of
periodic solutions for φ-Laplacian difference systems:

�φ
[
�u(t – 1)

]
= ∇uF

[
n, u(t)

]
+ h(t) (t ∈ Z), (1.2)

where φ = ∇�, φ : RN → Ba ⊂ R
N or φ : Ba → R

N . He studied three cases of φ: (1) φ :
R

N →R
N ; (2) φ : RN → Ba (a < +∞); (3) φ : Ba ⊂R

N → R
N .

Zhang and Wang in [24] investigated the existence of homoclinic solutions for the fol-
lowing (φ1,φ2)-Laplacian systems:

⎧⎨
⎩�φ1(�u1(t – 1)) + ∇u1 V (t, u1(t), u2(t)) = f1(t)

�φ2(�u2(t – 1)) + ∇u2 V (t, u1(t), u2(t)) = f2(t),
(1.3)

where φ : RN → R
N , when V = –K + W , K possess p-sublinear, W possess p-superlinear

growth, by using a linking theorem, they obtained the existence of homoclinic solutions
for system (1.3). In [25], Deng et al. studied the existence of periodic solution for system
(1.3) with classical or bounded homeomorphism f1 = f2 = 0. Using the saddle point the-
orem and the least action principle, they obtained that system has at least one periodic
solution under (p, q)-sublinear condition and Lipschitz condition. In [26], Zhang et al.
studied the (φ1,φ2)-Laplacian difference system with a parameter. Using the Clark’s theo-
rem, they obtained system has multiplicity results of homoclinic solutions under sub(p, q)-
linear growth or (p, q)-linear growth. In [27], by using the genus theory, Wang et al. consid-
ered the existence and multiplicity of weak solution for (φ1,φ2)-Laplacian elliptic system,
under sub-linear growth condition and symmetric conditions. However, few people in-
vestigated the existence and multiplicity of solution for system (1.1) under asymptotically
linear growth.

Inspired by the results above, in this paper, we study the existence of periodic solu-
tions for (φ1,φ2)-Laplacian system (1.1) with classical homeomorphism, when W satisfies
asymptotically (p, q)-linear condition at infinity.

Theorem 1.1 Suppose that (A0) holds, K and W satisfy the following conditions:
(A1) there exist constants c1, c2 > 0, p, q > 1 such that

�1(x) ≥ c1|x|p, �2(y) ≥ c2|y|q,
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and

(
φ1(x), x

)
+

(
φ2(y), y

) ≤ max{p, q}[�1(x) + �2(y)
]
;

(K1) there exist constants b1, b2 > 0, λ1 ∈ (1, p], λ2 ∈ (1, q] such that

K(t, 0, 0) = 0, K(t, u, v) ≥ b1|u|λ1 + b2|v|λ2 , ∀(t, u, v) ∈ Z[1, T] ×R
N ×R

N ;

(K2)

(∇uK(t, u, v), u
)

+
(∇vK(t, u, v), v

) ≤ max{p, q}K(t, u, v),

∀(t, u, v) ∈ Z[1, T] ×R
N ×R

N ;

(W1)

lim sup
|(u,v)|→0

W (t, u, v)
|u|p + |v|q < min{b1, b2}, uniformly for t ∈ Z[1, T];

(W2) there exists g ∈ L1(Z[1, T],R) such that

(∇uW (t, u, v), u
)

+
(∇vW (t, u, v), v

)
– max{p, q}W (t, u, v) ≥ g(t)

and

lim
|(u,v)|→∞

[(∇uW (t, u, v), u
)

+
(∇vW (t, u, v), v

)
– max{p, q}W (t, u, v)

]
= +∞

∀t ∈ Z[1, T];

(W3) there exist constants a1, a2 > 0, d > 0 such that

W (t, u, v) ≤ a1|u|p + a2|v|q + d, ∀(t, u, v) ∈ Z[1, T] ×R
N ×R

N ;

(W4) there exists (u0, v0) ∈R
N ×R

N such that

T∑
t=1

[
K(t, u0, v0) – W (t, u0, v0) –

g(t)
max{p, q}

]
< 0.

Then system (1.1) possesses at least one nontrivial periodic solution.

Remark 1.2 There are many examples that satisfy (A0) and (A1), such as

φ1(x) = a0p|x|p–1 + b0|x|α–1, φ2(y) = c0q|y|q–1 + d0|y|β–1,

for some a0, b0, c0, d0 > 0, where 1 ≤ α ≤ p, 1 ≤ β ≤ q.

Remark 1.3 Theorem 1.1 extend the results in [12] (p-Laplacian discrete system) and [14]
(second-order Hamiltonian system). We consider the more general (φ1,φ2)-Laplacian sys-
tem (1.1). Even if φ1 = φ2 =: φ, u = v, F(t, u, v) ≡ F(t, v, u), system (1.1) is still different from
[12, 28], and [10].
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Remark 1.4 From (W 1)–(W 3), it can be concluded that W satisfies asymptotically (p, q)-
linear condition at infinity. Moreover, there are many examples that satisfy Theorem 1.1,
which we will illustrate in the fourth part.

2 Preliminaries
We use (·, ·) and | · | to represent the inner product and the Euclidean norm in R

N . De-
fine

ET =
{

u :=
{

u(t)
}∣∣u(t + T) = u(t), u(t) ∈R

N , t ∈ Z
}

,

and

‖u‖s =

( T∑
t=1

(∣∣�u(t)
∣∣s +

∣∣u(t)
∣∣s))1/s

, u ∈ ET .

Let E = ET × ET , for 	 = (u, v)τ ∈ E, define

‖ω‖ =
∥∥(u, v)

∥∥ = ‖u‖p + ‖v‖q.

Then E is separable and reflexive Banach space. Moreover, define

‖v‖[r] =

( T∑
t=1

∣∣v(t)
∣∣r
)1/r

, r > 1, ‖v‖∞ = max
t∈Z[1,T]

∣∣v(t)
∣∣.

For u, v ∈ ET , it is easy to obtain that there exists C0 > 0 such that

‖u‖∞ ≤ C0‖u‖p, ‖v‖∞ ≤ C0‖v‖q. (2.1)

Define J : E →R, as

J (u, v) =
T∑

t=1

[
�1

(
�u(t)

)
+ �2

(
�v(t)

)
– F

(
t, u(t), v(t)

)]
. (2.2)

Then J ∈ C1(E,R), for each 	 = (u, v)τ , ψ = (ψ1,ψ2)τ ∈ E, one can easily check that

〈
J ′(	 ),ψ

〉
=

〈
J ′(u, v), (ψ1,ψ2)

〉
=

〈
Ju(u, v),ψ1

〉
+

〈
Jv(u, v),ψ2

〉

=
T∑

t=1

[(
φ1

(
�u(t)

)
,�ψ1(t)

)
+

(∇uK
(
t, u(t), v(t)

)
,ψ1(t)

)

–
(∇uW

(
t, u(t), v(t)

)
,ψ1(t)

)]

+
T∑

t=1

[(
φ2

(
�v(t)

)
,�ψ2(t)

)
+

(∇vK
(
t, u(t), v(t)

)
,ψ2(t)

)

–
(∇vW

(
t, u(t), v(t)

)
,ψ2(t)

)]
.

(2.3)
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Lemma 2.1 (see [25]) For any 	 = (u, v)τ , ψ = (ψ1,ψ2)τ ∈ E, we have:

–
T∑

t=1

(
�φ1

(
�u(t – 1)

)
,ψ1(t)

)
=

T∑
t=1

(
φ1

(
�u(t)

)
,�ψ1(t)

)
,

–
T∑

t=1

(
�φ2

(
�v(t – 1)

)
,ψ2(t)

)
=

T∑
t=1

(
φ2

(
�v(t)

)
,�ψ2(t)

)
.

Through Lemma 2.1, we obtain

T∑
t=1

[(
φ1

(
�u(t)

)
,�ψ1(t)

)
+

(∇uK
(
t, u(t), v(t)

)
,ψ1(t)

)
–

(∇uW
(
t, u(t), v(t)

)
,ψ1(t)

)]

+
T∑

t=1

[(
φ2

(
�v(t)

)
,�ψ2(t)

)
+

(∇vK
(
t, u(t), v(t)

)
,ψ2(t)

)

–
(∇vW

(
t, u(t), v(t)

)
,ψ2(t)

)]

=
T∑

t=1

[
–
(
�φ1

(
�u(t – 1)

)
,ψ1(t)

)
+

(∇uK
(
t, u(t), v(t)

)
,ψ1(t)

)

–
(∇uW

(
t, u(t), v(t)

)
,ψ1(t)

)]

+
T∑

t=1

[
–
(
�φ2

(
�v(t – 1)

)
,ψ2(t)

)
+

(∇vK
(
t, u(t), v(t)

)
,ψ2(t)

)

–
(∇vW

(
t, u(t), v(t)

)
,ψ2(t)

)]

=
T∑

t=1

[(
–�φ1

(
�u(t – 1)

)
+ ∇uK

(
t, u(t), v(t)

)
– ∇uW

(
t, u(t), v(t)

)
,ψ1(t)

)]

+
T∑

t=1

[(
–�φ2

(
�v(t – 1)

)
+ ∇vK

(
t, u(t), v(t)

)
– ∇vW

(
t, u(t), v(t)

)
,ψ2(t)

)]
. (2.4)

From the above equation, we can easily obtain that the critical points ofJ in E are periodic
solutions of system (1.1).

Let X be a real Banach space. For J ∈ C1(X,R), we say that J satisfies the (PS)-condition,
if any sequence {	m} ∈ X, J(	m) is bounded, and J ′(	m) → 0 (m → ∞) possesses a con-
vergent subsequence.

Lemma 2.2 (see [4]) Suppose X is a real Banach space, J ∈ C1(X,R) satisfies the (PS)-
condition and the following conditions:

(i) J(0) = 0;
(ii) there exist constants ρ,α > 0 such that J|∂Bρ(0) ≥ α;
(iii) there exists e ∈ X \ Bρ(0) such that J(e) ≤ 0,

then J possesses a critical value c ≥ α given by

c = inf
g∈�

max
s∈[0,1]

J
(
g(s)

)
,
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where Bρ(0) is an open ball in X of radius ρ at 0, and

� =
{

g ∈ C
(
[0, 1], X

)
: g(0) = 0, g(1) = e

}
.

Remark 2.1 Under the weaker Cerami condition than (PS), the mountain pass theo-
rem still holds. A sequence {ωn} is called Cerami-sequence (henceforth denoted by (C)-
sequence), if J {ωn} is bounded and (1 +‖un‖)‖J ′(un)‖ → 0 (n → ∞), if any (C)-sequence
for J has a convergent subsequence, we call the functional J satisfies (C)-condition.

3 Proofs
Lemma 3.1 Assume that (A0), (A1), (K1), (K2), (W 2), and (W 3) hold. Then J satisfies
(C)-condition.

Proof Presume that {	n = (un, vn)τ } ⊂ E is a (C) sequence for J , then J (	n) is bounded,
(1 + ‖	n‖)‖J ′(	n)‖ → 0 (n → ∞). Hence, there exists M > 0 such that |J (	n)| ≤ M,
(1 + ‖	n‖)‖J ′(	n)‖ ≤ M. Then, by (2.2), (2.3), (A1), and (K2), we have

(
1 + max{p, q})M ≥ max{p, q}J (un, vn) –

〈
Jun (un, vn), un

〉
–

〈
Jvn (un, vn), vn

〉

≥
T∑

t=1

[(∇un W
(
t, un(t), vn(t)

)
, un(t)

)
+

(∇vn W
(
t, un(t), vn(t)

)
, vn(t)

)

– max{p, q}W(
t, un(t), vn(t)

)]
. (3.1)

Now, we demonstrate that {	n = (un, vn)τ } is bounded, through contradiction. If {	n} is
unbounded, then {	n} has a subsequence, still remember {	n = (un, vn)τ }, and ‖un‖p +
‖vn‖q → +∞, (n → ∞). Therefore, we can suppose that ‖un‖p → +∞. Then there are
two situations.

(i): ‖vn‖q → +∞
Let z(n)

1 = un
‖un‖p

, z(n)
2 = vn

‖vn‖q
, then ‖z(n)

1 ‖p = 1 and ‖z(n)
2 ‖q = 1. Hence, {z(n)

i }(i = 1, 2) has a

convergent subsequence, still remember {z(n)
i }(i = 1, 2), such that z(n)

i → zi(i = 1, 2), (n →
∞), for some (z1, z2) ∈ E. Then

z(n)
1 (t) → z1(t), z(n)

2 (t) → z2(t), for all t ∈ Z, as n → ∞. (3.2)

By (A1), (K1), and (W3), we have

J (un, vn) =
T∑

t=1

[
�1

(
�un(t)

)
+ �2

(
�vn(t)

)
+ K

(
t, un(t), vn(t)

)
– W

(
t, un(t), vn(t)

)]

≥ min{c1, c2}
T∑

t=1

[∣∣�un(t)
∣∣p +

∣∣�vn(t)
∣∣q] –

T∑
t=1

[
a1

∣∣un(t)
∣∣p + a2

∣∣vn(t)
∣∣q] – dT

≥ C1
(‖un‖p

p + ‖vn‖q
q
)

– C2

[ T∑
t=1

∣∣un(t)
∣∣p +

T∑
t=1

∣∣vn(t)
∣∣q

]
– dT , (3.3)

where C1 = min{c1, c2}, C2 = min{c1, c2} + max{a1, a2}. Then, we have

J (un, vn)
‖un‖p

p + ‖vn‖q
q

≥ C1 – C2

[ ∑T
t=1 |un(t)|p

‖un‖p
p + ‖vn‖q

q
+

∑T
t=1 |vn(t)|q

‖un‖p
p + ‖vn‖q

q

]
–

dT
‖un‖p

p + ‖vn‖q
q
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≥ C1 – C2

[ T∑
t=1

|un(t)|p
‖un‖p

p
+

T∑
t=1

|vn(t)|q
‖vn‖q

q

]
–

dT
‖un‖p

p + ‖vn‖q
q

≥ C1 – C2

[ T∑
t=1

∣∣z(n)
1 (t)

∣∣p +
T∑

t=1

∣∣z(n)
2 (t)

∣∣q
]

–
dT

‖un‖p
p + ‖vn‖q

q
. (3.4)

Taking the limit of the above inequality, by (3.2), we have

T∑
t=1

∣∣z1(t)
∣∣p +

T∑
t=1

∣∣z2(t)
∣∣q ≥ C1

C2
> 0, (3.5)

then, there exists a set �1 = {t ∈ Z : z1(t) = 0 or z2(t) = 0} = φ ⊂ Z such that

∣∣z1(t)
∣∣ +

∣∣z2(t)
∣∣ > 0, ∀t ∈ �1.

Thus

lim
n→∞

∣∣un(t)
∣∣ +

∣∣vn(t)
∣∣ = +∞, for all t ∈ �1. (3.6)

Then, by (3.6) and (W 2), for t ∈ �1, we have

lim
n→∞

[(∇un W
(
t, un(t), vn(t)

)
, un(t)

)
+

(∇vn W
(
t, un(t), vn(t)

)
, vn(t)

)
– max{p, q}W(

t, un(t), vn(t)
)]

= +∞. (3.7)

By (A2), (3.6), and (3.7), we get

lim
n→∞ inf

T∑
t=1

[(∇un W
(
t, un(t), vn(t)

)
, un(t)

)
+

(∇vn W
(
t, un(t), vn(t)

)
, vn(t)

)

– max{p, q}W(
t, un(t), vn(t)

)]
≥ lim

n→∞ inf
∑
t∈�1

[(∇un W
(
t, un(t), vn(t)

)
, un(t)

)
+

(∇vn W
(
t, un(t), vn(t)

)
, vn(t)

)

– max{p, q}W(
t, un(t), vn(t)

)]
+

∑
t∈Z[1,T]\�1

g(t)

≥
∑
t∈�1

lim
n→∞ inf

[(∇un W
(
t, un(t), vn(t)

)
, un(t)

)
+

(∇vn W
(
t, un(t), vn(t)

)
, vn(t)

)

– max{p, q}W(
t, un(t), vn(t)

)]
+

∑
t∈Z[1,T]\�1

g(t)

= +∞, (3.8)

which contradicts (3.1). Hence {un} is bounded.
(ii): ‖vn‖q is boundness
For this case, there exists C3 > 0 such that

‖un‖p → +∞, as n → ∞, and ‖vn‖q ≤ C3.
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Let z(n)
1 = un

‖un‖p
, then ‖z(n)

1 ‖p = 1. Hence, {z(n)
1 } has a convergent subsequence, still re-

member {z(n)
1 }, such that z(n)

1 → z1, (n → ∞), for some z1 ∈ ET . Then

z(n)
1 (t) → z1(t), for all t ∈ Z, as n → ∞. (3.9)

Hence, we have

J (un, vn)
‖un‖p

p + ‖vn‖q
q

≥ C1 – C2

[ ∑T
t=1 |un(t)|p

‖un‖p
p + ‖vn‖q

q
+

∑T
t=1 |vn(t)|q

‖un‖p
p + ‖vn‖q

q

]
–

dT
‖un‖p

p + ‖vn‖q
q

≥ C1 – C2

[ T∑
t=1

|un(t)|p
‖un‖p

p
+

T∑
t=1

|vn(t)|q
‖un‖p

p

]
–

dT
‖un‖p

p

≥ C1 – C2

T∑
t=1

∣∣z(n)
1 (t)

∣∣p – C2
Cq

3

‖un‖p
p

–
dT

‖un‖p
p

. (3.10)

Let n → ∞. (3.10) implies that

T∑
t=1

∣∣zn
1(t)

∣∣p > 0,

then, there exists a set �2 = {t ∈ Z : z1(t) = 0} = φ ⊂ Z such that

∣∣z1(t)
∣∣ > 0, ∀t ∈ �2.

Thus

lim
n→∞

∣∣un(t)
∣∣ +

∣∣vn(t)
∣∣ = +∞, for all t ∈ �2. (3.11)

The remaining proof is similar to the case (i), we can also get that {un} is bounded. �

Likewise, we can show that {vn} is bounded. So {	n = (un, vn)τ } is bounded in E. Mean-
while, E is finite dimensional, thus there exists a convergent subsequence. Then J satisfies
(C)-condition.

Lemma 3.2 Assume that (A0), (A1), (K1), (W 1), and (W 3) hold, there exist ρ > 0, α > 0
such that J|∂Bρ(0) ≥ α.

Proof From (W 1) and (W 3), there exist constants 0 < ε < min{b1, b2, c1, c2}, τ1 > p, τ2 > q
and C4, C5 > 0 such that

W (t, u, v) ≤ (
min{b1, b2} – ε

)(|u|p + |v|q) + C4|u|τ1 + C5|v|τ2 . (3.12)

Let

ρ = min

{
1

max{p, q}C0
,
(

ε

pC4TCτ1
0

) 1
τ1–p

,
(

ε

qC5TCτ2
0

) 1
τ2–q

}
.
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‖u‖p ≤ ‖(u, v)‖ = ρ , ‖v‖q ≤ ‖(u, v)‖ = ρ , then |u(t)| ≤ ‖u‖∞ ≤ C0‖u‖p ≤ C0ρ < 1, |v(t)| ≤
‖v‖∞ ≤ C0‖v‖q ≤ C0ρ < 1. Then, from (2.1), (2.2), (3.12), (A1), and (K1), we have

J (u, v) =
T∑

t=1

[
�1

(
�u(t)

)
+ �2

(
�v(t)

)
+ K

(
t, u(t), v(t)

)
– W

(
t, u(t), v(t)

)]

≥ c1

T∑
t=1

∣∣�u(t)
∣∣p + c2

T∑
t=1

∣∣�v(t)
∣∣q + b1

T∑
t=1

∣∣u(t)
∣∣λ1 + b2

T∑
t=1

∣∣v(t)
∣∣λ2

–
(
min{b1, b2} – ε

) T∑
t=1

∣∣u(t)
∣∣p

–
(
min{b1, b2} – ε

) T∑
t=1

∣∣v(t)
∣∣q – C4

T∑
t=1

∣∣u(t)
∣∣τ1 – C5

T∑
t=1

∣∣v(t)
∣∣τ2

≥ ε

( T∑
t=1

∣∣�u(t)
∣∣p +

T∑
t=1

∣∣u(t)
∣∣p

)
+ ε

( T∑
t=1

∣∣�v(t)
∣∣q +

T∑
t=1

∣∣v(t)
∣∣q

)

– C4

T∑
t=1

∣∣u(t)
∣∣τ1 – C5

T∑
t=1

∣∣v(t)
∣∣τ2

≥ ε‖u‖p
p + ε‖v‖q

q – C4T‖u‖τ1∞ – C5T‖v‖τ2∞

≥ ε‖u‖p
p + ε‖v‖q

q – C4TCτ1
0 ‖u‖τ1

p – C5TCτ2
0 ‖v‖τ2

q

≥ (
ε – C4TCτ1

0 ‖u‖τ1–p
p

)‖u‖p
p +

(
ε – C5TCτ2

0 ‖v‖τ2–q
q

)‖v‖q
q

≥ min
{
ε – C4TCτ1

0 ρτ1–p, ε – C5TCτ2
0 ρτ2–q}(‖u‖p

p + ‖v‖q
q
)

≥ ε min

{
1 –

1
p

, 1 –
1
q

}
1

max{2p–1, 2q–1}
(‖u‖p + ‖v‖q

)min{p,q}

= ε min

{
1 –

1
p

, 1 –
1
q

}
1

max{2p–1, 2q–1}
∥∥(u, v)

∥∥min{p,q}. (3.13)

Let α := ε min{1 – 1
p , 1 – 1

q } 1
max{2p–1,2q–1}ρ

min{p,q} > 0. So (3.13) shows that ‖(u, v)‖ = ρ implies
that J (u, v) ≥ α. �

Lemma 3.3 Assume that (A0), (K2), (W 2), and (W 4) hold. Then J(u∗, v∗) ≤ 0, where
(u∗, v∗) ∈ E \ Bρ(0).

Proof Let ψ(s) = s– max{p,q}W (t, su0, sv0) (s > 0). By (W 2), we obtain

ψ ′(s) = s– max{p,q}–1[– max{p, q}W (t, su0, sv0) +
(∇su0 W (t, su0, sv0), su0

)
+

(∇sv0 W (t, su0, sv0), sv0
)]

≥ s– max{p,q}–1g(t),

Then

∫ ζ

1
ψ ′(s) ds ≥

∫ ζ

1
s– max{p,q}–1g(t) ds
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when ζ > 1, that is

W (t, ζu0, ζv0) ≥ ζ max{p,q}W (t, u0, v0) +
g(t)

max{p, q}
(
ζ max{p,q} – 1

)
. (3.14)

By (K2), we have

K(t, ζu0, ζv0) ≤ ζ max{p,q}K(t, u0, v0). (3.15)

Combining with (3.14), (3.15), and (W 4), we have

J (ζu0, ζv0) =
T∑

t=1

[
K(t, ζu0, ζv0) – W (t, ζu0, ζv0)

]

≤ ζ max{p,q}
T∑

t=1

[
K(t, u0, v0) – W (t, u0, v0) –

g(t)
max{p, q}

]

+
1

max{p, q}
T∑

t=1

g(t)

→ –∞, as ζ → ∞. (3.16)

Hence, there exists ζ0 large enough such that J (ζ0u0, ζ0v0) < 0. Let u∗ = ζ0u0 and v∗ = ζ0v0,
then J(u∗, v∗) ≤ 0. �

Proof of Theorem 1.1. Obviously, J (0, 0) = 0. By Lemma 2.2 and Lemmas 3.1–3.3, J has
a critical value c such that J (u, v) = c, J ′(u, v) = 0. Hence, (u, v) is a desired nontrivial
periodic solution of (1.1). �

4 Example
Example 4.1 Let

K(t, u, v) = b1|u|λ1 + b2|v|λ2 + θ1(t)|u|κ1 + θ2(t)|v|κ2 ,

W (t, u, v) = θ3(t)|u|max{p,q}
(

1 –
1

ln(e + |u|p)

)
+ θ4(t)|v|max{p,q}

(
1 –

1
ln(e + |v|q)

)
,

where b1, b2 > 0, θi ∈ l1(Z, [0, +∞))(i = 1, 2, 3, 4) and are T-periodic, 1 < λ1 < κ1 ≤ p, 1 <
λ2 < κ2 ≤ q, then K and W satisfy (K1), (K2), (W 1), and (W 3).

∇uW (t, u, v) = θ3(t) max{p, q}u|u|max{p,q}–2
(

1 –
1

ln(e + |u|p)

)

+ u|u|max{p,q}+p–2 pθ3(t)
(e + |u|p)(ln(e + |u|p))2 ,

∇vW (t, u, v) = θ4(t) max{p, q}v|v|max{p,q}–2
(

1 –
1

ln(e + |v|q)

)

+ v|v|max{p,q}+q–2 qθ4(t)
(e + |v|q)(ln(e + |v|q))2 ,
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so

(∇uW (t, u, v), u
)

+
(∇vW (t, u, v), v

)
– max{p, q}W (t, u, v)

= |u|max{p,q}+p pθ3(t)
(e + |u|p)(ln(e + |u|p))2 + |v|max{p,q}+q qθ4(t)

(e + |v|q)(ln(e + |v|q))2 ,

then it is easy to test that (W 2) holds.

T∑
t=1

[
K(t, u0, v0) – W (t, u0, v0) –

g(t)
max{p, q}

]

=
T∑

t=1

[
b1|u|λ1 + b2|v|λ2 + θ1(t)|u|κ1 + θ2(t)|v|κ2 – θ3(t)|u|max{p,q}

(
1 –

1
ln(e + |u|p)

)

– θ4(t)|v|max{p,q}
(

1 –
1

ln(e + |v|q)

)
–

g(t)
max{p, q}

]

= b1T |u|λ1 + b2T |v|λ2 + |u|κ1
T∑

t=1

θ3(t) + |v|κ2
T∑

t=1

θ4(t) –
‖g‖l1

max{p, q}

– |u|max{p,q}
(

1 –
1

ln(e + |u|p)

) T∑
t=1

θ1(t) – |v|max{p,q}
(

1 –
1

ln(e + |v|q)

) T∑
t=1

θ2(t)

if

T∑
t=1

θ1(t) >
T∑

t=1

θ3(t),
T∑

t=1

θ2(t) >
T∑

t=1

θ4(t),

there exists (u0, v0) ∈R
N ×R

N such that (W 4) holds. Hence, system (1.1) has one nontrival
T-periodic solution.
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