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where F(t, u(t), v(t)) = —K(t, u(t), v(t)) + W(t, u(t), v(t)) is T-periodic in t. By using the
mountain pass theorem, we obtain that the (¢+, ¢,)-Laplacian system has at least one
periodic solution if W is asymptotically (p, g)-linear at infinity. Our results improve and
extend some known works.
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1 Introduction
Let N, Z, and R represent the sets of all natural numbers, integers, and real numbers, re-

spectively. In this paper, we investigate the following (¢1, ¢»)-Laplacian difference system:

AP (Au(t - 1)) + V, F(t, u(t),v(£)) =0
Ado(Av(t — 1)) + V. F(t, u(t), v(t)) = 0,

(1.1)

where A is the forward difference operator, t € Z, u,v € RN, F(t,%1,%)) = =K (t,%1,%3) +
W (t,x1,%2), K, W :Z x RN x RN — R are T-periodic in ¢, ¢;,i = 1,2 satisfy the following
condition:

(A0) ¢; : RN — RN, and ¢,(0) = 0, ¢; = Vd;, ®; € CHRN,[0,+00)) strictly convex,
®,;(0) =0.
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Remark 1.1 Condition (A0) is introduced in [1, 2] to depict the classical homeomorphism.
If ®;(x) - +00 (Jx| = 00), there exists §; > 0 such that

D;(x) > 5i(|x| - 1), xeRY,
where §; = min ®;(x), (|x| = 1,i = 1,2).

The variational method (see [3—5]) has become an important method to study periodic
solutions, homoclinic solutions, ground state solutions, sign-changing solutions of differ-
ential equations ([6-9]), difference equations ([10-12]), Hamiltonian systems ([13-18]),
poly-Laplacian system ([19, 20]), fractional problems ([21-23]), and so on. The nonlinear
difference equations have become an important theoretical basis for computer science,
ecology, engineering control, economics, etc. Mawhin ([1, 2]) considered the existence of
periodic solutions for ¢-Laplacian difference systems:

Ap[Au(t-1)] = V,E[nu®)] + h(t) (t € Z), (1.2)

where ¢ = V&, ¢ : RN — B, C RY or ¢ : B, — RY. He studied three cases of ¢: (1) ¢ :
RN - RN; (2) ¢ : RN — B, (a < +00); (3) ¢ : B, CRN — RV,
Zhang and Wang in [24] investigated the existence of homoclinic solutions for the fol-

lowing (¢1, ¢,)-Laplacian systems:

A1 (Auyi(t - 1)) + V,, V(& ur (1), uz(2)) = f1(2)
Ao(Auy(t — 1)) + Vo, V(& ur (1), ua(2)) = f2(2),

(1.3)

where ¢ : RN — RN, when V = —-K + W, K possess p-sublinear, W possess p-superlinear
growth, by using a linking theorem, they obtained the existence of homoclinic solutions
for system (1.3). In [25], Deng et al. studied the existence of periodic solution for system
(1.3) with classical or bounded homeomorphism f; = f, = 0. Using the saddle point the-
orem and the least action principle, they obtained that system has at least one periodic
solution under (p, q)-sublinear condition and Lipschitz condition. In [26], Zhang et al.
studied the (¢1, ¢2)-Laplacian difference system with a parameter. Using the Clark’s theo-
rem, they obtained system has multiplicity results of homoclinic solutions under sub(p, q)-
linear growth or (p, g)-linear growth. In [27], by using the genus theory, Wang et al. consid-
ered the existence and multiplicity of weak solution for (¢1, ¢2)-Laplacian elliptic system,
under sub-linear growth condition and symmetric conditions. However, few people in-
vestigated the existence and multiplicity of solution for system (1.1) under asymptotically
linear growth.

Inspired by the results above, in this paper, we study the existence of periodic solu-
tions for (¢1, ¢2)-Laplacian system (1.1) with classical homeomorphism, when W satisfies
asymptotically (p, g)-linear condition at infinity.

Theorem 1.1 Suppose that (AO0) holds, K and W satisfy the following conditions:
(A1) there exist constants ¢y, ¢y >0, p,q > 1 such that

@1 (x) > c1lxl?, Dy(y) = calyl,
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and

(1), %) + (62(9),y) < max{p,q}[ P1(x) + P2(»)];
(K1) there exist constants by, by >0, A1 € (1,p], Ay € (1,9] such that

K(t,0,00=0,  K(tu,v)>bilul™ +bv|"2, Y(t,u,v) € Z[1,T] x RN x RN;
(K2)

(VuK (@t u,v), 1) + (VoK (8,4, v),v) < max{p, q}K(t,u,v),

V(¢ u,v) € Z[1,T] x RN x RY;

(W1)

W t’ ) .
lim supM <min{by, by}, uniformly fort € Z[1,T);
[(u,v)|—0 |u|p + |V|q

(W2) there exists g € L) (Z[1, T),R) such that
(VuW (t, u,v),u) + (V, W (t, u,v),v) — max{p, g} W (¢, u,v) > g(t)
and

’ ll)‘m [(Vu W(t,u,v), u) + (VVW(t, u, V),v) —max{p,q} W (¢, u, v)] = +00
u,v)|—o00

vVt e Z[1,T];
(W3) there exist constants ai,a, >0, d > 0 such that

Wt u,v) <ap|ul’ +av|?+d, V(& uv)eZ[1,T] x RN x RY;

(WA) there exists (1o, vo) € RN x RN such that

T

;[K(t, ug, Vo) — W (&, ug, vo) — %{Z’q}} <0.

Then system (1.1) possesses at least one nontrivial periodic solution.

Remark 1.2 There are many examples that satisfy (.40) and (A1), such as
$1(x) = aoplal” ™ +bolx*, $209) = cogqlyl”" +dolyl” ™,

for some ayg, by, co,dp >0, where 1l <o <p,1 < <q.

Remark 1.3 Theorem 1.1 extend the results in [12] (p-Laplacian discrete system) and [14]
(second-order Hamiltonian system). We consider the more general (¢1, ¢2)-Laplacian sys-
tem (1.1). Even if ¢ = ¢ =: ¢, u = v, F(t,u,v) = F(t, v, u), system (1.1) is still different from
[12, 28], and [10].
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Remark 1.4 From (W1)—(W3), it can be concluded that W satisfies asymptotically (p, g)-
linear condition at infinity. Moreover, there are many examples that satisfy Theorem 1.1,

which we will illustrate in the fourth part.

2 Preliminaries

We use (-,-) and | - | to represent the inner product and the Euclidean norm in RY. De-
fine

Er = {u = {u(t)}’u(t+ T)=u(t),ut) eRN,t e Z},

and

T 1/s
llaells = (Z (|au@)| + |u(t)|s)> , uckr.

t=1

Let E=Er x Er, for w = (u,v)" € E, define

Then E is separable and reflexive Banach space. Moreover, define

T 1/r
IVl = <;|V(t)|r> ;o or>1l, e = tenzlﬁ?(n‘v(t”'

For u,v € E7, it is easy to obtain that there exists Cy > 0 such that

lllloo < Collzellp, Vlloo = CollVllg- (2.1)

Define J :E — R, as

T

T (w,v) =Y [®1(Au®)) + D2 (AW(E)) - F(£u®), V1)) ]- (2.2)

=1
Then J € CY(E,R), for each @ = (u,v)7, ¥ = (Y1, V)" € E, one can easily check that
(T @), v) = (T (,v), (W1, ¥2)) = (Tt v), Y1) + (T (1, v), 12)
XT: [(#1(Au®), Ayr1(2) + (VK (8 u(0), v(2)), ¥1(2))
= (Vu W (2, ult), v(8)), ¥1(9)) ] (2.3)
+ ZTI: [(@2(Av()), AY2(0)) + (VoK (2, u(0), v(D)), Y2 (D))

— (VuW (&, u(t), v(t)), ¥2(1)) ]-

Page 4 of 12
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Lemma 2.1 (see [25]) For any w = (u,v)*, ¥ = (Y1, ¥2)" € E, we have:

T T
=Y (Mg (Au(z-1 ) =Y (@1 (Au®), Avi(®),
t=1 t=1
T T

(Ao (AV(E=1)),¥5(8) = D (o (AW(E)), A (8)).
t=1 t=1

Through Lemma 2.1, we obtain
T
Z d)l Au(t) Avll(t)) (Vu1<(tr u(t)x V(t))x 1/f1 (t)) - (Vu W(t, M(t)) V(t))’ 1;[/I(t)):l
t=1

T
+Z $2(AV(D)), A (®)) + (VK (£ u®), v(8)), ¥ (8))

— (VoW (& u(0),v(2)), ¥2(8)) ]
T

=Y [-(Agi(Ault - 1), y1(8) + (VK (£, u(8), (2)), Y1 (2)

t=1

= (VuW (& u(t), v(2)), ¥ (2)) ]

T
+ 3 [(Aga(AV(E - 1)), ¥a(8)) + (VK (£, u(t), V(2)), ¥a(8))

From the above equation, we can easily obtain that the critical points of 7 in E are periodic
solutions of system (1.1).

Let X be a real Banach space. For ] € C!(X, R), we say that J satisfies the (PS)-condition,
if any sequence {w,,} € X, J(w,,) is bounded, and J'(w,,) — 0 (m — 00) possesses a con-

vergent subsequence.

Lemma 2.2 (see [4]) Suppose X is a real Banach space, ] € C1(X,R) satisfies the (PS)-
condition and the following conditions:

(1) J(0) = 0;

(i) there exist constants p, o > 0 such that J|spp0) > o;

(iii) there exists e € X \ B,(0) such that J(e) <0,

then ] possesses a critical value ¢ > o given by

¢ = inf max J(g(s)),

gel s€(0,1]

Page 5 of 12
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where B, (0) is an open ball in X of radius p at 0, and
I ={geC([0,1],X) : g(0) = 0,g(1) = e}.

Remark 2.1 Under the weaker Cerami condition than (PS), the mountain pass theo-
rem still holds. A sequence {w,} is called Cerami-sequence (henceforth denoted by (C)-
sequence), if J{w,} is bounded and (1 + ||u, ||)|| T’ (u,)|| = 0 (n — o0), if any (C)-sequence
for J has a convergent subsequence, we call the functional J satisfies (C)-condition.

3 Proofs
Lemma 3.1 Assume that (A0), (A1), (K1), (K2), (W2), and (W3) hold. Then ] satisfies
(C)-condition.

Proof Presume that {w, = (4,,v,)"} C E is a (C) sequence for 7, then J (@) is bounded,
(1 + [lwa DT (@)l = 0 (n — o0). Hence, there exists M > 0 such that |7 (w,)| < M,
(1 + |lon DT (@u)|l <M. Then, by (2.2), (2.3), (A1), and (K2), we have

(1 + maX{Pw q})M Z max{p: Q}j(um Vn) - (ju,, (ul’ll Vn): un) - <s.7vn (I/t,,, Vn)r Vn)

™M=

=

[(Vun W(t’ u,(t), Vn(t))r un(t)) + (an W(t’ u,(t), Vn(t))’ Vn(t))

t

— max{p, q}W(t, u,(t), vy,(t))]. (3.1)

I
—_

Now, we demonstrate that {@,, = (u,,v,)"} is bounded, through contradiction. If {w,} is
unbounded, then {w,} has a subsequence, still remember {w@, = (1,,v,)7}, and |u,]l, +
lvally = +00, (n — 00). Therefore, we can suppose that |u,|, = +0o. Then there are
two situations.

@k Il =00

(n) 1
Let z," = ”,:‘T‘p, Zy Hv H , then ||z1 l, =1and ||z2 g =1 Hence, {Z }(z =1,2) hasa

convergent subsequence, still remember {zi }(l =1,2), such that zi ) zi(i=1,2), (n—
o0), for some (z1,23) € E. Then

2(6) = z1(0), Z(Z")(t) — 25(t), forallte€Z, asn— co. (3.2)

By (A1), (K1), and (W3), we have

T
T (s v) = > _[©1(Aun(t)) + Po(Avi(£)) + K (£ tn(®), va(®)) = W (£, 1 (8), v (8))]
t=1
T T
> min{cy, ¢z} Z ‘Au,,(t | |Avn Z a1|u,, +a2‘vn(t)’q] —-dT
t=1 t=1
T T
> Cr(llunllh + Ivall) - Co [Z|un(t) P+ Z‘Vn(t)|q:| -dT, (3.3)
t=1 t=1

where C; = min{cy, ¢;}, C; = min{cy, ¢c2} + max{ay, a,}. Then, we have

T v) cl_cz[ZtTl'”"“"” . i @l ]_ dr

P - p q ' q ’4 q
ltnllp + vallg letnllp + vallg  Ntallp + Mvallgd Nstnlly + lIvallg
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T T

>C -Gy |:Z 2, (2) 1P + Z |Vn(t)|q] dT

= Nl = vall] | allh + vl

T T dT
>C -G [ZW’(;:) I+ Z|z§")(t)|q:| ——— (3.4)
t=1 t=1

p q
”un”p + ”Vn”q

Taking the limit of the above inequality, by (3.2), we have

T T Cl
;lzlm\” + ;lzxt)r’ =g 0 (3.5)

then, there exists a set Q7 = {t € Z: z1(¢) #0 or z,(t) # 0} # ¢ C Z such that
’zl(t)| + |zg(t)| >0, VteQ.
Thus
,}E&‘WGM + |[va(t)| = +o0, forallze Q. (3.6)
Then, by (3.6) and (W2), for ¢ € Q2;, we have
1im [(Vi, W (£, tn (), va(0)), a(0)) + (Vi W (£, 1(0), (D)), v (£))

n— 00

—max{p, g} W (¢, u(t), vn(t))]
= +00. (3.7)

By (A2), (3.6), and (3.7), we get

T
Timinf [ (i, W (6 14n(0), va(0)), () + (Yo, W (8 100(0), v (0)), (1))
t=1

—max{p, q} W(t, u,(2), Vn(t))]

> lim inf D (Vi W& tn(8), v(8)), tn (8)) + (Vi W (8, 4n (0), v (D)), v (2))

teQ

—max{p, )W (tua (O, va®)] + > glt)

teZ[1,TI\ Q1

=3 lim inf[ (Vi W (£, n(£), va(2)), 0 (8)) + (Vo W (& ta(£), vi(2)), v (8))

te

—max{p, @} W (6 un (O, va(®) ]+ Y g(t)

teZ[1, T\
oo, (38)
which contradicts (3.1). Hence {u,} is bounded.
(ii): lvull4 is boundness

For this case, there exists C3 > 0 such that

leenll, = +00, asm— o0, and |[[vully <Cs.

Page 7 of 12
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Let 2(1") = IILZan’ then ||z(1”)|| » = 1. Hence, {2(1")} has a convergent subsequence, still re-
)

member {2(1")}, such that z(ln — z1, (n = 00), for some z; € E7. Then

zi”)(t) — z1(t), forallteZ, asn— oo. (3.9)

Hence, we have

T (s V)
ltully + vall§
Yolm@F XL @) dT
2G-G P 77 P 7|~ P q
”un”p + ”Vn”q ”un”p + ”Vn”q ”un”p + ”Vn”q
T T
|un(t)|p |Vn(t)|q aT
>C -G + -
[; i ; ety |~ Toanl?
a c! 4t
>C-GY |0 -G— - ——. (3.10)
o lnlly  Nutnllp
Let n — o0. (3.10) implies that
T
P EAGIE
t=1
then, there exists a set Q, = {t € Z: z1(¢) #0} # ¢ C Z such that
|z1(6)| >0, Vte Q.
Thus
lim !u,,(t)! + |vn(t)| =+00, forallte Q. (3.11)
n— o0
The remaining proof is similar to the case (i), we can also get that {u,} is bounded. (I

Likewise, we can show that {v,} is bounded. So {@w, = (u,,v,)"} is bounded in E. Mean-
while, E is finite dimensional, thus there exists a convergent subsequence. Then J satisfies
(C)-condition.

Lemma 3.2 Assume that (A0), (A1), (K1), (W1), and (W3) hold, there exist p >0, a >0
such that J1spp0) > o.

Proof From (W1) and (W3), there exist constants 0 < &€ < min{by, by, ¢1,62}, 11 > p, T2 > ¢
and Cy, C; > 0 such that

W (t,u,v) < (min{by, by} — &) (lul” + |v|7) + Calu|™ + Cs|v|™. (3.12)

Let

1 1

. 1 & n-p & -4
0 = min ) 7 N == .
max{p,q}Co \ pCsTCy' qCsTCy?
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lull, < @)l = p, IVlg < @ V)]l = p, then [u(?)] < [lulle < Collull, < Cop <1, V()] <
IVlle < Collvllg < Cop < 1. Then, from (2.1), (2.2), (3.12), (A1), and (K1), we have

T

J (u,v) Z Au(t) + <I>2(Av(t)) + I((t,u(t),v(t)) - W(t,u(t),v(t))]

t=1

T T T T
> Y |Au@)f + e Y | Av)| + b Y |u@®] + b2 > |v(e)]?
t=1 t=1 t=1 t=1

T
— (min{by, b2} —€) > |u(d)|”
t=1

T T T
— (min{by, b} —£) > (@) = Ca Y _|u@®)]™ - C5 Y _|v(e)|”
t=1

t=1 t=1

T T T T
8(Z|Au(t) I+ Z|u(t)|p> + 8<Z|Av(t)|q + Z|V(t)|")

t=1 t=1 t=1 t=1

T T
—Ca ) |u@®]™ - Cs Y |ve)|”
t=1 t=1

> ellull? + elvil? - CaTlulll - CsTvIIZ
> ellull? + elvIlY — CaTCH ]|~ CSTCR w2
T — T —_
> (e~ CaTCHM |l 272) ]2 + (e — CSTCR IWIIZ7) v

> minfe — C4TCy p™1 7,8 — CsTCy p™ 1 (|[uell2 + v]]9)

i ! ! 1 min{p,q}
>emin{l--,1--¢}— ~ .
- { p }max{zpl,qu}(”u”p ”V”q)

o 11 1 min{p,q)
= smln{l Py 1 } max(27-1,200) || (u, V)” . (3.13)

Let o := e min{1 - 1%, 1- q}mpmin{p,q} > 0. S0 (3.13) shows that ||(&, v)|| = p implies

that 7 (u,v) > a. O

Lemma 3.3 Assume that (A0), (K2), (W?2), and (W4) hold. Then J(u*,v*) < 0, where
(u*,v*) € E\ B,(0).

Proof Let ¥ (s) = s~ ™Pa W/ (¢, sug, svg) (s > 0). By (W2), we obtain

Y'(s) = s~ ™ P [ max{p, g} W (¢, sto, sv0) + (Vsuo W (2, S0, Vo), Stkg )
+ (sto W (¢, sug, svo), svo)]

> 5l ),

Then

¢ ¢
/ V' (s)ds > / s~ maxlpal-lg(¢) ds
1 1



Deng et al. Boundary Value Problems (2024) 2024:58 Page 10 of 12

when ¢ > 1, that is

W (¢, Cuo, $vo) = ¢ ™ MPOW (2,1, vo) + O (¢mextpal _ 7). (3.14)
max{p, q}

By (K2), we have
K(t, tuo, L) < {™ PV (L, 1o, vo). (3.15)

Combining with (3.14), (3.15), and (W4), we have

T

T (G, &vo) = Y _[K(t, Lo, £vo) = W, Lo, o))
t=1
qu{p ) i |:I<(t, Up, Vo) — W(t, Up, VQ) — &}
= max{p, q}
i 2 Zg(”
— —00, as{ — o0. (3.16)

Hence, there exists ¢y large enough such that 7 (¢ouo, Sovo) < 0. Let u* = ¢oup and v* = Zovy,
then J(u*,v*) <0. O

Proof of Theorem 1.1. Obviously, J(0,0) = 0. By Lemma 2.2 and Lemmas 3.1-3.3, J has
a critical value ¢ such that J(u,v) = ¢, J'(&,v) = 0. Hence, (u,v) is a desired nontrivial
periodic solution of (1.1). O

4 Example
Example 4.1 Let

K (t,u,v) = by|u|™ + by |v|*? + 01(£) |u|t + 6(8)|v]*2,

1 1
W (t,u,v) = 03(6)|u ™™ P01 - ———— ) + 64 (t) y|™ P01 - ————— ),
In(e + |ul?)

In(e + |v|9)

where b1,b,y > 0, 6; € IY(Z,[0,+00))(i = 1,2,3,4) and are T-periodic, 1 < A; <k; <p, 1<
A2 < k3 <gq,then K and W satisfy (K1), (K2), (W1), and (W3).

: 1
VM W(ti u, V) = Gs(t) max{p, q}u|u|mdxmq}—2 1o — =
In(e + |u?)

+ M|M|max@,q}+p—2 p@g(f)
(e + ulP)(In(e + |ul?))?’

1
VVW(t, u, V) = 94(t) max{p, q}v|v|max{.ﬂvq}—2 1o —
In(e + |v]4)

+ 1/lvlmax{p,q}Jrq—Z q94(t)
(e + [vI7)(In(e + [v]7))>’
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SO

(VuW (&, u,v),u) + (Y, W(t, 1,v),v) — max{p, g} W (¢, u, v)

max{p,q}+p P93(t) + |V|max{p,q]+q q94(t) ,
(e + |ulP)(In(e + [u|P))? (e +v9)(In(e + [v|1))?

= |ul

then it is easy to test that (W2) holds.

T

;[K(t, uo, vo) — W (¢, uo, vo) — nlai(i{;),q}}
T 1
= ;I:bﬂulf\l + by |V + 01(8)|ul“! + 65(2) V] — O3(8) || PO (1 B W)
| ! 8(t)
_ - )
v ' (1 In(e + Ivlq)) max{p, q}]

T T
gl
=Dy Tlul™ + by TV + [ul" Y 05(8) + [V ) 0a(t) - —=—
t=1 t=1 max{p,q}

T T
1 1
Cymaxpal (- 0,(f) — [ymaxtpay (1 - = O, (¢t
|l ( e+ |u|p)) él 1) = v < e s V) ;ﬂ 5 ()

if
T T T T
D 0> 60, Y 6:(t)> Y 6a(t),
t=1 t=1 t=1 t=1

there exists (¢, vo) € RY x RN such that (W4) holds. Hence, system (1.1) has one nontrival

T -periodic solution.
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